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Background: Pancreatic cancer (PC) remains a highly aggressive disease with a
poor postoperative 5-year survival of around 25%, attributable to its
immunosuppressive and fibrotic tumor microenvironment. Prognostic models
that combine immune checkpoint markers with fibrotic features are still needed.
Methods: We analyzed qualifying surgically resected PC specimens.
Immunohistochemistry was used to evaluate PD-L1, CTLA-4, and a-SMA
expression. Extracellular matrix volume (ECV) at the tumor center (ECVC) and
peritumoral region (ECVP) was measured by three radiologists using single-
energy CT. Collagen fraction (CF) was assessed via Masson'’s trichrome staining.
Multivariate Cox regression identified independent predictors of overall survival
(OS); a prognostic nomogram was then developed.

Results: Among 268 enrolled patients, divided into training (n=215) and validation
(n=53) sets via Five-fold cross-validation, PD-L1 expression correlated positively
with o.-SMA, T stage, and N stage. Multivariate analysis identified o.-SMA H-score,
Masson-CF, ECVC, ECVP, T stage, N stage, CA19-9, neutrophil-to-lymphocyte
ratio (NLR), vascular invasion, and chemotherapy as independent OS predictors.
The nomogram integrating these factors outperformed TNM staging in
predicting OS.

Conclusion: High PD-L1 expression is associated with enhanced fibrosis, greater
tumor burden, and nodal metastasis in PC. Patients exhibiting elevated PD-L1
levels, significant fibrotic burden, advanced T or N stage, or increased NLR
demonstrate reduced OS. The developed nomogram enhances individualized
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prediction of OS. These findings support the hypothesis that combining immune
checkpoint blockade, TGF-B inhibition, and chemotherapy may represent a
promising therapeutic strategy for PC patients with high PD-L1 expression and
pronounced fibrosis.

pancreatic cancer, immune checkpoints, fibrosis indexes, extracellular volume,
nomogram, overall survival

1 Introduction

PC is an aggressive malignancy within the gastrointestinal tract
(1). PC is characterized by extensive local invasion, early systemic
spread, and a notable resistance to chemotherapy and radiotherapy
(2). The median overall survival for PC patients is below 6 months,
with a five-year survival rate hovering around 7% (3). Recently, the
combination of surgical resection with adjuvant chemotherapy
presents the sole option for extended survival or potential cure in
PC patients (4). Nonetheless, the 5-year survival rate for resected
PC patients remains disappointingly below 20% (5). Therefore, in
addition to early diagnosis and treatment for the timely detection
and management of PC, the introduction of novel therapeutic
agents represents one of the key strategies for improving
postoperative survival in patients following curative resection (6, 7).

Over the past decade, cancer immunotherapy has transitioned
from an experimental concept to a pillar of oncologic care.
Immune-checkpoint blockade combined with chemotherapy has
recently shown meaningful activity in PC. In a 2022-2024 single-
center cohort of 57 metastatic patients, adding a PD-1 inhibitor to
AG or mFOLFIRINOX significantly improved the objective
response rate (42.9% vs 17.2%, P = 0.02), prolonged median
progression-free survival (7.3 vs 5.8 months; HR 0.64, 95% CI
0.46-0.89), and extended overall survival (12.0 vs 10.2 months; HR
0.71, 95% CI 0.52-0.96) compared to chemotherapy alone, without
increasing grade >3 toxicity (8). A real-world Chinese study (2020-
2024) of 112 patients across five centers showed that PD-1/PD-L1
inhibitors combined with chemotherapy achieved an objective
response rate of 26%, a disease control rate of 71%, and a median
overall survival of 10.4 months, outperforming historical controls
(9). However, the phase II trial combining durvalumab (anti-PD-
L1) and tremelimumab (anti-CTLA-4) reported an ORR of only
3.1%, with no responses observed in either monotherapy arm of PC
patients (10). Similarly, pembrolizumab or nivolumab used as
single-agent PD-1 blockade produced no radiographic responses
in unselected PC cohorts (11). Thus, for PC patients, combination
therapy with immunotherapy and chemotherapy demonstrates
superior efficacy compared to either immunotherapy or
conventional chemotherapy alone. Nevertheless, identifying
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biological indicators that accurately reflect tumor immunogenicity
remains essential for achieving precision medicine.

Although multiple factors including oncogenic KRAS
mutations, hypoxia-induced metabolic stress, and the
accumulation of myeloid-derived suppressor cells (MDSCs) and
regulatory T cells (Tregs) shape the immune microenvironment of
PC, two key drivers underlie its profound immunosuppression:
dysregulated immune-checkpoint pathways and a rigid,
desmoplastic fibrotic stroma (12-15). First, tumor cells, cancer-
associated fibroblasts (CAFs), and infiltrating myeloid populations
consistently express PD-L1, whereas tumor-infiltrating
lymphocytes (TILs) upregulate PD-1 (16). Concurrently, CTLA-4
on regulatory T cells outcompetes CD28 for CD80/86 binding,
suppressing cytotoxic T-cell responses and driving T-cell
exhaustion (17). Second, the fibroblasts deposit a dense, collagen-
rich extracellular matrix that mechanically traps CD8" T cells in
peritumoral cuffs, elevates interstitial pressure, and compresses
vasculature exacerbating hypoxia (18). This physical barrier not
only restricts immune cell infiltration but also transcriptionally
reinforces PD-L1 expression through HIF-1lo. stabilization (19).
Therefore, a single biomarker often fails to accurately assess tumor
immunogenicity. Only multi-parameter assessment approaches can
comprehensively reflect the tumor microenvironment (TME) status
and thereby predict clinical outcomes. However, there is still a lack
of an integrated prognostic model incorporating immune
checkpoint expression profiles, fibrosis levels, and clinical
parameters to predict long-term survival following curative
resection in PC patients.

In this study, we first quantified immune checkpoint expression
(PD-L1 and CTLA-4) in 268 pancreatic cancer patients following
radical resection. Subsequently, tumor fibrotic burden was
comprehensively assessed through integrated radiological-
histopathological analysis. Multivariate analysis identified PD-L1
expression, fibrotic indices, NLR, T stage, N stage, and key clinical
variables as independent prognostic determinants of OS. We
further developed a clinically applicable nomogram to stratify OS
probability. Moreover, validation studies confirmed the superior
predictive performance of this integrated nomogram model
compared to the TNM staging system.
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2 Material and methods

2.1 The patients’ enrollment, grouping and
relevant ethical approval

Patients who underwent radical resection for PC between January
2008 and December 2019 were identified from medical records. A
multidisciplinary team (MDT) preoperatively assessed the safety and
feasibility of radical resection for each case. Key imaging data
reviewed during MDT discussions included computed tomography
(CT), magnetic resonance imaging (MRI), and positron emission
tomography-CT (PET-CT) findings. All procedures were performed
by one of three senior surgeons with specialized expertise in PC
resection. Surgical strategies were individually customized based on
clinical tumor characteristics and patient preferences.

The inclusion criteria were as follows: (1) The postoperative
specimen from the radical resection was pathologically confirmed as
PC; (2) Written informed consent was obtained from the patient
prior to specimen collection, and the study protocol was approved by
the Institutional Ethics Committee; (3) Complete postoperative
follow-up records, including OS and detailed documentation of
adjuvant chemotherapy regimens, must be available; (4)
Comprehensive pathological data such as TNM stage, lymph node
harvest and positivity rate, and the presence of perineural and
vascular invasion were obtained; (5) Full clinical information,
including age, gender, and tumor marker test results, was available.
On the contrary, the exclusion criteria were represented as follows:
(1) patients with second tumor before surgery, (2) patients who
received neoadjuvant chemotherapy, (3) patients without RO
resection (the margin for RO resection was described as 1.5-2mm in
the previous study) (5), (4) lost follow-up, (5) the number of dissected
lymph nodes was less than 12 (20, 21). Subsequently, The cohort was
partitioned through a randomized 5-fold cross-validation process.
The entire dataset was first shuffled and then equally divided into 5
folds. For each validation round, one fold (approximately 20% of the
data) was assigned as the validation set (n=53), while the remaining
four folds (approximately 80%) were used as the training set (n=215).
This process was repeated five times such that each fold served as the
validation set exactly once. This strategy was employed to ensure
robust model evaluation, minimize sampling bias, and maximize the
use of available data for both training and validation. The detailed
case inclusion process is shown in Figure 1.

In this study, informed consent was secured from all participants
for the utilization of their medical records and pathological
specimens. Additionally, the ethics committee provided in our
hospital approval for the retrospective analysis conducted.

2.2 Immunohistochemical staining

Immunohistochemical staining was performed on 4-pm
formalin-fixed paraffin-embedded PC tissue sections mounted on
charged slides. Following deparaffinization and rehydration, heat-
induced epitope retrieval was conducted in citrate buffer (pH 6.0) at
95 °C for 20 minutes. Sections were incubated overnight at 4 °C with
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rabbit monoclonal antibodies against 0.-SMA (clone ARC1912), used
at a dilution of 1:200, CTLA-4 (clone ARC57390), used at a dilution of
1:200, and PD-L1 (clone ARC2478), used at a dilution of 1:200,
followed by detection using HRP-polymer secondary antibodies with
3,3’-diaminobenzidine (DAB) chromogen visualization, representative
IHC images are shown in Figures 2A-L. Counterstaining was
performed with Mayer’s hematoxylin prior to dehydration and
resinous mounting. Following immunohistochemical staining,
whole-slide images were acquired using a high-resolution digital
slide scanner (Zeiss Axio Scan.Z1) and subsequently subjected to
quantitative analysis via the HALO image analysis platform (Indica
Labs), with the H-score serving as the primary quantitative metric (20,
22). For the quantification of 0-SMA, analysis was confined to stromal
areas. In contrast, both stromal and parenchymal regions were
evaluated for CTLA-4 and PD-L1, reflecting the recognized
expression of these immune checkpoints not only in cancer cells but
also across various cell types within the tumor microenvironment.
Staining intensity was categorized as 0 (negative), 1+ (weak), 2+
(moderate), or 3+ (strong). Using automated cell segmentation, the
software calculated the percentage of cells at each intensity level and
derived the H-score according to the formula: H-score = (1 x %1+) +
(2 x %24) + (3 x %3+). This H-score was subsequently subjected to
ROC curve analysis based on the entire cohort to determine the
optimal cut-off value. It is important to note that the ROC-derived
threshold, established from the overall dataset, was applied
consistently to both the training and validation sets. Values above
the cut-off were classified as high expression, and those below was
described as low expression.

2.3 Masson's trichrome staining

Sections were sequentially treated with: (1) Weigert’s iron
hematoxylin for 10 minutes to stain nuclei, (2) Biebrich scarlet-
acid fuchsin solution for 10 minutes to differentiate cytoplasmic and
muscle fibers, (3) phosphomolybdic-phosphotungstic acid solution
for 10 minutes for differential bleaching, and (4) aniline blue
solution for 5 minutes to selectively stain collagen fibers.
Following each staining step, sections were rinsed in distilled
water with differentiation in 1% acetic acid after aniline blue
application. Dehydration was accomplished through 95% and
absolute ethanol (3 changes each), cleared in xylene, and
mounted with resinous medium. All procedures were conducted
at room temperature with precise timing controls. Quantitative
analysis of stained sections was performed with ImageJ software,
with collagen deposition/positive areas measured by threshold-
based segmentation. The above detection and processing results
are shown in Figures 2A-D.

2.4 The fibrosis assessment based on the
radiology

Extracellular volume (ECV) derived from preoperative SECT
was assessed through blinded analysis by three independent
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FIGURE 1
Research process diagram.

radiologists. Both non-contrast and contrast-enhanced CT scans
were acquired under standardized imaging protocols to ensure
technical consistency. To minimize motion artifacts, patients were
instructed to maintain breath-hold during scanning; for those
unable to comply, iterative reconstruction algorithms were
employed to mitigate motion-related degradation. Key acquisition
parameters included a tube voltage of 120 kV, automatic tube
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current modulation (range: 100-300 mA), slice thickness of 1-2
mm, reconstruction interval of 1 mm, pitch of 0.8-1.2, and a
rotation time of 0.5 seconds. All images were reconstructed using
a standard soft-tissue kernel. Regions of interest (ROIs)
encompassed both hypodense tumor cores and relatively
hyperdense tumor periphery within each patient, with the aortic
lumen serving as the reference compartment. To ensure
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FIGURE 2
Quantification of fibrosis-related indices and immune checkpoint expression profiles in PC tissues. (A—D) Fibrosis extent in pancreatic cancer tissues
was evaluated by IHC and Masson'’s trichrome staining, with quantitative analysis of staining parameters conducted using the HALO image analysis
platform and ImageJ software. (E—H) CTLA-4 expression in pancreatic carcinoma tissues was evaluated via immunohistochemistry with quantitative
assessment performed on the HALO platform. (I-L) PD-L1 expression in pancreatic carcinoma tissues was evaluated via immunohistochemistry with
quantitative assessment performed on the HALO platform.

reproducible ECV quantification, a standardized protocol was  from two concordant readings, it was excluded and the mean of the
applied. Three blinded readers independently measured each case,  remaining two was used. Where all three diverged without a clear
with a predefined acceptable variability of 2%. If all values agreed  outlier, a senior arbiter provided a definitive measurement or the
within this range, their mean was taken. If one value differed by >2%  case was re-evaluated. All procedures were documented for
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Imaging-based quantification of PC fibrosis metrics. (A—D) Quantitative presentation and comparison of HU values across tumor core, tumor
periphery, normal pancreatic parenchyma HU values, and abdominal aorta HU values in identical patients during pre-contrast and equilibrium phases

of contrast-enhanced CT.

transparency. Clinicians solely delineated tumor and peritumoral
boundaries on CT images without participating in subsequent ROI
selection or ECV quantification. The ATumor, calculated as the
difference in Hounsfield Units (HU) between the tumor center’s
equilibrium phase (180 seconds post-contrast medium
administration) and precontrast phase, and APeritumor, as the
difference in HU between the tumor periphery equilibrium and
precontrast phases. AAorta represents the difference in HU between
the aortic region’s equilibrium and precontrast phases.
Subsequently, the relevant data calculations according to the
following formula: ECVC = (100 - hematocrit) * ATumor/AAorta.
Similarly, ECVP = (100 - hematocrit) * APeritumor/AAorta (23-
25). ECVC and ECVP were then employed in subsequent
correlation analyses. The above detection and processing results
are shown in Figures 3A-D. Thresholds for both ECVC and ECVP
were determined using ROC curve analysis. Additionally,
Spearman correlation analysis was performed between ECVC/
ECVP values and both o-SMA H-score and Masson-CF to ensure
consistency in fibrosis assessment between imaging and
histopathological evaluations.

2.5 Collection of clinicopathological
characteristics

The clinicopathological factors included in this research were
chosen from the previous study focused on prognostic analyses (26—
28). The pathological factors analyzed included tumor size,
differentiation, lymph node metastasis, vascular invasion,
lymphatic invasion, and adjacent organ involvement. Vascular
invasion in pathology is defined by the presence of tumor cells
within an endothelial-lined space (e.g., blood or lymphatic vessels).
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Diagnostic confirmation requires visible tumor cells attached to the
vessel wall, floating within the lumen, or surrounded by
endothelium. Artifacts such as stromal retraction must be
excluded, often with the aid of special stains (e.g., CD31, D2-40,
or elastic stains) to highlight endothelial structures. Its
identification carries prognostic significance for metastasis risk
(29). Inflammation indices such as the NLR and platelet-to-
lymphocyte ratio (PLR) were also evaluated. Clinical factors
incorporated in this study encompassed chemotherapy status,
CA19-9 levels, CEA levels, jaundice, and diabetes. PTCD
(Percutaneous Transhepatic Cholangiographic Drainage) was
performed preoperatively in all jaundiced patients to reduce
complication risks. CA19-9 levels were measured after PTCD but
before radical surgery to minimize confounding by false elevations.

Chemotherapy regimens in this study were selected according
to the National Comprehensive Cancer Network (NCCN)
guidelines (2021 Version 2.0) for PC. Treatment decisions also
incorporated patient preferences and Eastern Cooperative
Oncology Group Performance Status (ECOG PS). For patients
with better physical status (ECOG PS 0-1), the preferred regimens
included FOLFIRINOX (oxaliplatin, irinotecan, leucovorin,
fluorouracil), AG (nab-paclitaxel plus gemcitabine), or GS
(gemcitabine plus S-1). Patients with poorer overall physical
status (ECOG PS 2-5) received gemcitabine or S-1 monotherapy.

2.6 Follow-up

Follow-up commenced one-month post-discharge, with
patients undergoing quarterly outpatient reviews. Each review
routinely included abdominal and chest CT plus CA19-9, CA125,
and CEA assessments. Telephonic follow-up was utilized for
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patients with limited outpatient access. The follow-up period
extended from enrollment until loss to follow-up, mortality, or
final contact.

2.7 Statistical analysis

Patient characteristics between training and validation groups
were compared using the chi-square test. Independent prognostic
factors for OS were identified through multivariable Cox regression
analysis. The association between independent risk factors and OS
was assessed using Kaplan-Meier methods, employing the log-rank
test for non-crossing survival curves and landmark analysis for
crossing curves. The correlation analysis among immune
checkpoints, fibrosis indices, T stage, and N stage was performed
using analysis of variance (ANOVA). The nomogram’s predictive
performance was evaluated against TNM-stage models using
concordance indexes (C-indexes), calibration plots, and decision
curve analysis (DCA). A two-tailed P-value < 0.05 was considered
statistically significant. All analyses were performed using SPSS
(v22.0) and R (v4.2.2; R Development Core Team). The following R
packages were utilized: getsummary, tidyverse, survival, plyr,
broom, forestmodel, ggplot2, rms, survminer, and ggDCA.

3 Results
3.1 Patient’s enrollment and grouping

A cohort of 394 PC patients underwent radical surgery between
January 2008 and December 2019. Following application of
inclusion criteria, 321 patients remained eligible. Exclusion
criteria eliminated 53 cases: Preoperative secondary malignancies
(n=15), Neoadjuvant chemotherapy (n=8), Non RO resection (n=2),
Loss to follow-up (n=19), <12 dissected lymph nodes (n=9). The
final study population comprised 268 PC patients, stratified into
training (n=215) and validation (n=53) sets using Five-fold cross-
validation. For the entire cohort, median OS was 36.9 months with a
5-year OS rate of 35.9%.

3.2 Quantification of immune, fibrotic
relevant biomarkers

This study quantified the following immune-related
biomarkers: PD-L1 H-score, cytotoxic CTLA-4 H-score, NLR,
PLR, PNI, and CRP. Results are expressed as mean + standard
deviation: PD-L1 = 134.12 + 46.04, CTLA-4 = 127.21 + 47.44, NLR
=4.56 + 8.03, PLR = 228.48 + 308.61, PNI = 400.07 + 68.25, CRP =
16.94 + 29.00. Fibrotic biomarkers included a-SMA H-score,
ECVP, ECVC, and Masson-CF, with quantitative results: oi-SMA
=111.71+34.75,ECVP=0.34 + 0.11, ECVC = 0.24 + 0.07, Masson-
CF = 0.33 + 0.11. Cut-off values for all factors were determined
using ROC curve analysis based on the entire cohort. The specific
ROC curves, along with their corresponding Area Under the Curve
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(AUC) values and cutoff values, can be found in Figures 4A-].
Immune/fibrosis indexes and clinical characteristics of both groups
are summarized in Table 1. Chi-square tests revealed statistically
significant differences in PD-L1, and CTLA-4 between training and
validation sets, while all other metrics showed no significant inter-
set variation. To evaluate the consistency between imaging-based
and histopathological assessments of fibrosis severity in the same
samples, we performed Spearman correlation analysis. The results
indicated significant positive correlations between o.-SMA and both
ECVC and ECVP. Similarly, strong agreements were observed
between Masson-CF and ECVC as well as ECVP. Detailed results
are presented in Figures 5A-D.

3.3 Prognostic factors for OS in PC
patients

As detailed in Table 2, univariate Cox regression analysis of the
training cohort assessed 26 potential prognostic factors, revealing
18 with significant association with OS in PC patients. These
comprised immune factors (CRP, NLR, PLR, PNI, PD-L1, CTLA-
4), fibrotic factors (c-SMA-HALO score, Masson-CF, ECVP,
ECVC) and clinicopathological factors (T stage, N stage, vascular
invasion, neurological invasion, CA19-9, tumor site, jaundice, and
chemotherapy). Subsequently, these significant variables underwent
multivariate Cox regression, ultimately identifying 11 independent
OS predictors: T stage, N stage, CA19-9, NLR, vascular invasion, o.-
SMA-HALO score, Masson-CF, ECVP, ECVC, PD-L1 H-score, and
chemotherapy administration. The detailed analysis results are
presented in Table 3. Moreover, the raw data are presented as
categorical variables in the Supplementary Material. To ensure the
robustness of the multivariable Cox model, which incorporated a
substantial number of variables, we evaluated the proportional
hazards assumptions. The global test produced a p-value
exceeding 0.05, demonstrating no violation of the proportional
hazards assumption and thereby affirming the model’s stability.
The aforementioned verification results can be found in
Figures 6A-K.

3.4 Survival analysis for independent
prognostic factors

Higher a-SMA-HALO scores, elevated ECVP values, and
increased Masson-CF correlated with reduced OS, as shown in
Figures 7A-C. Conversely, lower ECVC was associated with poorer
OS, the results can be found in Figure 7D. Patients with T1-stage PC
demonstrated significantly better OS compared to T2/T3 stages,
while advanced N-stage disease showed a progressive decline in
survival, as illustrated in Figures 7E, F. Moreover, elevated PD-L1
expression, increased NLR, and higher CA19-9 levels, all
independently predicted diminished OS, as depicted in
Figures 7G-I. Patients receiving adjuvant chemotherapy
demonstrated improved survival outcomes, whereas those with
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FIGURE 4

ROC curve of immune checkpoint levels, fibrotic indices, and clinicopathological parameters. (A—J) ROC curve analysis demonstrating diagnostic
performance of o.-SMA H-score, PNI, PLR, CRP, NLR, Masson-CF, ECVP, ECVC, CTLA-4 H-score, and PD-L1 H-score biomarkers with corresponding

AUC values and optimal cut-off points.

vascular invasion exhibited significantly poorer OS, as illustrated in
Figures 7], K.

3.5 Correlation analysis between immune,
fibrosis and clinical pathological Indicators

Patients with high o-SMA-HALO scores exhibited lower ECVC
but higher ECVP values, while elevated o-SMA-HALO scores
correlated with increased Masson-CF and higher PD-L1 H-scores,
as demonstrated in Figures 8A-D. Furthermore, advancing T stage
demonstrated a progressive decrease in ECVC, gradual increase in
ECVP, rising Masson-CF, increased o-SMA-HALO scores, and
elevated PD-L1 H-scores, Figures 8E-I shows these correlations.
Similarly, higher N stages showed reduced ECVC values, increased
ECVP, elevated Masson-CF, higher PD-L1 H-scores, and increased
0-SMA-HALO scores, Figures 8]-N presents these findings.
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3.6 Construction of a nomogram for OS
prediction

A prognostic nomogram was developed to predict 1-, 2-, and 3-
year OS in PC patients following radical resection, as shown in
Figure 9. This model integrates 11 clinicopathological variables
identified as independent prognostic factors through multivariate
Cox regression, including T stage, N stage, o.-SMA H-score,
Masson-CF, ECVP, ECVC, NLR, CA19-9 level, chemotherapy
administration, vascular invasion, and PD-L1 expression. Each
variable contributes discrete points (range: 0-100) proportional to
its prognostic weight, with N2 stage conferring maximal risk (100
points), ECVP 20.32 contributing 55 points, and PD-L1 H-score
>127.74 assigned 32.5 points. The total point summation (range: 0-
650) is converted to a linear predictor (range: -5 to 4) through a
central axis, ultimately projecting to identically scaled probability
axes (0.05-0.95) for survival estimation. For example, a linear
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TABLE 1 Baseline characteristics.

Characteristic Overall, N = 268 Training, N = Validation, N = 53

Gender 0.2
Female 166 (62%) 129 (60%) 37 (70%)
Male 102 (38%) 86 (40%) 16 (30%)

Age 0.3
<60 137 (51%) 113 (53%) 24 (45%)
>60 131 (49%) 102 (47%) 29 (55%)

Site 0.5
Head 202 (75%) 164 (76%) 38 (72%)
Body and Tail 66 (25%) 51 (24%) 15 (28%)

T stage 0.8
T1 23 (8.6%) 20 (9.3%) 3 (5.7%)
T2 131 (49%) 104 (48%) 27 (51%)
T3 114 (43%) 91 (42%) 23 (43%)

N stage >0.9
NO 142 (53%) 114 (53%) 28 (53%)
N1 80 (30%) 64 (30%) 16 (30%)
N2 46 (17%) 37 (17%) 9 (17%)

TNM stage 0.9
stage I 86 (32%) 68 (32%) 18 (34%)
stage 1T 134 (50%) 109 (51%) 25 (47%)
stage TIT 48 (18%) 38 (18%) 10 (19%)

Differentiation >0.9
Well-Moderate 132 (49%) 106 (49%) 26 (49%)
Poor 136 (51%) 109 (51%) 27 (51%)

Vascular invasion 0.8
Absence 171 (64%) 138 (64%) 33 (62%)
Presence 97 (36%) 77 (36%) 20 (38%)

Lymphatic invasion 0.8
Absence 161 (60%) 130 (60%) 31 (58%)
Presence 107 (40%) 85 (40%) 22 (42%)

Neurological invasion 0.084
Absence 53 (20%) 47 (22%) 6 (11%)
Presence 215 (80%) 168 (78%) 47 (89%)

o-SMA 0.5
<122.03 157 (59%) 124 (58%) 33 (62%)
>122.03 111 (41%) 91 (42%) 20 (38%)

Masson-CF 0.2
<0.37 201 (75%) 165 (77%) 36 (68%)

(Continued)
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TABLE 1 Continued

Characteristic Overall, N = 268 Training, N = 215 Validation, N = 53
>0.37 67 (25%) 50 (23%) 17 (32%)

ECVP 0.7
<0.32 113 (42%) 92 (43%) 21 (40%)
>0.32 155 (58%) 123 (57%) 32 (60%)

ECVC 0.14
<0.29 190 (71%) 148 (69%) 42 (79%)
20.29 78 (29%) 67 (31%) 11 (21%)

PD-L1 H-score <0.001
<127.74 123 (46%) 109 (51%) 14 (26%)
>127.74 145 (54%) 106 (49%) 39 (74%)

CTLA-4 H-score <0.002
<129.07 141 (53%) 123 (57%) 18 (34%)
>129.07 127 (47%) 92 (43%) 35 (66%)

CRP 0.8
<4.98 137 (51%) 109 (51%) 28 (53%)
>4.98 131 (49%) 106 (49%) 25 (47%)

NLR 0.3
<3.11 176 (66%) 138 (64%) 38 (72%)
2311 92 (34%) 77 (36%) 15 (28%)

PLR 0.2
<153.78 96 (36%) 81 (38%) 15 (28%)
>153.78 172 (64%) 134 (62%) 38 (72%)

PNI 0.8
<411.01 125 (47%) 101 (47%) 24 (45%)
>411.01 143 (53%) 114 (53%) 29 (55%)

CA19-9 0.082
<35 U/ml 65 (24%) 57 (27%) 8 (15%)
>35 U/ml 203 (76%) 158 (73%) 45 (85%)

CEA 0.15
<5 ng/ml 169 (63%) 131 (61%) 38 (72%)
>5 ng/ml 99 (37%) 84 (39%) 15 (28%)

CA125 0.2
<35 U/ml 222 (83%) 175 (81%) 47 (89%)
>35 U/ml 46 (17%) 40 (19%) 6 (11%)

Diabetes 0.7
Absence 203 (76%) 164 (76%) 39 (74%)
Presence 65 (24%) 51 (24%) 14 (26%)

Jaundice 04

(Continued)
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TABLE 1 Continued

Characteristic Overall, N = 268

Training, N = 215

10.3389/fimmu.2025.1688440

Validation, N = 53

Absence 123 (46%) 96 (45%) 27 (51%)
Presence 145 (54%) 119 (55%) 26 (49%)
Chemotherapy 04
Absence 119 (44%) 93 (43%) 26 (49%)
Presence 149 (56%) 122 (57%) 27 (51%)

Bold text indicates statistical significance (p < 0.05).

HR=0.222, p=0.001
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FIGURE 5
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Masson-CF

Spearman correlation analysis between imaging-based and histopathological fibrosis quantification. (A) Spearman correlation analysis between o-
SMA H-score and ECVC. (B) Spearman correlation analysis between o.-SMA H-score and ECVP. (C) Spearman correlation analysis between Masson-
CF and ECVC. (D) Spearman correlation analysis between Masson-CF and ECVP.
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TABLE 2 Results of univariate analysis.

Characteristics HR P Cl Characteristics HR P Cl
Gender CTLA-4 H-score

Female Reference <129.07 Reference

Male 0.8 0.2 0.57 - 1.12 >129.07 242 <0.001 1.73 - 3.39
Age PD-L1 H-score

<60 Reference <127.74 Reference

>60 1.15 0.418 0.82 - 1.6 >127.74 2.05 <0.001 1.46 - 2.89
Site Diabetes

Head Reference Absence Reference

Body and Tail 0.51 0.003 0.33 - 0.8 Presence 091 0.648 0.61 - 1.36
Differentiation Jaundice

Well-Moderate Reference Absence Reference

Poor 1.19 0.296 0.86 - 1.66 Presence 222 <0.001 1.57 - 3.15
Vascular invasion CRP

Absence Reference <4.98 Reference

Presence 1.96 <0.001 14 -2.74 >4.98 1.89 <0.001 1.35 - 2.64
Neurological invasion NLR

Absence Reference <3.11 Reference

Presence 1.67 0.022 1.08 - 2.6 23.11 272 <0.001 195-38
Lymphatic invasion PLR

Absence Reference <153.78 Reference

Presence 1.24 0.203 0.89 - 1.74 >153.78 2.51 <0.001 1.72 - 3.67
T stage PNI

T1 Reference <411.01 Reference

T2 2.53 0.02 1.16 - 5.52 >411.01 0.54 <0.001 0.39 - 0.75

T3 3.57 0.001 1.64 - 7.78 CA19-9
N stage <35 U/ml Reference

NO Reference 235 U/ml 1.81 0.004 1.2-273

N1 1.28 0.206 0.87 - 1.89 CEA

N2 231 <0.001 1.51 - 3.54 <5 ng/ml Reference
o-SMA H-score >5 ng/ml 0.94 0.741 0.67 - 1.33

<122.03 Reference CA125

>122.03 2.96 <0.001 2.11 - 4.16 <35 U/ml Reference
Masson-CF >35 U/ml 0.87 0.534 0.55 - 1.36

<0.37 Reference Chemotherapy

>0.37 2.86 <0.001 2-4.08 Absence Reference
ECVC Presence 0.67 0.017 0.48 - 0.93

<0.29 Reference

>0.29 0.55 0.002 0.38 - 0.81

(Continued)
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TABLE 2 Continued

10.3389/fimmu.2025.1688440

Characteristics HR P Cl Characteristics HR P Cl
ECVP

<0.32 Reference

>0.32 233 <0.001 1.63 - 334 233

Bold text indicates statistical significance (p < 0.05).

predictor value of 0 corresponds to predicted OS probabilities of
80% at 1 year, 65% at 2 years, and 50% at 3 years.

3.7 Validation of constructed nomogram

To evaluate the predictive accuracy of the nomogram, calibration
plots were generated and further demonstrated close agreement
between observed and predicted OS probabilities at 1, 3, and 5
years in both training and validation cohorts, with all points near

TABLE 3 Results of multivariate analysis.

the 45-degree ideal line, for details, see Figures 10A-F. Meanwhile,
decision curve analysis demonstrated superior clinical utility of the
nomogram model compared to the TNM staging system across both
training and validation cohorts, indicating enhanced prognostic
performance for clinical decision-making, the results are presented
in Figures 10G, H. Ultimately, to assess discriminative performance,
the C-index was calculated for both cohorts. The nomogram
demonstrated significantly superior discrimination compared to the
TNM staging system in training and validation cohorts, the
comparative results can be found in Figure 10L

Characteristics HR Cl P Characteristics HR Cl P
Site CTLA-4 H-score
Head Reference <129.07 Reference
Body and Tail 1 0.59 - 1.71 0.995 >129.07 1.27 0.82 - 1.97 0.282
Vascular invasion PD-L1 H-score
Absence Reference <127.74 Reference
Presence 2.15 1.48 - 3.12 <0.001 >127.74 1.58 1.08 - 2.31 0.019
Neurological invasion Jaundice
Absence Reference Absence Reference
Presence 1.51 093 - 2.44 0.092 Presence 1.01 0.65 - 1.56 0.969
T stage CRP
T1 Reference <4.98 Reference
T2 1.75 0.76 - 4.01 0.188 >4.98 1.1 0.75 - 1.61 0.636
T3 2.94 1.28 - 6.73 0.011 NLR
N stage <3.11 Reference
NO Reference >3.11 2.05 1.35-3.1 <0.001
N1 1.27 0.82 - 1.95 0.279 PLR
N2 3.42 2.03 -5.75 <0.001 <153.78 Reference
o-SMA H-score >153.78 1.12 0.72 - 1.75 0.604
<122.03 Reference PNI
>122.03 1.61 1.02 - 2.55 0.042 <411.01 Reference
Masson-CF >411.01 0.71 0.49 - 1.04 0.08
<0.37 Reference CA19-9
=0.37 1.56 1.02 - 2.4 0.042 <35 U/ml Reference
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TABLE 3 Continued

Characteristics Characteristics

ECVC 235 U/ml 1.59 1.01 -25 0.046
<0.29 Reference Chemotherapy
>0.29 0.6 0.38 - 0.94 0.027 Absence Reference

ECVP Presence 0.44 0.3 - 0.64 <0.001
<0.32 Reference
>0.32 1.75 1.14 - 2.7 0.011

Bold text indicates statistical significance (p < 0.05).
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Testing of the proportional hazards assumptions for independent prognostic factors of OS. (A) Schoenfeld individual test of vascular invasion. (B)
Schoenfeld individual test of T stage. (C) Schoenfeld individual test of N-stage. (D) Schoenfeld individual test of a-SMA H-score. (E) Schoenfeld
individual test of Masson-CF. (F) Schoenfeld individual test of ECVC. (G) Schoenfeld individual test of ECVP. (H) Schoenfeld individual test of PD-L1
H-score. (I) Schoenfeld individual test of NLR. (J) Schoenfeld individual test of CA19-9. (K) Schoenfeld individual test of chemotherapy.
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Survival analysis evaluating associations between immune checkpoints, fibrotic indices, clinicopathological factors, and OS. (A) Correlation between
o-SMA H-score and OS in the training cohort. (B) Correlation between Masson-CF and OS in the training cohort. (C) Correlation between ECVP and
OS in the training cohort. (D) Correlation between ECVC and OS in the training cohort. (E) Correlation between T Stage and OS in the training
cohort. (F) Correlation between N Stage and OS in the training cohort. (G) Correlation between PD-L1 H-score and OS in the training cohort. (H)
Correlation between NLR and OS in the training cohort. (I) Correlation between CA19-9 and OS in the training cohort. (J) Correlation between
chemotherapy and OS in the training cohort. (K) Correlation between vascular invasion and OS in the training cohort. HR: hazard ratio.

4 Discussion

Previous studies indicate that the 5-year survival rate for PC
patients is below 10% (3). Radical resection remains the only
potentially curative treatment option for PC (4). However, despite
adjuvant chemotherapy, approximately 85% of cases experience
tumor recurrence, while the 5-year survival rate for resected PC is
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estimated to be merely 15%-25% (30-32). The immunological
microenvironment plays a pivotal role in the progression and
prognosis of pancreatic cancer (33, 34). This microenvironment is
characterized by a dense stroma and a high presence of
immunosuppressive cells, such as tumor-associated macrophages
(TAMs), MDSCs, Tregs (15, 35, 36). These cells contribute to the
immunosuppressive state by secreting factors that inhibit the
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and ECVC. (F) Correlation between T stage and ECVP. (G) Correlation between T stage and Masson-CF. (H) Correlation between T stage and o.-
SMA-HALO score. (I) Correlation between T stage and PD-L1-HALO score. (J) Correlation between N stage and ECVC. (K) Correlation between N
stage and ECVP. (L) Correlation between N stage and Masson-CF. (M) Correlation between N stage and PD-L1-HALO score. (N) Correlation

between N stage and a-SMA-HALO score.

activity of cytotoxic T cells and promote tumor growth
and metastasis.

This immunological desert is orchestrated by the interplay of
three dominant forces. First, oncogenic KRAS and chronic
inflammation drive the recruitment and polarization of TAMs
and MDSCs via CCL2, GM-CSF and CXCL12, while
simultaneously inducing the expression of inhibitory ligands such
as PD-L1, PD-L2, CD80/86 and galectin-9 on tumor and stromal
cells (37, 38). Second, the PD-1/PD-L1 axis, CTLA-4 and LAG-3 act
as pivotal immune checkpoints that blunt T-cell activation and
sustain T-cell exhaustion (39-41). Third, an exuberant fibrotic
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stroma, generated chiefly by CAFs and pancreatic stellate cells,
not only forms a physical barrier that impedes T-cell infiltration but
also fuels immunosuppression through TGF-B-mediated signaling:
TGF-B promotes extracellular-matrix deposition, induces
regulatory T cells and directly suppresses cytotoxic T-cell
function, whereas combined inhibition of TGF-B and PD-LI in
pre-clinical PDAC causes marked T-cell dependent tumor
regression (40, 41).

Therefore, the expression status of immune checkpoints and the
extent of tumor fibrosis may serve as important prognostic
indicators for PC. However, there remains a lack of prognostic
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FIGURE 9

The nomogram model for OS prediction based on the independent risk factors.

models that comprehensively integrate these two parameters. This
study comprehensively assessed the relative contributions of
immune checkpoint markers, fibrosis indices, and
clinicopathological factors using multifactorial regression analysis.
Results identified elevated PD-L1 and a-SMA expression levels,
higher Masson-CF, increased ECVP, and reduced ECVC as
independent risk factors for OS. Critically, the nomogram model
developed from these risk factors demonstrated superior predictive
performance relative to the conventional TNM staging system.

In PC, PD-L1 is expressed on 15-30% of tumor cells and on a
substantial proportion of tumor-infiltrating immune and stromal
cells; multivariate analyses of 453 resected tumors show that high
PD-L1 mRNA or protein levels are independently associated with
shorter disease-free survival (DFS) and OS (hazard ratio = 1.5-2.0)
(42, 43). CTLA-4 is chiefly expressed on intratumoral regulatory T
cells and exhausted CD8" T cells; elevated CTLA-4" Treg
frequencies correlate with higher tumor stage and independently
predict poor OS in cohort studies (17, 44). In this study, we similarly
observed that univariate Cox regression analysis revealed significant
associations of both PD-L1 and CTLA-4 with OS in PC patients.

Frontiers in Immunology

17

However, multivariate Cox analysis demonstrated that only PD-L1
retained significance as an independent risk factor for OS. The
correlation of PD-L1 with fibrosis and tumor burden in PC is
intriguing yet controversial. PD-L1 expression is heterogeneous,
and its prognostic value is still under debate. Some studies link high
PD-LI expression to poor prognosis, while others report conflicting
results. The unique tumor microenvironment in PC may also
indirectly affect PD-L1 upregulation. Further research is needed
to clarify the mechanisms and prognostic significance of PD-L1 in
PC (45, 46). In fact, the highly fibrotic tumor microenvironment in
PC, characterized by sparse T-cell infiltration and dense MDSC
accumulation, combined with KRAS-driven intrinsic immune
evasion mechanisms, counteracts the theoretical “target
enrichment” advantage conferred by PD-L1 overexpression (47).
Consequently, current guidelines do not recommend PD-L1
expression as a biomarker for selecting PC patients eligible for
immune checkpoint inhibitor monotherapy (48). Instead, they
advocate for combination strategies (e.g., immunotherapy plus
chemotherapy, anti-CD40 agonists, CXCR4 inhibitors, or TGF-3
inhibitors) to overcome microenvironmental barriers, thereby
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Evaluation of the predictive performance of the nomogram model. (A) Calibration curve for 1-year OS prediction in the training cohort. (B)
Calibration curve for 3-year OS prediction in the training cohort. (C) Calibration curve for 5-year OS prediction in the training cohort. (D) Calibration
curve for 1-year OS prediction in the validation cohort. (E) calibration Curve for 3-year OS prediction in the validation cohort. (F) calibration Curve
for 5-year OS prediction in the validation cohort. (G) Decision curve analysis in the training cohort. (H) Decision curve analysis in the validation
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potentially unlocking therapeutic benefits in PD-L1-high subgroups
(40, 49).

Tumor fibrosis represents a critical microenvironmental factor
in the progression of PC, modulating tumor growth, invasion, and
response to therapy (50). Concurrently, extensive fibrosis in PC
impedes intratumoral angiogenesis, resulting in a hypovascular
state. This pathological characteristics manifest on contrast-
enhanced CT as significantly reduced attenuation values in the
central region of PC lesions, attributable to decreased vascular
density (51). Conversely, the peripheral hyperdense rim
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surrounding PC lesions corresponds to desmoplastic reactions.
This pathological process involves aberrant accumulation of
extracellular matrix (ECM) components predominantly collagen
fibers that generate a densely fibrotic stroma (52). This dense
stromal reaction forms a hypervascular rim that demonstrates
avid contrast enhancement on CT imaging, distinct from the
hypovascular core of the tumor (53). In this study, elevated ECVP
and reduced ECVC both independently predicted poorer OS in PC
patients. This indicates that contrast-enhanced CT enables
clinicians to preliminarily evaluate fibrosis severity and predict
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prognosis in PC patients. Furthermore, high a-SMA expression
levels and Masson-CF were prognostic for diminished
postoperative OS. Collectively, our findings lead us to hypothesize
that PC patients with advanced fibrosis might benefit from
adjunctive anti-fibrotic agents (e.g., TGF-B inhibitors,
pirfenidone) combined with immunotherapy and adjuvant
chemotherapy (54). This potential strategy warrants further
exploration to determine if it can mitigate recurrence risk and
improve long-term outcomes.

The T stage denotes tumor’s dimensions as determined by
pathologists, signifying tumor burden. It also serves as a reference
for gauging chemotherapeutic efficacy (55-57). The likelihood of
drug-resistant clones within a tumor often correlates with the tumor
size (58). This study further identified advanced T-stage as an
independent prognostic factor for diminished OS in PC. Given that
residual postoperative disease frequently drives recurrence and
progression, adjuvant radiotherapy or margin-targeted irreversible
electroporation (IRE, Nanoknife®) may reduce local recurrence
rates and improve long-term survival in patients with large-volume
tumors (59, 60). Furthermore, neoadjuvant chemotherapy could be
recommended for PC patients with a high T stage prior to surgery.
Neoadjuvant chemotherapy could prolong postoperative survival
by diminishing tumor volume and invasion scope, ensuring radical
resection, and minimizing residual disease (61, 62).

Previous studies have identified lymph node metastasis as a
critical predictor of tumor progression (27, 63-65). Concurrently,
the Japanese Pancreatic Society has highlighted that the presence of
N9 and N16 lymph node metastasis is closely associated with tumor
relapse and distant metastasis (66). Consistently, this research also
found that a higher N stage correlate with a diminished OS in PC
patients. Invasion into the lymphatic system is a predominant
avenue for PC metastasis (67). Lymph node metastasis also marks
the initial phase of PC metastasis and is pivotal for clinical staging,
prognostic assessment, and survival in PC patients (68, 69). Hence,
PC patients exhibiting lymph node metastasis may derive
significant benefits from adjuvant chemotherapy, potentially
enhancing OS outcomes.

We further performed correlation analysis on PDL1, SMA, T
stage, and N stage to investigate the relationships among immune
checkpoints, fibrosis extent, and tumor pathological parameters.
The elevated 0.-SMA expression positively associated with PD-L1
levels. Mechanistically, a-SMA"™ CAF-derived TGF-f induces
Smad-dependent PD-L1 transcriptional upregulation in tumor
cells, while CAF-secreted IL-6 activates JAK2/STAT3 signaling
and CXCL12/CXCR4 axis engagement potentiates PI3K/AKT
pathways, synergistically enhancing PD-L1 expression (70, 71).
Moreover, fibrosis can alter the tumor microenvironment, leading
to hypoxia and metabolic changes. These changes can induce
epithelial-to-mesenchymal transition (EMT) in tumor cells, which
is associated with increased PD-L1 expression (72). CAFs express
fibroblast activation protein (FAP), and targeting CXCL12 from
FAP-expressing CAFs has been shown to synergize with anti-PD-L1
immunotherapy, indicating that CAFs can influence PD-L1
expression and immune evasion (73). Further analysis revealed a
positive correlation between 0-SMA expression levels and both
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tumor T and N stage. This correlation may be attributable to CAF-
derived TGF-f activating Smad2/3 signaling in tumor cells, which
promotes EMT through E-cadherin suppression and vimentin/
MMP-2/9 upregulation, consequently enhancing cellular motility
and intravasation potential (73-75). Meanwhile, CAF-derived
VEGF-C, CXCL12 and IL-6 induce peritumoral
lymphangiogenesis through VEGFR-3 on lymphatic endothelial
cells, while hypoxia-activated tumor cells secrete additional
VEGF-C, creating a self-reinforcing loop that facilitates entry into
draining lymph nodes (76). Moreover, elevated PD-L1 expression
positively correlates with advanced T/N-stage. This association may
occur through PD-L1/PD-1 binding, which suppresses cytotoxic T-
cell activity and enables cancer cells to acquire stemness properties
and undergo EMT (77). These PD-L1-high stem-like cells
subsequently upregulate CXCR4 and VEGE-C, driving
chemotaxis toward CXCL12-rich lymphatic niches and promoting
peritumoral lymphangiogenesis (78, 79).

Vascular invasion profoundly impacts PC prognosis as a key
determinant of disease progression and survival outcomes. Patients
exhibiting vascular invasion demonstrate significantly increased
risk of metastatic dissemination, contributing to the
characteristically poor five-year survival rate of approximately 7%
(80). Vascular invasion facilitates PC metastasis through tumor cell-
endothelial interactions that compromise vascular integrity,
enabling tumor cell intravasation (80). Our study demonstrated a
significant correlation between vascular invasion and reduced OS in
PC. Given its association with increased recurrence and metastatic
risk, patients with vascular invasion should receive adjuvant
chemotherapy promptly post-resection. This approach mitigates
adverse prognostic effects and optimizes therapeutic outcomes in
this high-risk cohort.

CA19-9, an established biomarker overexpressed in PC and
other malignancies, is clinically utilized to monitor disease
progression and treatment response in PC patients (81). However,
its non-specificity to PC, with potential elevations in benign
pancreatic conditions, hepatic diseases, and gastrointestinal
disorders (82). This study identified a significant correlation
between elevated CA19-9 levels and reduced OS in PC. In
jaundiced patients, preoperative PTCD mitigates confounding
inflammatory effects on CA19-9, enabling more accurate
prognostic assessment. For patients with preoperative CA19-9
elevation, vigilant metastasis surveillance is warranted, with
neoadjuvant chemotherapy considered for borderline resectable
or high-risk cases.

The NLR, calculated from absolute neutrophil and lymphocyte
counts in routine complete blood counts (CBC), serves as a validated
biomarker of systemic inflammation and host immune status (83).
Elevated NLR has been consistently linked to adverse prognosis,
potentially due to its role in promoting angiogenesis, enhancing
tumor cell proliferation, and increasing the risk of metastasis (84).
Critically, elevated NLR reflects an immunosuppressive state that
facilitates tumor progression and confers therapy resistance (83). Our
study demonstrated a significant correlation between elevated NLR and
reduced OS in PC patient. These patients require vigilant postoperative
surveillance for tumor recurrence (85). Conversely, patients with low
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NLR may present a more favorable immune profile, potentially
responding better to immunotherapeutic interventions (86-88).

Since the high invasive capacity of PC, micro-metastatic lesions
and residual tumor foci commonly co-existed in the same patient
(89-91), adjuvant chemotherapy was imminent after radical
resection (92-95). The preceding research declared that
chemotherapy inhibited tumor progression and metastasis (96—
99). This study also demonstrated that PC patients achieving longer
OS benefit from postoperative chemotherapy.

This nomogram model offers significant clinical utility by
facilitating non-invasive assessment of tumor fibrosis through
imaging interpretation, thereby reducing the reliance on invasive
procedures such as biopsy. Meanwhile, by integrating immune
checkpoint markers, fibrosis extent, and clinicopathological
parameters, the model also improves the accuracy of
postoperative overall survival prediction in PC, providing valuable
support for clinical decision-making.

This study has several limitations. First, its single-center
retrospective cohort design may constrain external validity due to
regional practice variations. Multicenter controlled studies are
required to validate the nomogram’s predictive capacity. The cases
in this study did not receive postoperative immunotherapy. Future
studies in PC patients undergoing immunotherapy, with stratified
analyses, would enable more detailed exploration of the correlations
among immune checkpoint expression, fibrosis extent, and
immunotherapy response within the tumor microenvironment.
Selection bias represents a significant concern: patients with
comorbid stroke or coronary artery disease were less likely to
undergo resection given elevated surgical risk compared with
healthier candidates, potentially limiting the model’s applicability in
high-risk populations. Although our study identified a positive
correlation between o-SMA and PD-L1 expression levels through
correlation analysis, these findings still require further validation via
cellular experiments and possibly animal models. These additional
investigations will be conducted and verified in future research. The
absence of nutrition-related indicators in our final model constitutes
a limitation that may restrict its predictive performance. To address
this gap, subsequent studies will integrate a broader spectrum of
nutritional indices. Finally, insufficient characterization of certain
variables including specific chemotherapy regimens and N-stage
subgroups may reduce predictive precision; incorporating these
parameters could enhance the nomogram’s accuracy.

5 Conclusion

A significant positive correlation was observed between PD-L1
expression and both 0-SMA levels and advanced T/N stage. A
prognostic nomogram that incorporates a-SMA H-score, Masson-
CF, ECVC, ECVP, T-stage, N-stage, CA19-9, NLR, vascular
invasion, and chemotherapy status was developed and effectively
predicts OS in PC. Building upon these correlations, the
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preliminary findings raise the possibility that combining immune
checkpoint blockade, TGF-B inhibition, and chemotherapy may
represent a promising therapeutic strategy for PC patients
exhibiting high PD-L1 expression and stromal fibrosis.
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