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Skin - confluence of vertebrate host defences, arthropod vectors, and
vector-borne pathogens
Arthropod blood feeding, pathogen transmission, nuisance, and biting related injury

are long-standing and increasingly important global threats to human and animal health.

Arthropod interactions with vertebrate hosts occur at the cutaneous interface, a structural

and immunological barrier rich in interconnected somatosensory elements, multiple

resident and migrating immune cell types, and a complex, changing array of soluble

response mediators (1–3). Vertebrate skin presents a mixed milieu of attraction and defense

elements for the arthropod vector. The skin with its microbiome, metabolites, and odorants

provides the chemical cues critical for determining vector-host preference (4–6). The skin

microbiome may also set the immunological stage that determines critical host defense

responses that the vector encounters during its treacherous mission of taking a bloodmeal

and that the vector-borne pathogen encounters during its transmission and establishment

in the host (7–9).

Blood feeding arthropods possess mouthpart structures and feeding strategies that are

divided into the two broad categories of obtaining a blood meal from within the lumen of a

blood vessel, solenophages, or creating a pool of blood by lacerating dermal blood vessels,

telmophages (10, 11). Blood meal uptake occurs over the course of minutes for mosquitoes,

biting flies, fleas, bed bugs, and triatomines; one to two hours for argasid ticks, and days to

more than a week for ixodid ticks that also secrete attachment cement to aid in securing

themselves to the bite site (12–14). Regardless of the mechanism or duration of feeding,

successful acquisition of a blood meal is dependent not just upon the diverse

immunomodulatory components of arthropod saliva secreted into the skin at the bite

site during feeding, but also critically influenced by host defense responses to the vector

saliva molecules deposited in the skin. The tug-of-war interactions that ensue between the

vector and host skin defenses shape the evolution of vector-host relationships (15) resulting

in host resistance or susceptibility to the vector.
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Exploring the dynamics of vector-host interactions Kamran

et al. describe efforts to define host biomarkers of ectoparasite

resistance. The study focuses on the important veterinary pest

Haematobia irritans exigua, buffalo fly, close relative of

Haematobia irritans irritans, horn fly, both of whom are blood

feeding dipterans responsible for economic losses estimated for

horn fly in the United States to be one billion dollars annually (16).

Buffalo flies are obligate blood feeders taking 20 to 40 blood meals

per day (17). Bites of these flies cause severe cutaneous irritation

resulting in open sores. To define biomarkers associated with

enhanced fly resistance, the authors used LC-MS/MS to compare

the serum proteome profile of Brangus cattle that supported high

(HF) or low Buffalo fly (LF) infestations and demonstrated that

proteins associated with wound healing, phagocytosis and

coagulation were significantly increased in LF cattle compared to

that in HF cattle. These observations offer additional biomarkers

that synergize with ongoing efforts to breed cattle with increased

disease resistance (18, 19).

Paine et al. examine tick transmission of Powassan virus, a

neuroinvasive virus of public health importance, to vertebrate hosts

under controlled, laboratory conditions. Studying this virus by tick

transmission is essential due to the role tick saliva molecules play in

facilitating host neuroinvasion by Powassan virus (20).

Furthermore, Powassan virus is unique among Ixodes scapularis

transmitted infectious agents in that transmission occurs as

rapidly as fifteen minutes after tick attachment to the host (21),

while other I. scapularis-transmitted pathogens require hours to

days of blood feeding before successful transmission occurs (28).

Paine et al. provide insights into how infestation with Ixodes

scapularis impacts cutaneous global transcriptomic changes at

the tick bite site during the earliest timepoints for Powassan

virus transmission.

Advances in proteomics and genomics are facilitating a

molecular understanding of how vector saliva molecules interact

with host resident and migrating cells, signaling molecules, and

receptors during and following blood feeding to provide novel

insights into the interactions between vertebrate skin, arthropod

vectors, and vector-borne pathogens (22, 23). Since the tick remains

attached to the mammalian host for hours to days, depending on

the tick species, the tick needs to modulate cutaneous innate and

adaptive immune responses at the tick-host interface. Kleissl et al.

provide an insightful review on tick saliva that examines how the

tick exploits an array of biological functions of salivary proteins,

peptides, small molecules, and non-coding RNAs in tick saliva to

perform an astonishing variety of “tricks” at the host skin-vector

interface that are critical to successful blood feeding.

Highlighting the importance of pharmacological activities in

tick saliva, Molari et al. examine protease inhibitors, a predominant

super family of proteins secreted in tick saliva (24). The study

focuses on the cystatin family of protease inhibitors that inhibit

cysteine proteases involved in multiple host defense response

pathways including neutrophil recruitment, antigen processing

and presentation, and apoptosis (25). The authors demonstrate
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that Amblyostatin-1, a secreted salivary cystatin from Amblyomma

sculptum, a neotropical hard tick that is a vector of Rickettsia

rickettsii, the agent of Rocky Mountain/Brazilian spotted fever,

inhibits Cathepsin-S, a cysteine protease crucial for proper

antigen loading and presentation on MHC-II by dendritic cells

(26). Amblyostatin-1 impairs the function of dendritic cells (DCs)

in the mammalian skin and in-turn the development of antibody

responses to salivary antigens. Interestingly, Amblyostatin-1 also

promotes the secretion of IL-10, an anti-inflammatory cytokine, by

DCs. Exploiting a mouse model of carrageenan-induced

inflammation (27), the authors show that Amblyostatin-1 reduced

edema and neutrophil recruitment-induced cutaneous

inflammation. Amblyostatin-like molecules represent exciting

opportunities for the development of novel therapeutics for

inflammatory diseases in humans.

The molecular repertoire of the saliva of hematophagous

arthropod vectors evolved over millions of years to perfect the

pharmacological functions that ensure successful blood feeding.

Undoubtedly, evolution continues within, among, and across all

parties in the hematophagous arthropod –host –arthropod

transmitted pathogens triad. While our understanding of these

relationships has advanced significantly during the past 50 years,

we are only beginning to realize the multifaceted complexity, roles,

dynamic crosstalk, and beauty of these interactions.
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