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Innate immune cells and pathways are central to shaping the tumor
microenvironment (TME), where they influence tumor growth, metastasis, and
responsiveness to immunotherapy. Although research on innate immunity in
cancer has expanded considerably, the mechanisms driving immune dysfunction
remain incompletely understood. This review summarizes current knowledge on
the functional states of innate immune cells within the TME and highlights how
metabolic reprogramming contributes to immune suppression and tumor
progression. We further discuss recent advances in therapeutic strategies
targeting innate immune pathways, emphasizing their translational potential.
Importantly, we also examine unresolved controversies and knowledge gaps
across innate immune cells, metabolic networks, and innate immune factors
such as complement and cytokines, outlining key challenges for clinical
translation. By linking mechanistic insights with emerging interventions and
identifying future directions, this review provides a framework for integrating
innate immunity into next-generation cancer treatment.
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1 Introduction

Innate immunity represents the body’s intrinsic, non-specific defense mechanism and
plays an equally critical role in tumor immune responses (Figure 1). Under ideal
circumstances, abnormal cells would be promptly recognized and eliminated by the host
immune system. However, as tumors progress, cancer cells acquire the ability to secrete
diverse cytokines and chemokines that progressively impair immune cell function and
foster immune evasion (1).

Immunotherapy has transformed the landscape of oncology, yet its clinical benefit
remains restricted to a subset of patients. Current approaches predominantly focus on
adaptive immunity—particularly T cell checkpoint blockade—while the crucial roles of
innate immune cells and pathways have not been fully appreciated. Growing evidence now
indicates that innate immunity not only initiates antitumor responses but also shapes the
tumor microenvironment (TME) in ways that ultimately determine the effectiveness of

adaptive immunity (2).
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FIGURE 1

Normal function of innate immune cells. (A) Neutrophils can kill pathogens by directly engulfing pathogens or by self-sacrifice to create neutrophil
extracellular traps (NETSs). (B) DCs capture, process and present antigens to T cells through MHC molecules. (C) Macrophages phagocytose and
remove foreign bodies and senescent cells from the body. (D) NK cells can quickly recognize and clear pathogens, while activating other immune
cells by secreting cytokines. (E) NKT cells can directly kill pathogens and can also produce IFN-y and IL-4 to activate APC cells. (F) yd T cells can
recognize and respond to a variety of antigens, act as APCs to present antigens to T cells, and activate other immune cells. (G) When pathogens
invade, mast cells are stimulated and release various inflammatory mediators, which are able to attract more leukocytes to the site of infection.
Mast cells also function as APCs. (H) B-1 cells can produce natural IgM antibodies, which can bind to a variety of pathogen associated carbohydrate
antigens and play an early defense role. (I) Eosinophils mainly regulate type | hypersensitivity and kill foreign pathogens through cytotoxic effects.

(J) Basophils can promote the activation of Th2 cells and enhance the humoral immune response by secreting cytokines. NETs, neutrophil
extracellular traps; DCs, dendritic cells; MHC, major histocompatibility complex; NK, natural killer; NKT, natural killer T; IFN-y, interferon-vy; IL,
interleukin; APC, antigen-presenting cell; IgM, immunoglobulin M; Th2, T helper type 2.

In this review, we provide a comprehensive overview of the
innate immune system in cancer and analyze its therapeutic
implications. We place particular emphasis on the intersection
between innate immune metabolism and immunotherapy, and we
highlight feasible strategies to harness innate immune pathways in
the design of next-generation therapies. Importantly, we also
discuss ongoing controversies, unresolved knowledge gaps, and
future research directions, aiming to provide a balanced
perspective that can inform the rational integration of innate
immunity into personalized cancer treatment.
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2 Innate immune cells in tumors

Innate immunity involves various bone marrow-derived cells,
each contributing significantly to the innate immune response (3).
As tumors develop, a corresponding TME is established, which is
the internal milieu that nurtures tumor cells. Within the TME,
tumor cells have the capacity to boost or suppress the innate
immune response through the secretion of cytokines and
chemokines (4). The interplay among various components of the
TME significantly influences the functionality of innate immune
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cells. The following sections will further explore the functional
alterations of innate immune cells within tumors and the
underlying mechanisms that drive these changes (Table 1).

2.1 Neutrophils

Neutrophils are the predominant cell type within the innate
immune system and the first line of defense against infections.
Within the TME, there is a significantly increase in neutrophil
infiltration, accompanied by alterations in the function (5).

TABLE 1 Functional changes in innate immune cells in tumors.

10.3389/fimmu.2025.1689714

Although traditionally viewed as immunosuppressive, recent
studies have highlighted their complex roles in tumors. In the early
stages of tumor development, signaling molecules such as CXCL9
and IFN-f drive neutrophils toward an anti-tumor N1 phenotype.
These cells are highly cytotoxic and enhance local immune
responses by secreting pro-inflammatory chemokines (6, 7).

However, as tumors progress, cytokines such as IL-6, IL-10,
TGF-B1, and G-CSF, neutrophils are polarized to the pro-tumor N2
phenotype, which exhibits immunosuppressive properties (8, 9). N2
neutrophils facilitate tumor angiogenesis by releasing factors such
as vascular endothelial growth factor (VEGF) and matrix

Innate immune Tumors Functions and changes in tumors References
cells
Neutrophils breast cancef, ﬁbrosar-coma, colon cancer, polarization of N1 ©7)
promyelocytic leukemia
lung cancer polarization of N2 (8)
lung cancer promotion of tumor metastasis 9)
gastric cancer, lung cancer, colon cancer promoting angiogenesis (10, 11)
DCs myeloma, melanoma decreased ability to present antigen (14, 15)
prostate cancer the migration ability of DC was weakened (16)
biliary tract cancer, colorectal cancer inhibition of T cell activation (18, 19)
Macrophages colorectal cancer shaping the immunosuppressive microenvironment (22)
oral squamous cell carcinoma, HCC Promoting tumor cell proliferation (21)
non-small cell lung cancer, colon cancer promoting tumor proliferation and invasive properties (23, 29)
hepatocellular carcinoma, gastric cancer, liver . .
cancer. promoting tumor immune escape (24-26)
osteosarcoma improving the prognosis of patients (28)
non-small cell lung cancer enhancing antitumor immunity (30)
ILCs acute myeloid leukemia, pancreatic cancer, .
glioblastoma, lung cancer antitumor effects )
lung cancer, prostate cancer reducing tumor growth (42)
colorectal cancer preventing tumor progression (43)
NK cells HCC killing tumor cells (37)
ovarian the killing effect on tumor cells was inhibited (36)
liver cancer recognition of reduced tumor function (35)
NKT cells HCC proliferation is inhibited, and senescence occurs (44)
liver cancer inhibition of tumors (47)
CLL, neuroblastoma indicates a good prognosis (45, 46)
melanoma, neuroblastoma, lung cancer, colon cancer | regulating macrophages and inhibits tumor growth (78)
liver cancer promotion of tumor metastasis (48)
YOT cells nonsmall-cell lung cancer promoting tumor metastasis (51)
acute myeloid leukemia acute myeloid leukemia (50)
colorectal cancer promoting tumor immune escape and progression (52)
(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1689714

Innate immune  Tumors Functions and changes in tumors References
cells
B-1 cells lymphoma, liver cancer, breast cancer killing tumor cells (55)
melanoma promotion of tumor metastasis (57)
B-CLL promoting tumorigenesis (56)
MCs thyroid cancer, bladder cancer promoting tumor progression (58, 59)
Eosinophils breast cancer promoting lymphocyte-mediated antitumor immunity (62)
melanoma promotion of tumor metastasis (66)
pancreatic cancer inhibition of tumorigenesis (63)
Basophils CML promoting tumor spread and development (69)
pancreatic ductal adenocarcinoma tumor-promoting Th2 inflammation (68)
lung cancer promoting tumor growth (70)
MDSCs Melanoma Promoting tumorA angiogenesis, metastasis and microenvironment 74)
immunosuppression
HCC inhibit the infiltration and activity of T cells (75)
renal clear cell carcinoma, breast cancer inhibit T cell function and promotes tumor progression (76)
breast cancer promoting immunosuppressive function (77)

metalloproteinase-9 (MMP-9), and fibroblast growth factor-2
(FGF-2), ultimately promoting tumor proliferation and metastasis
(10, 11). Additionally, neutrophils can form neutrophil extracellular
traps (NETs) in response to specific stimuli. These web-like
structures, while capable of trapping tumor cells and limiting
their dissemination, also contribute to tumor progression by

fostering an immunosuppressive microenvironment (12).

2.2 Dendritic cells

Antigen-presenting cells (APCs), primarily consisting of
dendritic cells (DCs), play a crucial role in the innate immune
system’s ability to recognize tumors. Widely distributed in nearly all
tissues, DCs serve as a vital link between the innate and adaptive
immune systems. They are responsible for capturing, processing,
and presenting tumor antigens to naive T cells via major
histocompatibility complex (MHC) molecules. MHC class I
(MHC-I) presents endogenous antigens, while MHC class II
(MCH-II) is responsible for handling exogenous antigens, thereby
triggering adaptive immune responses characterized by CD8" or
CD4" T cell activation (13).

The number of DCs is decreased in various tumors, correlating
with tumor size and stage. These cells also show notable alterations
in the phenotypic profiles. Specifically, reduced expression of HLA-
A, B, C, DR, CCR5, CCR7 and DEC-205 in DCs compared to
healthy controls (14). Among these, HLA-DR serves as a critical
marker of DC maturation, while the other MHC molecules are
essential for effective antigen presentation. CCR5 and CCR7, as
chemokine receptors, are important for DC migration, and their
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downregulation further impairs DC trafficking and T cell priming
within the tumor microenvironment (15-18). Moreover, abnormal
upregulation of immunosuppressive signals critically contributes to
DC dysfunction. Evidence indicates that lowering PD-L1 expression
enhances CD8" T cell anti-tumor activity and suppresses tumor
growth (19).

2.3 Macrophages

Macrophages are essential components of the innate immune
system, involved in various physiological processes such as
pathogen clearance, tissue repair, and inflammation regulation. In
tumor development, macrophage infiltration is a hallmark of solid
tumors. Within the TME, macrophages are exposed to complex
stimuli and exhibit high plasticity with diverse activation states.
Traditionally, macrophages are categorized into two primary
phenotypes: M1 and M2 (20). M1 macrophages are activated by
pro-inflammatory factors such as IFN, CSF, and TNF. In contrast,
M2 macrophages are activated by cytokines like TGF-f, IL-4, IL-13,
and others.

Tumor-associated macrophages (TAMs) are highly heterogeneous
and can either promote tumor progression or support anti-tumor
immunity, depending on their functional states and the
microenvironmental context. Beyond the classical M1/M2
dichotomy, multiple specialized TAM subsets have been identified.
SPP1" macrophages contribute to tumor metastasis, angiogenesis, and
activation of cancer stem cells, and interact with FAP" fibroblasts to
form immuno-repulsive tissue structures that limit T cell infiltration
(21-23). TREM2" TAMs accumulate lipids via scavenger receptors,
suppress CD8" T cell activity, and enhance Treg-mediated
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immunosuppression (24). Additionally, inhibition of MARCO™
macrophages promotes the activation of CD8" T cells and NK cells,
thereby reprogramming the TME (25). In contrast, FOLR2"
macrophages positively correlate with CD8" T cells and activate
their cytotoxicity through antigen cross-presentation (26). Notably,
Clq" TAMs display a dual role. These cells can promote tumor
progression by driving T cell exhaustion and correlating with poor
prognosis, while also mediating anti-tumor immunity through
proinflammatory and phagocytic functions that enhance therapeutic
responses (27-29). Mechanistically, C1q" TAMs interact with cancer
stem cells via C1q—-Clq receptor signaling, modulate cytokine secretion
(e.g., IL-6, MCP-1) to either promote tumor progression or, through
the AMPK/JAK/STAT pathway, enhance anti-tumor immunity (29,
30). Therapeutically, targeting TAMs can be achieved by inhibiting
immunosuppressive subsets (e.g.,, CIQ"TPP1"), activating antitumor
subsets (e.g, FABP4"C1q"), or combining with immune checkpoint
blockade, highlighting macrophage-centered strategies as promising
avenues for cancer immunotherapy (29-31). Collectively, these
findings underscore the importance of recognizing TAM
heterogeneity and leveraging specific subsets to optimize anti-
tumor efficacy.

2.4 NK cells

Natural killer (NK) cells are a critical component of the innate
immune system, capable of eliminating viral infections and certain
tumor cells. In addition to their cytotoxic function, NK cells play
essential roles in immune surveillance and regulation.

However, within the TME, NK cells often become functionally
impaired, resulting in reduced anti-tumor activity (32). Tumor and
stromal cells in the TME secrete various immunosuppressive
factors, which directly or indirectly inhibit NK cell activation
(33). These factors also suppress the activation of key NK cell
receptors such as NKG2D and the tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) (34). Additionally, NK cells in
the TME frequently exhibit reduced membrane protrusions, a
morphological alteration that may compromise their ability to
recognize and eliminate tumor cells (35). Their proliferation,
cytotoxicity, and granzyme B secretion are also significantly
diminished under such conditions (36). Despite the
immunosuppressive nature of the TME, NK cells in
hepatocellular carcinoma (HCC) have been shown to retain
strong cytotoxic activity, highlighting their potential as a target
for cancer immunotherapy (37).

2.5 ILCs

Innate lymphoid cells (ILCs) are key components of the innate
immune system and include three major subsets—ILCI, ILC2, and
ILC3—as well as NK cells. Although NK cells are functionally
considered cytotoxic ILCls, they are usually classified separately
because they represent “mature” killer cells, whereas other ILCls
primarily regulate immunity through cytokine secretion (38).
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Under pathological conditions, such as follicular lymphoma,
ILC populations are markedly perturbed compared with non-
malignant tissues (39). ILCls generally exert anti-tumor activity
through IFN-y production, but sustained activation can drive
functional exhaustion (40). ILC2s secrete granzyme B and directly
lyse tumor cells via pyroptosis and/or apoptosis, regulated by
DNAM-1-CD112/CD155 interactions that inactivate the negative
regulator FOXO1 (41). In tumor-bearing mice, pulmonary ILC2s,
as well as tumor-infiltrating ILC2s adoptively transferred at a ratio
of 1:60 relative to tumor cells, significantly enhance the infiltration
of CD4" and CD8" T cells and eosinophils into the tumor
microenvironment, thereby suppressing tumor growth. Human
ILC2s similarly demonstrate potent anti-tumor activity in vivo
(42). ILC3s, on the other hand, interact with T cells through
MHC-II, supporting microbial colonization and promoting type 1
immune responses within both the intestine and the tumor (43).

2.6 NKT cells

Natural killer T (NKT) cells, a unique subset of T cells, bridge
the gap between innate and adaptive immune responses. They are
characterized by the expression of invariant T cell receptors (TCRs)
and possess the ability to recognize lipid antigens presented by the
non-polymorphic MHC-I molecules, specifically CD1d.

Within the TME, however, the expansion of NKT cells is often
impaired, leading to a reduced population and an increased rate of
cellular senescence (44). Moreover, dysregulated lipid metabolism
in the TME alters the composition of lipid antigens presented by
CD1d, thereby compromising NKT cell activation and function
(45). Despite these inhibitory conditions, NKT cells retain
significant anti-tumor potential. Studies have demonstrated that
higher infiltration levels of NKT cells are associated with favorable
prognoses in several malignancies, including chronic lymphocytic
leukemia (CLL) and neuroblastoma (45, 46). In HCC, NKT cells
play a crucial role in tumor suppression by secreting IFN-y (47).
Their activation shifts macrophage polarization toward the M1
phenotype while inhibiting M2 macrophages, thereby promoting
the clearance of TAMs and suppressing tumor proliferation. In
certain tumors, their protective effects are diminished, NKT cells
may even facilitate tumor metastasis and progression through the
secretion of IL-22 (48).

2.7 T cells

T lymphocytes can be classified into o T cells and 0 T cells,
distinguished by the expression of the off TCR and Y3 TCR,
respectively. Y0 T cells are a unique subset of T cells with innate
immune characteristics. As rapid responders in the innate immune
system, they quickly recognize and eliminate infected or abnormal
cells. Unlike conventional T cells, which rely on MHC molecules to
present antigens, Y0 T cells can directly recognize lipid antigens or
stress-induced molecules on the surface of tumor cells, greatly
expanding their range of antigen recognition (49).
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Based on the TCR chain types (e.g., V81, V82, Vy4, Vy6) and
their tissue-specific distribution, Y3 T cells can be further categorized
into subsets with distinct immune functions. For instance, V81" y8 T
cells recognize and kill tumor cells via NKG2D ligands; y0T17 cells
secrete IL-17, which is correlated with tumor metastasis. Conversely,
0 regulatory T cells (Y9Treg) can recruit myeloid-derived suppressor
cells (MDSCs), thereby promoting the formation of an
immunosuppressive microenvironment (50-52).

2.8 B-1 cells

Conventional B cells are a crucial component of the adaptive
immune system, primarily generated in the bone marrow, where
they play essential roles in antigen recognition, antibody
production, and antigen presentation. In contrast, B-1 cells are a
subset of B lymphocytes that are mainly involved in innate
immunity and are primarily found in the pleural and peritoneal
cavities (53). B-1 cells synthesize natural immunoglobulin M
(IgM) antibodies and bind to various pathogen-associated
carbohydrate antigens, making them pivotal in the initial
defense against bacterial infections. In addition to their strong,
non-specific response to bacteria and carbohydrate antigens, B-1
cells are also capable of phagocytosing and clearing apoptotic
cells (54).

In abdominal tumors, B-1 cells can rapidly produce and
secrete natural IgM antibodies that target tumor-associated
carbohydrate antigens, thereby promoting tumor cell killing
(55). However, the overactivation of B-1 cells is linked to certain
diseases, particularly CLL (56). Within the TME, interactions
between B-1 cells and melanoma cells enhance the survival of B-
1 cells and promote tumor cell metastasis by upregulating the
expression of metastasis-associated genes, such as MMP-9 and
CXCR-4 (57).

2.9 Mast cells

Mast cells (MCs) play a crucial role in immune regulation,
performing functions such as secreting various cytokines,
expressing MHC molecules, and presenting antigens. They
are often significantly increased in both tumor tissues and
adjacent areas, and are among the first immune cells recruited
to the tumor site, where they participate in tumor initiation and
progression (58).

In bladder cancer, mast cells activate interferon and NF-kB
signaling pathways, leading to increased secretion of CCL2 and IL-
13. This attracts THP-1 monocytes and further promotes tumor
progression (59). In contrast, in prostate cancer, mast cells exhibit a
negative regulatory role, inhibiting tumor angiogenesis and growth.
However, those located in the surrounding tumor microenvironment
contribute to tumor cell proliferation (60). In summary, mast cells
play a complex and context-dependent role in tumor biology, with
their functions varying significantly across different tumor types
and microenvironments.
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2.10 Eosinophils

Eosinophils are a key subpopulation of white blood cells that play
diverse roles in immune defense, particularly in parasitic infections,
allergic reactions, and immune regulation. In certain solid tumors,
elevated eosinophil levels are often associated with favorable
prognoses (61, 62). However, in pancreatic cancer, tumor cells can
inhibit eosinophil accumulation by secreting chemokines through an
autocrine feedback mechanism, thereby facilitating tumor
progression (63). Beyond their regulatory roles, eosinophils also
contribute to immune activation. For instance, they secrete IL-4,
which inhibits CD8" T cell apoptosis and supports the formation of
memory CD8" T cells (64). Within the TME, eosinophils activated by
TNF-o and IFN-y release chemokines such as CXCL9 and CXCL10,
promoting CD4" and CD8" T cell infiltration and enhancing anti-
tumor immune responses (65). Conversely, eosinophils can also
facilitate tumor cell migration and metastasis by secreting CCL6
(66). Therefore, eosinophils play a dual and context-dependent role
in tumor immunity, capable of both enhancing immune responses
and contributing to tumor progression depending on the tumor type
and microenvironment.

2.11 Basophils

Basophils are a subset of white blood cells found in both blood
and tissues, traditionally recognized for their role in allergic
responses. However, emerging research highlights their equally
important involvement in innate immunity (67). Within the TME,
basophils display complex and context-dependent functions, capable
of both suppressing and promoting tumor progression. In pancreatic
ductal carcinoma, activated basophils have been shown to exert
significant tumor-suppressive effects, helping to inhibit further
tumor development. Conversely, in other contexts, basophils may
support tumor growth by secreting cytokines such as IL-13, which
reduce the proportion of Thl-like immune cells and dampen anti-
tumor immunity (68). The pro-tumorigenic role of basophils is
particularly evident in hematologic malignancies. For instance, in
patients with chronic myeloid leukemia (CML), basophils express
hepatocyte growth factor (HGF), which promotes the proliferation of
CML cells (69). In solid tumors, basophils can influence the immune
microenvironment to support tumor development. In lung cancer,
for instance, they drive the generation of immunosuppressive
myeloid cells through the IL-4 signaling axis, thereby facilitating
tumor growth (70).

2.12 MDSCs

MDSCs are derived from myeloid cells, which are key
components of the innate immune system, their classification as
innate immune cells remains controversial. The primary role of
innate immune cells is to rapidly identify and eliminate pathogens,
whereas MDSCs primarily function to suppress immune responses
(71). In healthy individuals, MDSCs are virtually absent and
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typically expand only under pathological conditions. Thus, despite
their myeloid origin and close ties to the innate immune system,
MDSCs primarily act as immunosuppressive cells rather than
typical innate immune effectors. However, some researchers argue
that MDSCs can be considered a “regulatory branch” of the innate
immune system due to their role in maintaining immune balance in
the inflammatory microenvironment (72).

The recruitment of MDSCs is a critical step in the formation of
an immunosuppressive TME, primarily mediated by chemokine
receptors CXCR2, CCR2, and CCR5 (73, 74). In the TME, MDSCs
not only foster immune suppression through interactions with
diverse lymphoid and myeloid cells but also secrete inhibitory
cytokines that limit the infiltration and activity of cytotoxic CD8"
T cells (75). Additionally, MDSCs produce large amounts of ROS
and nitric oxide, both of which inhibit T cell function and further
promote tumor progression (76). Moreover, studies have shown
that MDSCs and TAMs engage in bidirectional interactions,
significantly amplifying the immunosuppressive effect (77).

3 Innate immune factors

In the previous section, we discussed the critical roles of innate
immune cells in tumor immune surveillance and immune escape.
As regulators of these immune cells, innate immune factors play an
essential role in quickly identifying and eliminating pathogens,
while also serving as a bridge for immune responses. Not only do
they provide the foundation for the body’s early defense, but they
also facilitate adaptive immunity by delivering crucial signals,
forming a comprehensive immune defense network. In this
section, we will explore the role of innate immune factors in
greater detail.

3.1 Complement system

The complement system, composed of over 60 proteins and
regulatory factors, represents a complex branch of innate immunity.
Its activation can promote tumor clearance through opsonization,
phagocytosis, and complement-dependent cytotoxicity (CDC) (79-
81). However, aberrant or sustained complement activity within the
tumor microenvironment often drives pro-tumorigenic processes,
including TAM polarization, angiogenesis, recruitment of
immunosuppressive MDSCs, and MMP-9-mediated metastasis,
highlighting its dual role in regulating tumor metabolism (82).

Mechanistic studies provide illustrative examples of complement-
mediated modulation of TAMs. In ovarian cancer, aberrant C5aR
expression on TAMs induces an immunosuppressive phenotype,
whereas genetic or pharmacological C5aR blockade reprograms
TAMs, restores CXCL9 production, enhances CD8" T cell
infiltration, and improves the efficacy of immune checkpoint
inhibition (83). In glioma, the NFAT1-C3a-C3aR feedback loop
maintains M2-like TAM polarization and promotes mesenchymal
transition of tumor stem cells, while C3aR inhibition reverses TAM-
mediated immunosuppression and limits tumor growth (84).
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Conversely, complement-activating immunotherapeutic complexes
(CoMiX) targeting HER2-positive tumor cells via the alternative
pathway (FHR4-mediated) or the classical pathway (tri-Fc dimer-
mediated) significantly enhance C3b/C5b-9 deposition and CDC,
effectively suppressing tumor growth even in resistant models (85).

Collectively, these findings position the complement system at
the interface of innate and adaptive immunity, emphasizing its
context-dependent and multifaceted roles in cancer. They highlight
the potential of complement-targeted strategies—ranging from
pathway-specific inhibitors to innovative complement-activating
immunotherapies—to modulate the tumor microenvironment
and enhance antitumor immunity (86, 87). Integrating such
approaches with existing immunotherapies, guided by context-
specific complement profiling, offers a promising path toward
more precise, effective, and personalized cancer treatments.

3.2 Cytokines

Cytokines are crucial signaling molecules in innate immunity.
They rapidly establish a defense network by regulating immune cell
recruitment, activation, and function, while also providing a bridge
for the activation of adaptive immunity. As key players in the innate
immune response, inflammatory cytokines are mainly produced by
immune cells in response to pathogens. These cytokines increase
vascular permeability and promote the recruitment of immune cells
such as neutrophils and monocytes. Chronic inflammation is
strongly associated with tumor initiation and progression. Many
inflammatory cytokines, such as IL-17, and IL-23, play significant
roles in tumor cell proliferation, immunosuppression, and
metastasis within the tumor microenvironment (88, 89). These
findings underscore the role of chronic inflammation in the
tumor microenvironment as a driving force for tumor
immune escape.

Chemokines, a subset of cytokines, regulate the migration of
immune cells. They are categorized into four main types: CC, CXC,
CX3C, and C. By interacting with various G protein-coupled
receptors, chemokines form a complex receptor-ligand network
that controls immune cell recruitment, activation, and function
(90). Within the tumor microenvironment, both tumor cells and
immune cells secrete different chemokines that regulate the
recruitment of T cells and regulatory T cells (Tregs), influencing
the overall tumor immune response (91). For example, the
chemokine CXCL10 promotes the infiltration of T cells into the
tumor microenvironment, enhancing anti-tumor immunity, while
CCL20 recruits Tregs via the FOXO1/CEBPB/NF-xB signaling
pathway, thereby promoting chemotherapy resistance in
colorectal cancer (91, 92). In addition to immune cell migration,
chemokines also contribute to angiogenesis. Tumors maintain their
growth and metastasis by secreting pro-angiogenic factors, which
help establish an abnormal vascular network (93, 94).

In conclusion, the complement system and cytokines play
complex and multifaceted roles in tumor immunity. While they
enhance immune defense, they can also create conditions that
promote tumor immune escape.
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4 Mechanisms of innate immune
disorders

Tumors significantly impact the immune system, leading to the
progressive attenuation of both innate and adaptive immune
responses. The role of innate immune cells and immune factors
in tumors has been discussed earlier. In this section, we will delve
into the mechanisms underlying innate immune disorders in TME,
focusing particularly on the interactions between immune signaling
pathways, metabolic disorders, and immune cell senescence.

4.1 Innate immune signaling is impaired

Innate immune signaling pathways within the TME are crucial
for tumor immune surveillance and the immune response.
Alterations in these pathways affect the immunogenicity of tumor
cells, the activity and functionality of immune cells, as well as the
tumor’s response to immunotherapeutic interventions. Recent
studies have identified the involvement of various signaling
pathways in tumor innate immunity, notably the cGAS-STING
pathway, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs),
NOD-like receptors (NLRs), and C-type lectin receptors (CLRs).

The cyclic guanosine monophosphate-adenosine
monophosphate synthase (cGAS), a cytoplasmic receptor for
double-stranded DNA (dsDNA), promotes the synthesis of the
second messenger cGAMP upon activation. cGAMP then interacts
with the STING protein to activate downstream signaling pathways,
triggering immune responses (95). Notably, type I interferon (I-
IFN) plays a key role in detecting tumor cell immunogenicity and
activating tumor-specific CD8" T cells, a process that depends on
STING-mediated signaling (96). Moreover, STING has been shown
to enhance tumor cell survival through the activation of the IFN/
STAT]1 signaling pathway, underscoring its complex and dual role
in tumor immunity (97).

TLRs, as pattern recognition receptors (PRRs), are essential for
innate immune responses. Aberrant TLR activation can promote
tumorigenesis and immune evasion (98). TLRs recognize specific
components of pathogens and initiate signaling cascades, such as
those mediated by myeloid differentiation factor 88 (MyD88). Most
TLRs activate NF-kB via MyD88-dependent signaling, triggering
inflammatory responses and influencing DC maturation (99). In
lung cancer, silencing TLR2, TLR4, and TLR9, along with epithelial-
specific MyD88/NF-xB signaling, significantly reduces the
expression of pro-tumor immunosuppressive factors like
RETNLB, while enhancing the expression of anti-tumor cytokines
like IFN-v (100). In breast cancer cells, activation of TLR2 and TLR4
stimulates NF-kB, regulating the secretion of cytokines such as IL-6,
TGF-B, VEGF, and MMP9, promoting tumor invasion, migration,
and progression (101, 102).

RLRs are key immune receptors that detect viral RNA in the
cytoplasm. Upon binding to RNA ligands, RLRs trigger
downstream signaling cascades that activate transcription factors
like IRF3 and NF-kB, leading to the production of I-IFN and
inflammatory cytokines, which are critical for antiviral responses
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(103). In bladder cancer, the upregulation of the m6A reading factor
YTHDE?2 inhibits RIG-1, reducing CD8" T cell recruitment to the
TME (104). In bladder cancer, RIG-I-mediated type I interferon
signaling is suppressed, contributing to immune evasion (105).

NLRs play an important role in the innate immune response.
NLRs recognize pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs), and
participate in immune defense by activating NF-xB and MAPK
signaling pathways (106). Studies show that activation of the NOD1
pathway accelerates tumor progression, while NOD2 loss is
associated with a protective effect in colitis-related tumors (107,
108). However, another study found an increased tumor incidence
in NOD2 knockout mice, suggesting that the role of NOD2 in
tumorigenesis may not be related to intestinal microbial
imbalance (109).

CLRs are a key class of pattern recognition receptors
predominantly expressed by myeloid cells. CLRs have significant
roles in both innate and adaptive immune responses by recognizing
pathogens and DAMPs released from necrotic cells (110). In gastric
cancer, CLR Dectin-1 is associated with poor prognosis and
promotes immune evasion by modulating the immunosuppressive
activity of TAMs (111). Furthermore, CLR Dectin-2-mediated
activation of the Nlrp3 inflammasome enhances NK cell function
and inhibits liver metastasis (112). These observations illustrate that
CLR signaling intersects with inflammasome pathways to produce
divergent effects. CLRs also play a role in tumor glycan recognition
and dendritic cell dysfunction, driving immunosuppression and
tumor immune escape (113). Such seemingly contradictory
outcomes likely reflect differences in the cellular compartments
involved (tumor, myeloid, or stromal cells), the temporal dynamics
of inflammasome activation, and the influence of organ-
specific microenvironments.

4.2 Metabolic disorders

In the TME, the metabolic profile of innate immune cells plays a
pivotal role in regulating their function. Glycolysis and lipid
metabolism are two key pathways involved in immune cell
activation and response. Disruptions in these metabolic processes
not only impair immune cell efficacy but also contribute to tumor
growth, metastasis, and immune evasion.

Glycolysis provides a rapid source of energy for innate immune
cells following activation. Key glycolytic enzymes such as
hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase
(PK), and lactate dehydrogenase (LDH) are upregulated in this
process (Figure 2) (114). Meanwhile, the rapid proliferation of
tumor cells and angiogenesis create a hypoxic TME, which activates
HIF-1o. HIF-1o further enhances the expression of glycolytic
enzymes and glucose transporters (e.g., GLUT1), increasing
glycolytic flux to meet the energy demands of both tumor and
immune cells (115). Innate immune cells in the TME also display
distinct glucose metabolism patterns. For instance, TAMs show
enhanced glycolysis, which supports their immunosuppressive
phenotype. In breast cancer, the transcription factor ZEBI
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Characteristics of glucose metabolism in hypoxic TME. (A) Tumor cells activate HIF-1a, thereby increasing the expression of GLUT and promoting
the glycolytic flux of tumor cells. (B) The transcription factor Zebl enhances glycolytic activity through the PI3K/Akt/HIF-1a signaling pathway

and promotes the transformation of macrophages to a preneoplastic phenotype. (C) GLUT1 is involved in enhancing macrophage glycolysis and
supporting tumor cell growth. (D) Abnormal expression of FBP1 in NK cells in TME inhibits glycolysis, impairs NK cell viability, and limits IFN-y
secretion. (E) Lactate enhances glucose uptake in tumor cells by up-regulating the expression of GLUTL. Lactate also affects tumor cell growth
and metastasis through GPR81 receptor. In addition, lactate induces the polarization of macrophages to an M2-like phenotype and regulates the
secretion of GPNMB, which further promotes the migration and invasion of tumor cells. TME, tumor microenvironment; HIF-1o, hypoxia-inducible
factor la; GLUT, glucose transporter; Zebl, zinc finger E-box binding homeobox 1; PI3K, phosphatidylinositol 3-kinase; Akt, protein kinase B; FBP1,
fructose-1,6-bisphosphatase 1; NK, natural killer; IFN-v, interferon-y, GPR81, G-protein coupled receptor 81; GPNMB, glycoprotein non-metastatic

melanoma protein B.

promotes macrophage glycolysis via the PI3K/Akt/HIF-lo
pathway, facilitating their shift to a pro-tumor state and
reinforcing immunosuppression within the TME (116). Moreover,
upregulation of GLUT1 further supports tumor progression. In
contrast, NK cells in the TME exhibit downregulation of glycolysis-
related genes. Elevated expression of fructose-1,6-bisphosphatase
(FBP1), which inhibits glycolysis, weakens NK cell activity and
reduces IFN-y secretion (117, 118). Lactate—the end product of
glycolysis—accumulates in the TME and acts as a key metabolic
signal, disrupting CD8" T cell activation and antitumor immunity
by interfering with GLUT10-mediated glucose transport (119).
Beyond glycolysis, lipid metabolism is equally critical in innate
immune regulation. Fatty acid oxidation (FAO), a key lipid
metabolic pathway, supplies significant energy to tumor cells.
Enzymes involved in FAO, such as fatty acid synthase (FASN),
sterol regulatory element-binding protein 1 (SREBP1), and
carnitine palmitoyltransferase 1 (CPT1), are commonly
upregulated in various tumors, supporting their rapid growth
(120, 121). Under hypoxic conditions, HIF-1o. inhibits FAO by
suppressing acyl-CoA dehydrogenase, thereby promoting tumor
survival (122). Pyruvate, a glycolytic intermediate, may either be
converted into lactate or enter the mitochondria to fuel fatty acid
synthesis (123). Lipid accumulation within the TME also influences
immune cell function. Oxidized lipids taken up by DCs form
covalent complexes with heat shock protein 70 (HSP70),
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impairing MHC-I translocation to the cell membrane and
disrupting antigen presentation (124). Similarly, CD8" T cells lose
their cytotoxic function after excessive lipid uptake via CD36, due to
lipid peroxidation and activation of the p38 signaling
pathway (125).

Cholesterol homeostasis within immune cells is regulated mainly
by SREBP2, which promotes cholesterol synthesis and uptake, and
liver X receptor (LXR), which drives cholesterol efflux (126). Tumor
cells exploit these pathways to accumulate cholesterol, supporting
their continuous proliferation (127, 128). Interestingly, cholesterol
levels vary across cell types in the TME: tumor-infiltrating
lymphocytes (TILs) and TAMs often exhibit cholesterol deficiency,
whereas tumor cells and bone marrow-derived immunosuppressive
cells maintain elevated cholesterol levels (126, 129). Cholesterol
depletion, particularly in CD8" cytotoxic T cells, has a notable
impact on their anti-tumor capacity. Several tumor-derived factors
also influence cholesterol metabolism in the TME. For example,
APOA1 from glioblastoma, and CSF1 from prostate cancer can
promote cholesterol efflux from TAMs (129, 130). The released
cholesterol is then reabsorbed by prostate cancer cells and used for
dihydrotestosterone synthesis, which activates androgen receptor
signaling and downstream gene expression—ultimately accelerating
tumor progression (131, 132). Nevertheless, the broader regulatory
effects of cholesterol efflux from innate immune cells on other TME
components remain to be fully understood.
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4.3 Cellular senescence

In the TME, cellular senescence is increasingly recognized not
only as a stress response of tumor cells but also as a key regulator of
immune function. Tumor cells are subjected to a variety of chronic
stressors—such as oncogenic signals, replication stress, hypoxia, ROS,
nutrient deprivation, and inflammatory factors—which can drive
them into a state of senescence. Although senescent cells lose their
proliferative capacity, they remain metabolically active and influence
the surrounding microenvironment through the senescence-
associated secretory phenotype (SASP). This secretory profile
enables senescent cells to exert strong paracrine effects, particularly
on immune cell behavior. For instance, DCs co-cultured with
senescent tumor cells show enhanced antigen-presenting
capabilities, suggesting that SASP factors can promote antigen
presentation under specific conditions (133). The TME can also
facilitate the senescence of immune cells. Tumor stem cells release the

10.3389/fimmu.2025.1689714

IL-6, a pro-aging factor that induces macrophage senescenc (134).
Furthermore, tumor cells and Tregs can influence lipid metabolism
and induce T cells senescence by upregulating the expression of
phospholipase A2, contributing to tumor immune evasion (135, 136).

5 Targeted innate immunotherapy

Innate immunity plays a critical role in tumor initiation and
progression, and accumulating evidence from both basic research
and clinical practice indicates that its therapeutic modulation can
substantially enhance anti-tumor efficacy. To provide a comprehensive
overview of this rapidly evolving field, we summarize the main
therapeutic targets—including innate immune cells, innate signaling
pathways, innate checkpoints, and innate immune factors such as
cytokines and complement—along with their impact on the TME and
key opportunities and challenges for clinical translation (Figure 3).
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FIGURE 3

Therapeutic strategies targeting innate immunity in cancer. The figure summarizes current and emerging approaches to harness innate immunity in
cancer therapy. Four major target areas are illustrated: innate immune cells, innate immune pathways, innate immune checkpoints, and innate immune
factors such as cytokines and complement. Corresponding therapeutic strategies aim to reprogram innate immune responses, which in turn modulate
the TME by enhancing immune activation, remodeling tissue context, and reshaping metabolic activity. These effects are being translated into clinical
applications, with key emerging trends including rational combination therapies, biomarker-driven patient selection, next-generation cell engineering,
and metabolic-immune integration. Major challenges that remain include tumor heterogeneity, the dual roles of innate immune mediators, metabolic
adaptability, and toxicity management. TME, tumor microenvironment; TAM, tumor-associated macrophage; NK, natural killer; DC, dendritic cell; ILC,

innate lymphoid cell; CAR, chimeric antigen receptor; TLR, Toll-like receptor;
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Complementing this conceptual summary, representative clinical trials
are highlighted to illustrate the progress and limitations of current
strategies (Table 2). The following subsections expand on these
approaches in detail.

5.1 Targeting innate immune cells

Targeting innate immune cells represents a novel
immunotherapeutic approach aimed at enhancing or reactivating
their ability to identify and eliminate tumor cells. Among these,
chimeric antigen receptor T cell (CAR-T) therapy remains one of
the most extensively studied modalities. Several CD19-targeting
CAR-T therapies have already been approved for clinical use,
demonstrating promising therapeutic outcomes. Notably, Robert
Chiesa’s team is developing a CD7-targeted CAR-T therapy, which
has shown preliminary efficacy in specific tumor types (137).
Additionally, Glofitamab, a bispecific antibody targeting CD3 on
T cells, has achieved sustained complete remission in patients with
refractory and aggressive B-cell non-Hodgkin’s lymphoma (B-
NHL), further expanding the landscape of immunotherapy (138).
Merging strategies targeting Y0 T cells have also shown broad
therapeutic potential across various tumor types (139). Y0 T cells
derived from haploidentical donors have demonstrated promising
safety and efficacy in a phase I clinical trial involving patients with
refractory or relapsed acute myeloid leukemia (140).

TABLE 2 Clinical studies targeting innate immunity.

10.3389/fimmu.2025.1689714

Beyond CAR-T cells, chimeric antigen receptor-modified
natural killer cells (CAR-NK) have attracted growing interest.
By introducing CARs into NK cells, their tumor recognition and
cytotoxic capabilities are significantly enhanced. Clinical trials
have reported that CAR-NK therapy improves response rates
in CD19" malignancies and prolongs both overall survival (OS)
and progression-free survival (PFS) (141). Moreover, NK cells
derived from patients or healthy donors can be expanded ex vivo
and reinfused, offering a feasible and scalable therapeutic
option (142).

DC vaccines also hold considerable promise in cancer
immunotherapy. For instance. Early-phase studies demonstrated
immunogenicity and potential survival benefit, but outcomes in
larger randomized trials have been inconsistent—for example,
DCVAC/PCa in mCRPC showed no OS advantage, whereas
DCVax-L in glioblastoma reported encouraging signals but raised
concerns about trial design and patient selection (143, 144).

Macrophage-targeted therapy has also emerged as a promising
avenue. Bexmarilimab, an inhibitor of CLEVER-1-mediated
macrophage activation, has demonstrated early signs of
improving survival in patients with various solid tumors (145).
Furthermore, chimeric antigen receptor natural killer T cell
(CAR-NKT) therapy, an innovative approach, showed good
safety and preliminary efficacy in a first-in-human clinical trial,
achieving an objective response rate of 25% (3 out of 12
patients) (146).

Type of target = Drugs Route of Tumors Clinical trials Phase
administration

CD7+T cell CAR7 T Intravenous injection Acute T lymphoblastic leukemia ISRCTN15323014 (137) 1
CD3+T cell glofitamab Intravenous injection B-NHL NCT03075696 (138) 1
NK cell CAR-NK Intravenous injection Non-hodgkin’s lymphoma, CLL NCT03056339 (141) 2
NK cell mbIL-21 Intravenous injection Acute myeloid leukemia NCTO01787474 (142) 1
DC DCVax-L Subcutaneous Administration Glioblastoma multiforme NCT00045968 (144) 3
DC DCVAC/PCa Subcutaneous Administration Prostate Cancer NCT 01520051 (143) 3
Yo T cell Allogeneic VY9V32 T cells | Intravenous injection Acute myeloid leukopenia NCT03790072 (140) 1
Macrophages Bexmarilimab Intravenous injection HCC, biliary tract cancer, colorectal NCT03733990 (145) 2

cancer, ovarian cancer, pancreatic

ductal adenocarcinoma, melanoma,

gastric adenocarcinoma, breast

cancer, and anaplastic thyroid cancer
NKT cell Anti-GD2 CAR-NKT Intravenous injection Neuroblastoma NCT03294954 (146) 1
cGAS-STING Manganese Intravenous injection Multiple solid tumors NCT03991559 (149) 1
TLR9 1018 ISS Subcutaneous Administration Follicular lymphoma NCT00251394 (150) 2
TLRY GNKG168 Intravenous injection AL NCT01743807 (151) 1
RLR MK-4621 Intratumoral administration Lymphoma NCT03065023 1

NCT03739138 (152) 1

CDI19+T cell huCART19-IL18 Intravenous injection lymphoma NCT04684563 (159) 1
complement factor H | GT103 Intravenous injection Non-small cell lung cancer NCT04314089 (160) 1b
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5.2 Targeting innate immune pathways

Activation of innate immune pathways plays a crucial role in
initiating antitumor immune responses. In recent years, agonists
TLRs and the STING pathway have shown promising potential in
clinical trials. Although clinical application of the cGAS-STING
pathway is still in its early stages, several studies have reported
encouraging safety profiles and preliminary efficacy in immune
activation (147, 148). For instance, research by Lv Mengze’s team
demonstrated that the synergistic use of manganese ions and PD-1
antibodies activates the cGAS-STING signaling pathway, thereby
promoting the infiltration and maturation of CD8" T cells, DCs,
and macrophages, ultimately enhancing antitumor immunity (149).

TLR agonists have also gained attention for their potent
immunomodulatory properties. The TLR-9 agonist 1018 ISS, when
combined with rituximab, significantly increased CD8" T cell and
macrophage infiltration in tumor tissues (150). Another TLR-9
agonist, GNKG168, was shown to independently reduce NK cell
immunosuppression in patients with acute leukemia (151).
Additionally, the RIG-I agonist MK-4621 exhibited notable antitumor
activity both as a monotherapy and in combination with PD-1 blockade
(152). Currently, multiple innate immune pathway agonists are
undergoing clinical evaluation, and the results are eagerly anticipated.

5.3 Targeting innate immune checkpoint

Immune checkpoint inhibitors (ICIs) have profoundly
transformed the landscape of tumor immunotherapy by unleashing
adaptive immune responses, particularly through blockade of classical
targets such as PD-1 and CTLA-4. However, accumulating evidence
suggests that the innate immune system also harbors functionally
significant checkpoint molecules, thereby representing promising
candidates for next-generation immunotherapeutic strategies (153).
Among these, IGSF8 has emerged as a novel inhibitory checkpoint,
capable of suppressing NK cell activity via its interaction with human
KIR3DL2 or murine Klra9 receptors. Preclinical studies have
demonstrated that antibody-mediated blockade of this pathway can
restore NK cell cytotoxicity against malignant cells in vitro, highlighting
its potential therapeutic value (154). In addition to surface checkpoint
receptors, intracellular regulators such as the DNA exonuclease TREX1
have been implicated in shaping antitumor immunity. The loss of
TREX1 in tumor cells can initiate robust activation of both CD8" T
cells and NK cells, mitigate T cell exhaustion, and reprogram the
immunosuppressive myeloid microenvironment, collectively
enhancing the efficacy of immunotherapy (155). Another promising
target is ectonucleotide pyrophosphatase/phosphodiesterase 1
(ENPP1), frequently overexpressed in a variety of malignancies and
closely associated with the formation of an immunosuppressive tumor
microenvironment (156).

5.4 Targeting cytokines and complement

In addition to innate immune cells, signaling pathways, and
checkpoint molecules, innate immune factors such as cytokines and
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the complement system are increasingly recognized as actionable
targets in cancer immunotherapy.

Cytokines have long been studied for their potent
immunomodulatory activity. Early agents such as IFNo and high-
dose IL-2 were approved for selected malignancies but were limited
by modest efficacy and significant toxicities (157). Building on these
milestones, next-generation cytokine therapeutics are being
developed, including engineered “superkines,” fusion proteins
with extended half-lives and tumor-targeted activity, and
antagonists of immunosuppressive cytokines (158). An innovative
approach is armored CAR-T cells engineered to secrete IL-18
(huCART19-1L18), which demonstrated robust expansion,
acceptable safety, and durable clinical responses in relapsed/
refractory lymphoma (159). These advances underscore how
cytokine engineering can enhance both the efficacy and
persistence of cell-based therapies.

The complement system, another ancient arm of innate
immunity, exerts dual roles in cancer progression: while capable
of mediating opsonization and cytotoxicity, persistent activation via
the C5a/C5aR1 axis fosters TAM recruitment, immune
suppression, and metastasis (86). Complement regulators such as
CD46, CD55, CD59, and factor H are frequently upregulated in
tumors, contributing to immune evasion (87). Clinical translation is
now underway, exemplified by the first-in-class anti-factor H
antibody GT103, which showed safety and disease stabilization in
a phase 1b trial of refractory non-small cell lung cancer (160).
Complement-targeted strategies are also being tested in
combination with checkpoint blockade to reprogram the tumor
microenvironment and promote effector T cell infiltration.

Together, cytokine- and complement-based therapies expand
the therapeutic armamentarium of innate immunotherapy. By
integrating these innate immune factors-targeting approaches
with established cell- and checkpoint-directed strategies, next-
generation immunotherapies may achieve more durable and
personalized clinical benefit.

6 Challenges, controversies, and
future directions

Despite major progress in dissecting the role of innate
immunity in tumor development and therapy, many unresolved
questions and conflicting findings remain. These challenges span
innate immune cells, innate immune factors, and metabolic
regulation, each presenting both opportunities and uncertainties
for clinical translation.

6.1 Innate immune cells

Innate immune cells often display paradoxical, context-
dependent roles. For example, subsets of Y3 T cells exert potent
cytotoxicity, whereas Y0T17 or YdTreg cells can drive angiogenesis
and immunosuppression. Dendritic cell vaccines have
demonstrated immunogenicity in early studies, yet randomized
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clinical trials have produced inconsistent benefits. TAMs also
exhibit duality, with some subsets enhancing antigen presentation
while others facilitate immune evasion. Similarly, NK cells show
strong efficacy in hematologic malignancies but limited persistence
and activity in solid tumors, partly due to inhibitory checkpoint
interactions. These examples highlight the high heterogeneity of
innate immune cells and underscore the need for standardized
definitions, patient stratification based on immune subsets, and
reprogramming strategies rather than indiscriminate expansion
or depletion.

6.2 Innate immune factors

Innate immune mediators, including complement and
cytokines, likewise play dual roles. Complement can drive
cytotoxicity and opsonization, yet sustained C3a/C5a signaling
recruits immunosuppressive myeloid cells and supports
angiogenesis. Cytokine therapies illustrate a similar paradox:
while early agents such as IFNo and IL-2 validated the concept,
they were limited by toxicity and variable efficacy. Next-generation
cytokines, such as engineered superkines and fusion proteins, offer
improved activity but remain highly dependent on tumor
microenvironmental context. Progress will therefore require
predictive biomarkers of efficacy and toxicity, along with rational
combinations with checkpoint inhibitors or cell-based therapies.

6.3 Metabolic pathways

Metabolic reprogramming and innate immune signaling are
closely intertwined, together shaping either pro- or anti-tumor
responses. The accumulation of metabolites such as lactate,
oxidized lipids, and altered cholesterol flux reshapes bone marrow
and lymphoid function, promoting immunosuppressive TAM and
MDSC phenotypes while impairing T and NK cell activity.
Dysregulation of innate pathways, exemplified by contradictory
reports on NOD2, further illustrates this complexity: depending on
context, such signaling may enhance immune surveillance or drive
tumor progression through chronic inflammation and microbiota-
related dysbiosis.

These intertwined mechanisms provide therapeutic
opportunities but also significant barriers. Although metabolic
interventions—such as glycolysis inhibitors, LDH inhibitors,
FAO/FASN modulators, and agents targeting cholesterol
metabolism—can restore immune activity in preclinical models,
their translation is hindered by systemic toxicity, compensatory
metabolic rewiring, and tumor-type-specific effects. Overcoming
these obstacles will require tumor-targeted delivery systems (e.g.,
nanoparticles, tumor-activated prodrugs) and biomarker-guided
patient selection.

In summary, whether at the level of innate immune cells,
immune factors, or metabolism, cancer immunity is characterized
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by profound context dependence and frequent contradictions.
Addressing these challenges will require standardized models,
integration of single-cell and spatial multi-omics, and metabolic
flux tracing to establish causal links. Ultimately, biomarker-driven
clinical trials and rational combinations of metabolic modulators
with immunotherapies—such as checkpoint blockade, adoptive cell
transfer, or engineered cytokines—will be essential to safely and
effectively harness innate immunity as a foundation for durable and
personalized cancer treatment.

7 Conclusion

This review explores the complex interplay between innate
immunity and cancer. Innate immunity plays a critical role in anti-
tumor responses by recognizing and eliminating tumor cells and
contributing to immune surveillance. However, tumor cells employ
various immune evasion mechanisms that weaken immune
recognition, thereby promoting tumor growth and metastasis.
Within the TME, metabolic disturbances further suppress innate
immune function, enhance immunosuppression, and facilitate
immune escape, accelerating cancer progression. A comprehensive
understanding of the mechanisms underlying the interaction between
innate immunity and tumor cells is therefore essential for developing
more effective immunotherapeutic strategies.

Despite progress in this field, significant challenges remain. For
instance, no universal tumor-associated patterns have been identified
that are consistently recognized by the innate immune system. While
innate immunity can detect certain tumor-related molecular or
cellular changes, these changes are not exclusive to tumors and
may also occur in non-cancerous conditions such as tissue injury
or metabolic stress, limiting specificity and selectivity. Enhancing the
tumor recognition and cytotoxic capabilities of the innate immune
system has thus become a key objective in improving cancer control.
Additionally, the safety and long-term efficacy of therapies targeting
innate immunity require further investigation.

Future research should aim to better characterize the immune
and metabolic landscape of the TME and elucidate the precise role
of innate immunity in anti-tumor defense. Exploring combination
therapies that harness the full potential of innate immunity
alongside other treatment modalities may offer promising new
avenues for cancer treatment.
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