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Immunoglobulin: unraveling
its complex web in aging
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Huilin Yang and Qin Shi*

Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
Aging is a complex biological phenomenon, which involved in a large number of

diseases such as cancer, neurodegeneration, and cardiovascular diseases.

Understanding the mechanism of aging may facilitate the development of

preventive strategies of age-related diseases. Immunoglobulin (Ig) includes

proteins with antibody (Ab) activity or membrane-bound proteins that share a

chemically analogous structure to Ab. Ig can recognize and neutralize numerous

antigens, which constitutes the main characteristic of adaptive immunity. The

quantity, glycosylation and function of Ig change with advancing age. Some Ig is

found to be accumulated in aged tissues and appear to be regarded as a potential

marker for aging, which indicates the critical role of Ig in aging. B cells are main

producers of antibodies and undergo aging-related changes, leading to

increased autoimmune responses and reduced vaccine responses. The

immune dysregulation of B cells is also intensively involved in the alteration of

Ig. In this review, we focus on the current research findings on Ig, discuss the

relation between Ig and aging, highlight the complex interplay among B cell, gut

microbiota, Ig, and aging, and explore potential therapeutic strategy. We hope

this review may provide an insight for investigating the regulatory mechanism of

Ig in aging, as well as for evaluating the therapeutic potential in treating age-

related diseases.
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1 Introduction

Aging is a complex process that involves pronounced decrease of biological functions. It

is one of the primary causes for prevalent chronic diseases such as neurodegenerative

disorders, cardiovascular system diseases, and cancer, which eventually, lead to death in the

world (1). Gaining insight into the mechanism underlying aging can facilitate to enhance

lifespan and quality.

Many factors contribute to aging, such as genomic instability, telomere attrition, epigenetic

alterations, loss of proteostasis, disabled macroautophagy, deregulated nutrient-sensing,

mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular

communication, chronic inflammation, and dysbiosis (2). Of which, cellular senescence has

been accepted as a critical trigger of aging and received intensive investigation. Senescent cells
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are accumulated in tissues and organs during aging. The clearance of

senescent cells has successfully alleviated aging and age-related

diseases. Interestingly, accumulated immunoglobulin (Ig) is detected

adjacent to senescent cells. Ig-related genes such as Igkc, Igj, and
Ighg2c are also significantly increased in aged tissues. These evidences

suggest that Ig-associated senescence may be a hallmark of aging (3).

In other situation such as dysbiosis or chronic inflammation, Ig can

also be associated with aging through gut microbiota (4). All these

findings not only highlight the mechanism of aging, but also require a

fresh look at the complex role of Ig in aging.

Ig is a Y-shaped glycoprotein belongs to the immunoglobulin

super-family which shares the same basic structure: two heavy and

two light chains linked by disulfide bonds. The alteration of specific

glycans on the chains is associated with aging (5). Most importantly,

Ig comprises a heterogeneous group of proteins with antibody (Ab)

function and serves as the main components of the body’s humoral

immunity. In vertebrates, Ig mainly exists as B cell receptor (BCR)

on the surface of B cells or as Ab secreted into extracellular fluid. B

cells experience immunosenescence during the process of aging and

induce the dysregulation of Ig. Apart from lymphoid cells, non-

lymphoid lineage and cancer cells can also express Ig (6). With the

ability to bind to a myriad of antigens, Ig can recognize antigens and

activate cell, while soluble molecules can combine with external

substances or pathogens and neutralize pathogens. As a result, Ig is

significantly important for physiology and pathology of the human

body. The dysregulation of Ig has been identified across different

conditions. For example, the structure and composition of IgG or

IgM are changed in neurodegenerative diseases such as Parkinson’s

disease (PD) or Alzheimer’s disease (AD) (7), while increased IgE is

associated with autoimmune diseases such as rheumatoid arthritis

(RA) (8). Other type of Ig such as IgA is also involved in

autoimmune diseases or centralnervous system diseases. These

diseases are commonly thought to be age-related diseases and

possess some similar pathological mechanisms with aging.

In this review, we summarize current knowledge on Ig

alterations associated with aging and age-related diseases, discuss

the underling mechanism of Ig in aging, which will help

understanding the mechanism of aging and provide insights into

the novel therapies in age-related diseases.
2 Immunoglobulins in brief

Ig is a class of proteins existed in gnathostomes such as

mammals, birds, and amphibians et al. (9, 10). Although they had

already emerged 500 million years ago, its existence was only

described in the late 19th century. Ig is critical for protecting

pathogen invasion and thought to be one of the hallmarks of

adaptive immunity. They are composed of four polypeptide

chains: two light chains and two heavy chains according to their

molecular weight (about 23.000 and 50000 respectively). Disulfide

bonds link the chains and form a Y-shaped structure. These chains

contain looped structures and can be divided into different domains

or regions. Light chains possess one constant region (CL) and one

variable region (VL). The variable region contains three
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complementary decision regions (CDRs), which contribute to

antigen binding. The constant domains specify effector functions

including activation of complement or binding to Fc receptors (11).

According to the difference in polypeptide sequence, the light chain

is classified into kappa (k) or lambda (l), which possesses different

antigenic properties. The light chains are usually short of

carbohydrate components (12). Unlike light chains, heavy chains

possess one variable region (VH) and 3-4 constant regions (CH).

Based on the size and amino acid composition within constant

region, the heavy chains can be classified into different classes. In

mammals such as human and mice, five heavy chain isotypes have

been identified: a, d, e, g, and m. Therefore, Ig is classified into five

isotypes as IgA, IgD, IgE, IgG, and IgM. However, in other species

such as bony fish, the heavy chains are m, d, and t/z, which
represent IgM, IgD and IgT/Z, respectively (13). And in

amphibians, the heavy chain isotypes are m, d, c, υ, and C, which

represent IgM, IgD, IgX, IgY, and IgF (14).

A significant event called somatic recombination occurs in the

V region, which crucially contributes to the diverse repertoire of Ig

heavy and light chains. This process includes the recombination of

variable (V), diversity (D) and joining (J) gene segments in an

ostensibly random manner. Recombination‐activating gene1/2

initiate the V(D)J recombination by introducing double‐strand

breaks at specific recombination signal sequences (15). Apart

from V(D)J recombination, other factors contributing to Ig

function include activation-induced cytidine deaminase-mediated

somatic hypermutation (SHM) and class switch recombination

(CSR). SHM can induce point mutations in some hotspots and

alter the affinity of Ig (16), while CSR leads to the production of

secondary isotypes including IgG, IgA and IgE (17). Following these

processes, Ig acquires the ability to recognize and bind to a variety

of antigens, and finally exert specific effector functions.

Ig is predominantly produced by B cells. Interestingly,

macrophages and non-immune cells such as cancer cells and

neurons can also produce Ig such as IgG, IgM, and IgA (18).

However, their functions remain to be demonstrated.
3 Aging affects B cell development
and function

In mammals, Ig is predominantly expressed by B cells which are

originated from multipotent hematopoietic stem cells in the bone

marrow (BM). Based on the surface marker and the rearrangement

of Ig genes, the development of B cells can be categorized into

distinct stages: progenitor B cells (pro-B cells), precursor B cells

(pre-B cells), immature B cells, transitional B cells, mature B cells,

germinal center (GC) B cells, memory B cells and plasma cells (19).

Pro-B cells undergo V(D)J recombination and form the m chains,

and develop into pre-B cells. Pre-B cells then form the light chains

and develop into IgM+ immature B cell (15). Immature B cells

subsequently migrate to the spleen for terminal maturation. With

the assistance of alternative splicing, immature B cells develop into

mature IgM+IgD+ B cells. Upon antigen encounter, activated B cells

differentiate into Ab-secreting plasma cells. The Ab (Ig) secreted by
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plasma cells shares structural homology with membrane-bound

BCR (Figure 1).

Two lineages can be divided in the early development of B cells,

B1 and B2. B1 cells are originated from fetal liver progenitor cells,

and notably, their BCR lacks nucleotides at the junctions between V

and J segments (20). Located in the peritoneal cavity, most B1 cells

can produce natural antibodies including IgM, IgA and IgG in

humans and mice. Unlike conventional B2 cell-produced adaptive

Ab, natural Ab is synthesized without exposure to foreign antigen.

They are polyreactive and can recognize numerous autoantigens

and new antigens (21, 22). Conventional B2 cells are mainly located

in peripheral tissues and consist of two main populations: marginal

zone (MZ) B cells that rapidly produce IgM upon antigen exposure

and follicular (FO) B cells produce high-affinity Ab such as IgG,

IgA, or IgE.

The emergence of autoantibody (autoAb) manifests a functional

collapse of B cell tolerance. B cell acquires central and peripheral

tolerance during development. Central tolerance is achieved by the

rearrangement of Ig chains and subsequent BCR formation. This

process can form autoreactive B cells. Upon reacting with

autoantigens in the BM, these newly developed B cells undergo

negative selection, a process results in the elimination of some

autoreactive immature B cells. The surviving cells then immigrate to

the periphery and undergo periphery tolerance, which further

eliminate autoreactive cells. The breakdown of both central and

peripheral tolerance contributes to the increase of autoreactive B

cells, and thereby increased circulating autoantibodies.

Apart from B cells, other cells are involved in the production of

autoAb in some conditions. T cells can regulate B cell function. The

dysregulation of follicular helper T cells affects B cell maturation

and promote the production of autoAb (23). Macrophages play

important roles in antigen presentation, immune tolerance and

inflammatory response. With increased antigen presentation,

macrophage can help to activate B cells and boost the production

of autoAb. Moreover, elevated apoptotic debris of macrophage is

also involved in autoAb formation in autoimmune diseases (24, 25).

Increasing studies have proved that autoAb exert both harmful and

protective effect. On the one hand, autoAb is the major contributor

in initiating autoimmune diseases. On the other hand, autoAb can

suppress inflammation, infection, and kill tumor cells in various

diseases (26).
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Aging induces great changes in immune system, especially in

humoral immune mediated by B cells. This phenomenon is called

immunosenescence. Immunosenescence can increase both the

frequency and severity of infectious diseases, and reduce the

response to vaccination. In fact, aging can affect the development

and subset of B cells, as well as Ab production (Figure 2).

During aging, murine and human BM demonstrates diminished B

cell precursors, likely attributable to age-associated microenvironmental

changes. While murine B1 cell numbers remain stable with aging (27),

human B 1 cells are reduced in the elderly (28). In accordance with

reduce B1 cells, the amount and function of natural antibodies is reduced

during aging, leading to age-related diseases such as atherosclerosis,

cancer, and neurodegeneration (29–31). B2 cells exhibit aging-related

functional impairments, as manifested by defective isotype switching in

aged cells (32). Although peripheral B2 cell maintain unchanged in aging

mice, the population of FO B cells decreases with age. The amount of

MZ B cell is also reduced during aging, which accompanied by the

augmentation of autoantibodies (33, 34).

Age-associated B cells (ABCs) are presumably derived from B2

cells and represent a memory B cells. They are accumulated in the

spleen of aged mice. In humans, ABCs expand in elderly individuals

and correlate with increased IgG1 levels. ABCs demonstrate

autoreactive potential through autoAb secretion.

AutoAb is not only related to autoimmune disease, but also is

associated with aging. In fact, there is a complex relationship between

aging and autoAb. Increased autoAb is identified during aging. Among

them, antinuclear Ab is related to diabetes and age-related diseases

(35). Autoantibodies against AT1 receptor can promote endothelial cell

senescence and vascular aging (36). Aging can alter the inflammation

response as evidenced by increased proinflammatory cytokines such as

TNF-a and IFN-g. Chronic low-grade inflammation, as we all know, is

a characteristic of aging.
4 Immunoglobulins and aging

4.1 Immunoglobulin level changed with
advanced age

Aging significantly influences B cells, which can be reflected by

the changes of Ig levels. Although serum IgE remains stable, the
FIGURE 1

BCR expression during human B cell development. B cells are derived from hematopoietic stem cells in the BM, and acquire BCRs through V(D)J
recombination of Ig genes in the early development. In the GC, B cells undergo SHM and CSR, allowing the BCR switched from IgM to other
isotypes.
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concentrations of switched Ig (IgA and IgG) exhibit increased

expression in the human elderly, while IgM and IgD are reduced

with age (37). This change implies a transition from naïve to

memory B cells and impaired response to new antigens (38).

Interestingly, the level of total serum Ig shows no difference or a

mild elevation with advanced age in human (39, 40). In addition,

the glycosylation of Ig can also be altered with age, which plays an

important role in aging and age-related diseases (Table 1). The

following sections will review age-related changes in different Ig

classes, and go a step further to discuss the underlining mechanism,

which will be helpful in understanding the complexity of Ig in aging.
4.2 IgM and aging

4.2.1 IgM structure and function
IgM is the predominant natural Ab and serves as the first

responder to foreign invaders. It is the only Ab found in all

vertebrate species. Monomeric IgM mainly exists as membrane-

bound receptors on B cells, playing a vital role in B cell survival (41,

42). The monomeric IgM has two m-heavy chains with a C-terminal

extension that facilitates oligomerization. Under certain

pathological condition such as autoimmune diseases, monomeric

IgM can also be secreted (43, 44).

As the primordial class of Ab produced by activated B cells, IgM

typically forms a pentameric structure upon secretion. Five IgM

monomers are joined together by disulfide bonds and form this

pentamer with the assistance of J-chain. The presence of the J-chain

enables IgM to cross mucosal epithelia through interaction with the

polymeric Ig receptor (45). The pentameric configuration enhances
Frontiers in Immunology 04
IgM’s ability to bind antigens with high avidity, allowing it to

perform multiple functions in immune responses (46).

While human and mouse IgM primarily exist as pentamers,

other forms, such as hexameric IgM lacking the J-chain, have been

observed in frog. IgM plays a significant role in both humoral and

mucosal immunity. It is highly effective in recruiting complement

and inducing strong inflammatory responses. Additionally,

pentameric autoreactive IgM has been implicated in various

autoimmune diseases, including RA and autoimmune

neuropathy (47).

4.2.2 IgM exerts a complex role in aging
Aging can increase the level of IgM in mice. Aged mice express

more serum IgM than young mice. In response to S. aureus

bacteremia infection, aged mice demonstrate higher IgM levels

compared to their young counterparts (48–50). However, the

situation is different in human. Human serum IgM was reduced

with age, especially in women (37). A possible reason for the

difference between humans and mice is related to the dynamic

changes in B1 cells. B1 cells are mainly producers of IgM. Human

B1 cells reduce with age, while mice B1 cells do not. Chinese

centenarians with lower serum IgM levels had significantly shorter

median survival time (51). These findings suggest that IgM may

provide protective effects in human elders.

Time-restricted eating (TRE) is an intermittent fasting pattern

that limits daily eating time to a window ranging from 4 to 12 hours.

TRE possesses the anti-aging ability as evidenced by increased

sphingosine-1-phosphate and L-serine expression. The percentage

of IgM increased after 30 days of TRE. The activation of B cells is

suppressed as demonstrated by reduced CSR from IgM to IgA (52).
FIGURE 2

Aging affects B cells and induces diseases. Aging can alter the development, function and subset of B cells, leading to age-related diseases such as
neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and cancer.
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Despite the lack of direct evidence, this study indicates that IgM

may possess potential anti-aging capability. The protein in

cerebrospinal fluid (CSF) is closely associated with aging and

neurodegenerative diseases. Using limited proteolysis-mass

spectrometry, researchers find that the structure and expression

level of IgM are changed in human CSF with aging (53). To be more

specific, a complex composed of IgM and Cd5l is increased in

mouse and human CSF with aging, which may provide protection

against PD. Adaptive immunity is involved in the development of

atherosclerosis. IgM can reduce atherosclerosis progression and

cardiovascular events (54–56). Patients with coronary artery disease

exhibit a significant decrease in circulating atheroprotective oxLDL-

specific IgM compared to young healthy volunteers (57). Systemic

lupus erythematosus (SLE) patients always show increased

atherosclerosis. Serum IgM antibodies against phosphorylcholine

(anti-PC), which can provide protection against atherosclerosis, are

reduced with age in SLE patient. The protective role of IgM anti-PC

antibodies may be associated with the senescence of T cells (58, 59).

Based on these findings, it is suggested that IgM can be protective in

aging and age-related diseases.

Notably, some investigations yield inconsistent results.

Increased urine IgM is linked to the development of vascular

aging and cardiovascular events (60). Vascular aging is evidenced

by the changes of vascular structure and function, and plays a

crucial role in brain and cognitive aging. Many factors such as

arteriosclerosis or endothelial dysfunction emerged as the early

stage of vascular aging (61). In young to middle-aged healthy

people, the increased IgM expression in urine is not associated

with hypertension but often means lower ankle brachial index and

higher systolic blood pressure. Most importantly, elevated urinary

IgM is closely related to increased urinary albumin excretion, an

indicator of systemic inflammation and cardiovascular

abnormalities. Based on these findings, urine IgM can be seen as

an indicator of subclinical peripheral atherosclerosis (62).
4.3 IgG and aging

4.3.1 IgG structure and function
IgG is the predominant Ig class in healthy humans (about 80%

of total serum Ig). Structurally, IgG is a 150 kDa glycoprotein

composed of two identical heavy chains and two light chains. The
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heavy chain contains one VH and three CH (CH1, CH2, and CH3).

The hinge region exists between the CH1 and CH2 region and

contribute to conformational flexibility of the IgG molecule. The

protease papain cleaves the hinge region at the N-terminal side of

the disulfide bonds and split IgG into three pieces: two identical Fab

fragments (fragment antigen binding) and one Fc fragment

(fragment crystallizable). The Fab fragments are capable of

recognizing and binding to a variety of antigens including

bacteria, toxins or self-antigens. The Fc fragment interacts with

specific receptors on the surface of immune cells and induce

immune responses (49). Pepsin cleaves IgG molecule at the C-

terminal of the hinge region and then produces an F(ab’)2 fragment

and a smaller Fc fragments (pFc’) (63). Based on the heavy chain g1-
4, IgG can be divided into four subclasses: IgG1, IgG2, IgG3, and

IgG4. Despite the sequence homology, these subclasses show subtle

differences in conformational flexibility or binding affinity which

affect their function.

IgG can cross the placenta and diffuse into extravascular areas.

It is critical to humoral immune as protecting against pathogens.

IgG exert their protective function through binding to Fcg receptors
(FcgR) and then activating FcgR-bearing cells. IgG can also activate

complement which contribute to the recruitment of immune cells.

4.3.2 The reciprocal interaction between IgG and
aging

IgG is the most extensively studied aging-related Ig to date. The

latest research indicates that the accumulation of IgG is a hallmark

of human aging. IgG is increased in human liver and lymph node

with age. Moreover, accumulated IgG can induce cell senescence

and contributes to tissue aging (3). IgG-producing cells are

increased in aged mice, which are consistent with the levels of

serum IgG (64, 65). However, in SAMP1 mice, serum IgG was

reduced sharply, which contribute to aging-associated arterial

stiffening. IgG treatment alleviates arterial stiffening and

hypertension in old mice (66). Although the results may vary,

these findings all demonstrate this idea: Aging can alter the

expression and function of IgG, and IgG can in turn affect aging.

Regulation of IgG can counteract aging (Figure 3).

4.3.3 IgG N-glycosylation and aging
Glycosylation is the most frequent post-translational

modification. It mediates cell adhesion, proliferation and
TABLE 1 Aging-related changes of immunoglobulin.

Immunoglobulin Serum concentration Glycosylation References

IgM
Reduced in human
Increased in mice

/ (37, 49)

IgG Increased in human and mice
Reduced galactosylation and sialylation in human,
Increased agalactosylation in human

(37, 64, 70)

IgA
Increased in human
and mice

Reduced galactosylation and sialylation in human,
Increased bisection in human

(37, 102)

IgD Reduced in human / (37)

IgE No change in human / (37)
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differentiation. N-linked and O-linked glycosylation are the two

main forms of glycosylation. The function of IgG is modulated

through N-glycosylation, where glycans attach to Asn297 in the

consensus sequence (Asn-X-Ser/Thr). Under homeostatic

conditions, N-glycosylation of IgG remains stable. However,

inflammation and aging can significantly alter IgG glycosylation.

As a result, changes in IgG glycosylation are closely associated with

aging and age-related diseases (67). N-glycosylation includes

galactosylation, sialylation, core-fucosylation, and bisecting

GlcNAcylation (68). Of which, core-fucosylation and bisecting

GlcNAcylation exhibit slightly alteration with age. On the

contrary, the level of galactosylated IgG glycans is increased from

young and reduced with advancing age. IgG glycosylation can be a

predictor of human aging (69, 70). In mice, serum IgG N-glycans

also changed with aging. B-cell-specific ablation of b-1,4-
galactosyltransferase1can maintain IgG glycans and attenuate

aging in mice (71). Aberrant glycosylation of IgG is closely linked

to age-related diseases, including dementia, hypertension, and

diabetes. Chronic inflammation is crucial for aging and is a causal

factor in age-related diseases (72, 73). IgG galactosylation can be

reduced by chronic low-grade inflammation, and the attenuation of

IgG galactosylation further promotes inflammation. A mendelian

randomization study proved the potential causality between IgG N-

glycosylation and aging, sialylation of IgG can reduce the

inflammation and suppress the aging process (74). Although the

mechanism by which glycosylated IgG regulation inflammation

remains unclear, the latest study has identified a key transcription

factor: repressor element-1 silencing transcription factor (REST).

Sialylated IgG can activate the REST in macrophages, which can

suppress nuclear factor kB-related signals, leading to reduced

inflammation (75).
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4.3.4 IgG and erythrocyte aging
Erythrocyte is originated from hematopoietic stem cell and

shows a short lifespan of 115 days in the blood. Erythrocyte level is

declined in the elderly. Band 3 protein is predominant expressed on

erythrocyte membranes and plays an important role in erythrocytes

homeostasis. Recent studies suggest that band 3 protein is

important for erythrocyte senescence signaling (76). Band 3 anion

exchanger can produce senescent cell antigen that binds to serum

IgG. This process is important for the removal of erythrocytes (77,

78). Senescent erythrocyte binds with more IgG than young

erythrocyte. In neurodegenerative diseases such as AD and PD,

band 3 exhibits increased degradation and produce more senescent

cell antigen, which may finally contribute to increased IgG on the

surface of erythrocytes (79). Erythrocyte can be seen as a biomarker

of AD, which indirectly indicates the involvement of IgG in

neurodegenerative diseases. These findings are consistent with

recent study that IgG is highly expressed near the senescent cell

and promote senescence.

4.3.5 Tissue IgG and aging
IgG is accumulated in white adipose tissue and induces the

degeneration of adipose tissue during aging (74, 80), which suggests

that IgG not only exerts immune function in the plasma, but also

plays an important role in metabolism in the tissue. In addition of

adipose tissue, IgG has been found accumulated in different tissues

and induce the senescence of nearby cells (53). The accumulated

IgG is regulated by FcRn. FcRn can protect IgG from lysosomal

degradation upon binding with it. Targeting FcRn can reduce IgG

expression and aging. Bidirectional two-sample mendelian

randomization analysis identifies the causal association with SASP

(81). Another report finds that IgG is accumulated in the tissues of
FIGURE 3

IgG and aging. During aging, IgG is increased, which contributes to cell senescence and tissue aging through binding with different ligands. Aging/
inflammation can reduce the N-glycosylation (galactosylation and sialylation) of IgG, leading to increased inflammation, which further promote
aging. Senescent erythrocytes show increased IgG binding with band 3 protein.
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aged mice and elicit the senescence of macrophage and microglia,

which further aggravates aging. Reducing IgG can attenuate aging.
4.4 IgA and aging

4.4.1 IgA structure and function
IgA serves as the predominant Ab class in humans, constituting

approximately 3/4 of total Ig. Although IgA is mostly distributed in

mucosal tissues, it ranks as the second most abundant plasma Ig

following IgG. Based on the molecular forms, IgA exists in two

distinct forms: monomeric IgA (mIgA) and polymeric IgA (pIgA).

Plasma IgA exists mainly in a monomeric form. On the contrary,

over 90% of mucosal IgA displays polymeric forms.

The human IgA comprises two subclasses (IgA1 and IgA2)

distinguished by amino acid sequences of the hinge region. Both

subclasses associate with either k or l light chain consisting of VL

and CL domains. The heavy chains contain a VH followed by three

constant domains (Ca1-Ca3). The ratio of IgA1 to IgA2 in serum is

9:1. IgA2 demonstrates two principal allotypes IgA2m (1) and

IgA2m (2). A third variant, IgA2 (n) has been recently

characterized. This subclass diversity contrasts with mouse or rat

where a single IgA form predominates.

Functionally, IgA serves as the primary immunological barrier

at mucosal surfaces. Its functional repertoire includes

neutralization, complement activation, maintenance of host-

commensal homeostasis, and receptor-mediated effector

functions. Interestingly, the functions of IgA can be performed by

other Ig such as IgM, IgD, or IgG. In fact, IgM is similar to IgA in

many aspects such as evolution, structure, and function (42).

4.4.2 IgA interacts with microbiota during aging
IgA is responsive to age and show significant changes with

aging. Human serum IgA is increased during aging, which is similar

to mice (82). Older people have more IgA in the urine (83). Blood

plasma therapy can decrease IgA expression in old rat (84).

Moderate aerobic exercise can promote IgA production and

improve homeostatic conditions during aging (85). CCL25 is a

chemokine that recruits IgA-secreting cells into intestinal lamina

propria. Aging can reduce the expression of CCL25. This reduction

can in turn decrease IgA and IgA-secreting cells, ultimately affecting

gut immunity (86, 87).

A notable phenomenon is that IgA, gut microbe and aging are

interrelated and mutually influential. IgA is produced into the

intestinal lumen in large numbers every day. These secreted IgA

can interact with gut microbiome, and then maintain host-

microbiota homeostasis (88, 89). IgA can change the bacterial

composition and inflammatory response in the intestinal tract.

Gut microbiota dysbiosis is detected in IgA deficient human (90).

As a result, IgA is accepted as a controller of symbiotic microbiota

(91). Studies have shown the composition of human gut

microbiome changed during aging. Microbiota with beneficial

functions (such as Oscillospira, Oxalobacter, Prevotellaceae)

declined with age, while others (Parvimonas, Corynebacterium,
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and Corynebacterium) increased and are associated with aging-

related inflammation and diseases (92–95).

Cellular senescence is a hallmark of aging. IgA seemed to serve

as a bridge connecting the gut microbiota and cellular senescence

during aging (96–98). In the ileal of aged mice, commensal bacteria

may promote the senescence of GC B cells. The accumulated

senescent cells lead to compromised diversity and production of

IgA, which in turn changes the composition of gut microbiota and

break the gut homeostasis.

It is noteworthy that gut microbiome not only influences IgA

that is in the same location, but also exerts an influence on IgA

secretion that is anatomically distant from gut. Endocrine

dysfunction is associated with gut microbiome during aging. The

pituitary gland is an important endocrine organ. During aging,

pituitary hormone declined. Interestingly, IgA can be produced by

hormone-secreting cells but not B cells in pituitary. The expression

of IgA is increased significantly in aged pituitary, which is regulated

by gut microbiota (99).

Gut microbiota can also regulate IgA in the central nervous

system. IgA+ B cells are increased in the CSF of MS patients. These

cells are related to the acute inflammation and neuroinflammatory

conditions. Gut microbiota-specific IgA may transported to the

CNS and induce neuroinflammatory diseases (100). Moreover, IgA

can affect microbiota and further influence lymphocyte and glial

cells in the central nervous system (101). Aging-related reduction of

microbiota composition can reduce the maturation of microglia.

Although microbio is important in CNS aging and IgA can regulate

microbio, there is no direct evidence to support the idea that IgA

can regulate CNS aging through microbe at present. The interplay

among IgA, the microbiome and aging-related CNS disease require

further investigation.

4.4.3 IgA glycosylation and aging
Like IgG, IgA contains abundant N- and O-glycosylation sites.

These glycopeptide structures changed during aging. Notably, the

glycomes of IgA and IgG are closely correlated and regulated by

common genetic factors (102). While IgG glycosylation is

important in aging, the role of IgA glycosylation in aging remains

unknown. Given IgG’s established role in aging, the relationship

be tween IgA g lycosy la t ion and ag ing i s wor thy o f

further exploration.
4.5 IgD and aging

4.5.1 IgD structure and function
IgD has two delta (d) heavy chains which is different from IgG,

IgA, and IgM. It exists in all vertebrate species and thought to be

evolutionarily conserved Ig class. IgD exhibits pronounced

structure plasticity in different species, probably through extensive

modifications via both the duplication and deletion of exons. For

example, mice and human IgD consisted of two and three Cd
domains, while catfish IgD has seven Cd domains. Moreover, most

jawed vertebrate species display significant alternative RNA splicing
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events compared to mammals, which also involved in the structural

plasticity of IgD.

In mammals such as human and mice, IgD exists in two forms:

membrane-anchored IgD (mIgD) and secreted IgD (sIgD).

Expression of mIgD follows IgM during B cell development and

is an important component of BCR. Most mature B cells coexpress

surface IgD and IgM through alternative splicing of a pre-

messenger RNA in the nucleus. Notably, a unique subset of

mucosal B cells in nasopharyngeal lymphoid tissues exhibit

exclusive IgD expression through an unconventional CSR

mechanism. These IgM−IgD+ B cells then differentiate into IgD-

secreting plasma cells (103, 104). sIgD remains minimally detected

in the serum, which accounts for only 0.25% of total serum Ig (105).

However, it demonstrates broad tissue distribution, detectable in

the nasopharyngeal, oral and lachrymal secretions. Moreover, sIgD

can traverse epithelial and placental barriers (106). The distribution

of sIgD is correlated with the localization of IgD-producing B cells.

The functions of IgD are relatively enigmatic compared to other

Ig. mIgD on B cells may be involved in the peripheral tolerance and

B cell anergy, while sIgD may help to maintain mucosal

homeostasis through regulating symbiotic host-microbiota

interaction (107, 108). The relationship between IgD and aging is

also unknown, with only indirect insights from the studies on

B cells.

4.5.2 IgD−CD27− B cells and aging
IgD is an important marker of B cells. According to the

expression of IgD and/or CD27, human B cells can be classified

into four subsets: naïve B cells (CD27-IgD+), unswitched memory B

cells (CD27+IgD+), switched memory B cells (CD27+IgD−) and

double‐negative (DN) B cells (CD27−IgD−) (109). CD27−IgD− DN

B cells are also thought as a subset of memory B cells (110, 111).

IgD+IgM+CD27+ memory B cells are dramatically declined in the

aged people (112). Although circulating IgD−CD27− B cells exhibit

lower expression of SASP marker including TNF-a, IL-6, IL-8 and

p16INK4 (113), they are now thought to be related to

immunosenescence, aging, autoimmune and infectious diseases. It

is increased in elder people and had been seen as senescent or

exhausted B cells. In HIV patients, the number of IgD−CD27− cells

is correlated with CD3+CD4+CD57+CD45RO−CD4+ T cells, a

terminal effector cells that are prevail in aging (114). In addition,

IgG+IgD−CD27− B cells are increased in RA patients. IL-6R

blockade (tocilizumab) or TNF inhibitors can significantly reduce

the expression of cells to normal levels (115, 116). Moreover,

IgD−CD27− B cells are associated with severe atherosclerosis in

human and can promote inflammation in male elders (117, 118).

All these findings suggest that IgD−CD27− B cells may play a role in

aging-related inflammation or diseases.
4.6 IgE and aging

4.6.1 IgE structure and function
Amphibians IgY underwent a gene duplication event and

diverged into IgE, a unique Ab class which is exclusively found in
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mammals. IgE exists as a monomeric form composed of two heavy

and two light chains, distinguished from other Ig isotypes by its

characteristic epsilon constant region (Ce). The Ce region contains

four constant domains (Ce1-Ce4), which is similar to the m heavy

chain of IgM. Despite sharing evolutionary origins with IgG

through ancestral IgY molecules, IgE exhibits distinct structural

features, particularly in its Ce2 domain positioning. These domains

occupy spatial coordinates equivalent to the Fab-Fc hinge region

found in IgG molecules, a key differentiating feature between these

two Ab classes. Ce2 and Ce3 domains interact with the high‐affinity

IgE‐receptor FceRI, while Ce3 and Ce4 domains interact with the

low‐affinity IgE‐receptor CD23. CD23 on B cells is important for

IgE synthesis and presentation.

IgE demonstrates the lowest serum concentration among Igs

(approximately 10,000 fold less than other isotypes). However, it

exhibits remarkable potency in host defense against parasites and

certain toxins. This Ab class plays a dual biological role, mediating

both protective immune responses and pathological hypersensitivity

reactions. Membrane-bound IgE antibodies undergo crosslinking

upon encounter antigens, and then initiate the release of bioactive

molecules collectively induce allergic and inflammatory reactions.

4.6.2 IgE is involved in age-related diseases
Although previous studies showed that IgE production is

reduced with age and is associated with reduced allergic symptom

(119), recent findings require a fresh look at the role of IgE in aging.

IgE is closely associated to allergy, a disease which is considered a

pediatric disease rather than an adult one. Interestingly, some

studies find that allergy, especially food allergy is increasing in

elders, which is similar to other age-related diseases such as

cardiovascular, neurodegenerative, and cancer (120, 121). Many

factors seemed to be involved in this phenomenon.

Immunosenescence play a crucial role in food allergy. Food

allergy indicates the impairment of mucosal tolerance. Gut

immune system experiences multiple changes during aging, such

as increased local inflammation, impaired barrier function, and IgA

deficiency. Aging also alters the composition and function of gut

microbiota, leading to chronic inflammation. IgE is increased in the

skin lesion of elders, which can induce inflammatory response and

contribute to allergy in elders (122). In addition, B cells are

previously thought to be cleared shortly after IgE production.

However, long-lived B cells that constantly producing IgE have

been identified, supporting the increased IgE with aging.

IgE also contributes to autoimmune diseases. Autoreactive IgE

can activate basophils, and other FceRI-bearing cells, prompting Ab

production and other pro-inflammatory signals. IgE autoantibodies

have been identified in rheumatic diseases such as RA and SLE (8).

Therapy targeting IgE can reduce autoimmune diseases. In

addition, serum IgE is increased in atherosclerosis patients. This

may attribute to IL-17, an important proinflammatory cytokine in

the pathogenesis of atherosclerosis. IL-17 is increased in

atherosclerosis, which can enhance B cell-produced IgE. IgE can

promote macrophage polarization and cholesterol accumulation

through binding with FceR1. IgE deficient mice demonstrate

attenuated atherosclerosis (123, 124).
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5 Therapeutic potential of Ig in aging

Ig therapy exerts anti-inflammation and immune modulatory

function, and has been used in immune deficient diseases and other

immune-mediated conditions such as dermatomyositis, autoimmune

bullous diseases, and chronic inflammatory demyelinating

polyradiculoneuropathy (125). However, the therapeutic effect in

aging remains to be clarified. Recent studies find that antisense

oligonucleotide against FcRn can inhibit the accumulation of IgG in

adipose tissue, which helps reduce fibrosis and relieve aging (74, 80). In

another study, suppressing IgG effectively reduces aging in mice. IgM

transfer has been reported to induce B cell tolerance and inhibit

autoimmunity (126). Considering the fact that Ig is deeply involved

in the development of aging, there is a high possibility that regulation of

Ig can be used to develop novel methods for counteracting aging.

Chronic inflammation or inflammaging is the hallmark of

immunosenescence and aging, and anti-inflammatory therapies can

be seen as potential anti-aging treatment (127, 128). B cells are the main

Ig-producing cells and are critical in immune response. Interventions

targeting B cells may alleviate aging through regulating inflammation,

senescence and Ig production. Rituximab, a monospecific Ab that

targets CD20 on B cells, can alleviate RA, MS, and atherosclerosis.

However, monospecific Ab only targets one specificmolecule, leading to

limited efficacy. Different approaches have been developed to improve

therapeutic efficacy. Bispecific Ab (BsAb) can bind two different

epitopes/antigens simultaneously, which aids in redirecting cytotoxic

effector cells to target cells. Ab-drug conjugate (ADC) consists of a

monoclonal Ab and a cytotoxic drug. This combination helps to achieve
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targeted and potent therapy. Besides bsAb and ADC, chimeric antigen

receptor T (CAR-T) cell therapy also makes encouraging progress in B

cell malignancies. It uses engineered T cells to target CD19 and B cell

maturation antigen (BCMA). In summary, these new technologies offer

considerable potential for therapeutic use and greatly enhance treatment

efficacy in autoimmune diseases and cancer (129) (Figure 4).
6 Conclusions

Aging is an interconnected process during which immune

responses experience a gradual decline. Increasing studies suggest that

aging can regulate the production and function of Ig through

immunosenescence, chronic inflammation, epigenetic modification,

and microbe disturbances. The immunosenescent B cells are deficient

in Ig class switch and affinity maturation which affect the isotype and

function of Ig. On the other hand, with increased inflammatory factor

production and self-tolerance broken, aged B cells can produce autoAb

which contributes to some age-related diseases. Glycosylation or Asp

isomerization in Ig, especially in IgG, has changed during aging and is

expected to be seen as a biomarker of aging. In addition, there is a

complex relation between aging, microbes, and Ig. Ig and aging exhibit

mutual influence and interaction, although the underling mechanisms

require further clarification. Moreover, apart from B cells, Ig is produced

by many other cells such macrophage. Macrophage is related to aging.

However, the function of macrophage-derived Ig remains unknown.

Overall, aging is related to almost all chronic diseases. Understanding

the role of Ig in aging will facilitate the diagnosis of these diseases. Ig or
FIGURE 4

Antibody-based therapy. Antibody-based therapy is used to treat age-related diseases such as cancer or autoimmune diseases through regulating
inflammation or senescence. The currently developed drugs include monospecific Abs, bsAbs (bispecific Abs), CAR-T (chimeric antigen receptor T),
and ADCs (antibody-drug conjugates), which target CD19, CD20, BCMA (B cell maturation antigen), or target inflammatory cytokines such as IL-1,
IL-6, TNF-a, and IFN-g.
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Ig-producing cells-based therapy may be a hopeful strategy to intervene

in aging and age-related diseases.
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