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Lactylation, a recently discovered post-translational modification (PTM), plays a

critical role in cancer biology. Warburg effect induces lactate accumulation,

which serves as a metabolic end-product and intercellular signaling mediator

within the tumor microenvironment (TME). Beyond fueling tumor growth,

elevated lactate levels drive histone and non-histone lactylation, which

modulates gene expression and protein function. This epigenetic

reprogramming induces immunosuppressive phenotypes in immune cells that

are resident in the tumor microenvironment, including impaired effector

function, enhanced immunosuppressive cytokine secretion, and altered tumor

antigen presentation, collectively facilitating immune escape. This review

provides a synthesis of the current understanding of lactate and lactylation in

tumor immunosuppression, detailing molecular mechanisms underlying

immune cell inhibition (tumor-associated macrophages, T cells, T-reg cells, NK

cells and NKT cells, as well as neutrophils) and evaluating emerging therapeutic

strategies (e.g., inhibitors of MCTs/LDHA, site-specific antibodies, genetic code

expansion technology). We aimed to accelerate the clinical translation of

lactylation-targeted anticancer therapies by highlighting recent advances.
KEYWORDS

lactylation, antitumor immunity, lactate accumulation, tumor microenvironment,
histone and non-histone lactylation, immunosuppressive phenotypes
1 Introduction

Post-translational modifications (PTMs) alter proteins after translation, regulating

structure, activity, localization, stability, and interactomes (1). These modifications

critically regulate physiological processes and disease pathogenesis, making PTM

research essential to understand biological mechanisms, identify clinical biomarkers, and

discover therapeutic targets (2). Common PTMs include phosphorylation, acetylation,

methylation, ubiquitination, succinylation, palmitoylation, and the recently identified

lactylation (3). In 2019, Zhang et al. pioneered the discovery of histone lysine lactylation

(Kla) in mammalian cells using tandem mass spectrometry and isotopic tracing (4). This
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finding established Kla as a bona fide PTM, unveiling new research

dimensions in determining the roles of lactate in cancer, immunity,

and metabolism.

Kla is the covalent conjugation of lactate to specific lysine

residues via enzymatic or non-enzymatic mechanisms (5).

Through this modification, protein function and transcriptional

programs are modulated, crucially influencing cellular physiology,

tumorigenesis, and immune regulation (6). The TME, comprising

malignant cells, immune populations, vasculature, stroma, and

signaling networks, critically determines tumor progression and

therapeutic responses (7). Paradoxically, immune surveillance

el iminates malignant cel ls ; meanwhile , TME-imposed

immunosuppression enables tumor immune escape (8).

Consequently, deciphering immune cell functionality within the

TME is fundamental for developing effective anticancer therapies.

Lactate, which was once considered a metabolic waste product,

is now recognized as a key signaling molecule and metabolic

regulator. In tumors, cancer cells preferentially use aerobic

glycolysis, known as the “Warburg effect”, consuming excessive

glucose to generate adenosine triphosphate (ATP) biosynthetic

precursors while accumulating lactate (9). This metabolite

subsequently shuttles energy and signals across TME

compartments, coordinating metabolic symbiosis (10). Notably,

lactate-derived Kla modifies histones and non-histones, thereby

reprogramming gene expression and immune responses (11).

Accumulating evidence shows that the acidic milieu caused by the

build-up of lactate within the TME directly impedes immune cell

activation and proliferation, and concomitantly potentiates the

functionality of immunosuppressive cells via Kla. This cascade

precipitates tumor immune evasion through multifaceted

mechanisms: functional impairment of effector immune cells,

amplified secretion of immunosuppressive cytokines, upregulation of

immune checkpoint molecules, and altered tumor-associated antigen

presentation (12–14). Collectively, based on these, a profoundly

immunosuppressive niche is established. Findings from empirical

studies show that lactate concentration in the TME reaches 30–40

mM, exerting dual immunosuppressive mechanisms through

microenvironmental acidification and direct molecular signaling (15).

Elevated lactate concentrations suppress T-cell and natural killer (NK)-

cell proliferation, cytotoxic activity, and interferon-g (IFN-g) secretion
(16). Conversely, lactate promotes M2-polarization of tumor-

associated macrophages (TAMs) (17) and myeloid-derived

suppressor cells (MDSCs), while stimulating their secretion of

immunosuppressive mediators, such as vascular endothelial growth

factor (VEGF), interleukin (IL)-10, and accelerating programmed

death−ligand 1 (PD-L1) expression (18). Lactate-driven Kla

orchestrates extensive reprogramming of immune cells to augment

TME immunosuppression. For instance, lactate-derived lactyl-CoA

facilitates histone Kla (e.g., at histone H3 lysine 18 lactylation

[H3K18la]), thereby inducing immunosuppressive gene expression

(including Arg1) and driving macrophage polarization toward the

M2 phenotype (19). Furthermore, lactate enhances transforming

growth factor (TGF)-b signaling in regulatory T cells (Tregs)

through non-histone Kla modifications, exemplified by MOESIN Kla

at lysine 72, which subsequently attenuates CD8+ T cell functionality
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(20, 21). Based on these observations, lactate and its associated Kla

modifications are recognized as central regulators of tumor progression

through immunosuppression. Emerging therapeutic strategies

targeting lactate metabolism, including glycolytic inhibition, lactate

transporter blockade, combination with immune checkpoint inhibitors,

and epigenetic modulation, such as Kla enzyme inhibitors, could

potentially aid in subverting the immunosuppressive TME,

augmenting immune infiltration, and potentiating chemotherapeutic

efficacy (22, 23). Nevertheless, challenges persist owing to the non-

specificity of Kla-associated enzymes, cellular heterogeneity within

TME subsets, and unresolved safety profiles of metabolic inhibitors.

Consequently, elucidating the role of Kla in immune cells offers

considerable therapeutic relevance for developing targeted

antitumor immunotherapies.

In summary, these findings underscore the pivotal contribution

of lactate and Kla to establishing immunosuppressive TME. In light

of recent discoveries regarding lactate-mediated Kla in tumor

immunology and immunotherapy, this review provides a

synthesis of the current understanding of the immunomodulatory

effects of Kla and the translational landscape of Kla-targeted

therapeutics. We herein consolidate the research paradigm,

historical advances, and future trajectories concerning lactate

metabolism and Kla in TME-mediated immune suppression.
2 Lactate and lactylation

2.1 Lactate production

Glucose constitutes the ubiquitous primary nutrient source for

cellular metabolism. Following cellular uptake, it is enzymatically

converted to pyruvate via sequential catalytic reactions, yielding

modest quantities of ATP and nicotinamide adenine dinucleotide

(NADH) (24). Conventionally, glucose-derived energy production

proceeds through two principal metabolic pathways—glycolysis

and mitochondrial oxidative phosphorylation, both initiating

from pyruvate. Under normoxic conditions, pyruvate and

electron-carrying NADH translocate to the mitochondria, where

pyruvate decarboxylation generates acetyl-CoA for entry into the

tricarboxylic acid (TCA) cycle, culminating in robust ATP synthesis

(25). Conversely, pathological hypoxia triggers the hyper-uptake of

cellular glucose, leading to exclusive reliance on cytoplasmic

glycolysis. Electron transfer constraints prevent the mitochondrial

pyruvate from using pyruvate, diverting it to lactate via lactate

dehydrogenase A (LDHA) catalysis. This anaerobic glycolytic

pathway yields only 2 ATP molecules per glucose unit,

precipitating substantial lactate accumulation (26). Notably,

tumor cells exhibit aerobic glycolysis (the Warburg effect), a

metabolic reprogramming wherein glycolysis dominates ATP

production despite oxygen availability, rapidly generating ATP

and lactate to fuel neoplastic proliferation (15).

The Warburg effect modulates the TME through three

interconnected mechanisms: signaling cascades, transcriptional

regulation, and metabolic enzyme modulation. Hyperactivation of

the PI3K-AKT-mTOR axis in malignancies promotes glycolysis via:
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(i) upregulation of glucose transporters, such as GLUT1, GLUT3 to

enhance glucose influx; (ii) hexokinase (HK2) activation

accelerating glucose phosphorylation and intracellular retention;

and (iii) mitochondrial pyruvate carrier suppression, limiting

pyruvate entry into mitochondria to attenuate oxidative

respiration (27–29). Within the Ras-mitogen-activated protein

kinase (MAPK) pathway, Ras activation induces extracellular

signal-regulated kinase-mediated phosphorylation of transcription

factors (e.g., c-Myc), driving expression of glycolytic genes

(including HK2, PFK1, PFK2, and PKM2) (30). Pyruvate kinase

M2 may adopt a low-activity state through phosphorylation (e.g., by

AKT) or protein interactions (e.g., with c-Myc), causing the

accumulation of glycolytic intermediates (e.g., fructose-1,6-

bisphosphate) (31). These intermediates feed into ancillary

pathways—notably the pentose phosphate pathway and one-

carbon metabolism—to furnish nucleotide precursors (NADPH,

ribose) supporting tumor proliferation (32). The hypoxia-inducible
Frontiers in Immunology 03
fac tor (HIF-1a ) ax is further orchestra tes metabol ic

reprogramming. Persistent HIF-1a stabilization in malignancies

arises from the accumulation of genetic lesions (e.g., VHL deletion)

or reactive oxygen species (ROS) under normoxia, compounded by

tumor vascular abnormalities inducing regional hypoxia (33). In

hypoxic tumor cores, activating HIF-1 prompts nuclear

translocation and transcriptional upregulation of glycolytic

machinery: glucose transporters (glucose transporter 1 (GLUT1)/

GLUT3), HK2, PFK, and LDHA—collectively amplifying glycolytic

flux (34). Synergistically, c-Myc potentiates HIF-1a transcriptional

activity, establishing a feedforward regulatory loop. This cascade

includes phosphorylation and inhibition of pyruvate dehydrogenase

by PDK1, thereby obstructing pyruvate entry into the TCA cycle

(35). Concurrently, LDHA and PDK upregulation coordinately

divert pyruvate toward lactate production (36) (Figure 1).

Glycolytically derived lactate conversion is principally catalyzed

by lactate dehydrogenase (LDH)—a tetrameric enzyme composed
FIGURE 1

Diagram comparing metabolic processes in normal, tumor, and immune cells. It shows glucose transport via Glut1, glycolysis progression, and
lactate production. Normal cells lead to mitochondrial oxidative phosphorylation. Tumor cells show the Warburg effect and lactate production with
lactyl-CoA involvement. Immune cells exhibit similar glycolytic pathways with increased lactate and lactyl-CoA. The nucleus section highlights
histone modifications affecting gene expression through lysine lactylation. Pathway proteins affected include P53, G6PD, and Eef1a2.
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of LDHA or LDHB subunits. LDHA preferentially converts

pyruvate to lactate, whereas LDHB favors the reverse reaction.

Physiologically, lactate exists predominantly in its dissociated form

(37). In humans, L-lactate is the predominant isoform (serum

concentration: 1–2 mM), with D-lactate present at nanomolar

levels. Lactate critically sculpts the TME: Aerobically generated

lactate establishes localized acidic niches that perturb immune cell

infiltration, fostering immunosuppression and tumor proliferation

(38). Furthermore, monocarboxylate transporters (MCTs; e.g.,

MCT1, MCT4) mediate lactate transmembrane shuttling, with

MCT-facilitated lactate dynamics intimately associated with

tumor pathophysiology.
2.2 Lactate shuttle

Lactate, the terminal glycolytic metabolite, functions as a

versatile molecular shuttle—intracellularly, intercellularly, and

systemically—modulating cellular bioenergetics and redox

equilibrium while accumulating across tissues via circulatory

transport (39). MCTs and LDHs orchestrate lactate exchange

across plasma membranes, mitochondrial compartments, and the

extracellular matrix. Under aerobic conditions, cells import

extracellular lactate primarily through MCT1. This lactate pool

may undergo mitochondrial translocation via MCT1 for TCA cycle

oxidation or cytoplasmic reconversion to pyruvate by LDHB (40).

Concurrently, glycolytic pyruvate is reduced to lactate by LDHA

and extruded via MCT4, establishing an acidic extracellular niche

(41). Hypoxic, hydrogen peroxide, and lactate stimuli further

upregulate HIF-1 expression, which transactivates MCT4 to

amplify lactate efflux (42). This coordinated shuttle system

enables metabolic coupling between glycolysis and oxidative

p ho s p ho r y l a t i o n , o p t im i z i n g t umo r b i o e n e r g e t i c

resource allocation.

The aforementioned glycolytic reprogramming drives profound

lactate and proton accumulation. Paradoxically, while this should

acidify the cytosol (intracellular pH, pHi), neoplastic cells maintain

pHi within 7.1–7.7 (versus ~7.2 in normal cells) through adaptive

mechanisms: (i) upregulated SLC16A3 (encoding MCT4) extrudes

lactate/H+; (ii) CAIX (encoded by CA9) catalyzes CO2 hydration to

bicarbonate/H+, buffering glycolytic proton burden; and (iii)

hypoxia/acidosis-activated Na+/H+ exchanger 1 (NHE1) extrudes

protons (29, 43, 44). Consequently, tumor extracellular pH (pHe)

plummets to 6.7–7.1 (versus ~7.4 normally), creating an acidic

microenvironment that potentiates metastasis, invasion, and

immune evasion (45).

This lactate-forged acidic niche constitutes a “global protective

shield,” subverting antitumor immunity. Cytotoxic T cells (CTLs)

and NK cells—critical antitumor effectors—are functionally

impaired and undergo apoptosis under acidic pHe conditions,

crippling host defenses (45). Lactate shuttling within the TME

exhibits dual pathological significance. First, lactate serves as

glycolytic waste and oxidative substrate, fueling metabolic

coupling between hypoxic and oxygenated tumor subregions (46).
Frontiers in Immunology 04
Second, elevated lactate directly inhibits immune cell activation/

proliferation and drives Kla-mediated immunosuppression,

promoting CTLA-4 expression in T cells, M2-like macrophage

polarization, and dendritic cell dysfunction (47).

Therapeutically, Huang et al. engineered a pH-activatable

nanomedicine targeting MCT1 to reverse lactate-induced

immunosuppression. In their AZD-UPS nanoparticles, AZD3965

(MCT1 inhibitor) was encapsulated within ultra-pH-sensitive

(UPS) polymers, maintaining micellar integrity at pH 7.4 but

rapidly releasing payload in acidic TME. Combined with anti-

programmed cell PD-1 immunotherapy, AZD-UPS NPs achieved

superior tumor control and survival benefit at >200-fold lower

dosage than oral AZD3965 monotherapy, demonstrating that

MCT1 blockade can reshape the immunosuppressive TME to

potentiate checkpoint inhibition (48) (Figure 1).

Collectively, lactate shuttling mechanics represent an

oncological paradigm linking metabolic crosstalk to immune

evasion. Deciphering this biology is extremely important to

understand tumor immunosuppression and innovate next-

generation therapeutics.
2.3 Lactylation modification

Since its inaugural characterization, Kla has become a pivotal

PTM. Kla is formed through amide bond formation between the

carboxyl group of lactate (CH3CHOHCOOH) and the e-amino

group of lysine, yielding N-e-lactyllysine (Lys-lactate) (49).

Analogous to acetylation and succinylation, Kla dynamics are

governed by enzymatic “writers” (installers), “erasers” (removers),

and “readers” (recognition modules) that collectively modulate

protein function and stability (50). The lactyltransferase

repertoire has been expanded in recent discoveries to include

EP300/CBP, KAT7, KAT8, AARS1, and AARS2 (51). Conversely,

documented erasers, including HDAC1–3, HDAC8, and SIRT1–3,

exhibit broad substrate selectivity across multiple acyl-PTMs (e.g.,

acetylation, methylation), lacking Kla specificity (52, 53).

Kla targets histones (e.g., H3K18la) and non-histone proteins

(e.g., b-catenin, METTL16), regulating diverse biological processes

through alterations in protein stability, activity, and interactome

(54). Lactate, the common substrate for both pathways, exists as two

isomers, L-lactate and D-lactate, with L-lactate participating in

enzymatic Kla and D-lactate in non-enzymatic processes (38).

Using L-lactate as a substrate, solvent-exposed lysine residues

exhibit nucleophilic reactivity owing to their e-amino group’s

chemical flexibility. Pathway bifurcation occurs via L-lactate

conversion to lactyl-CoA, followed by p300/TIP60-mediated

transfer to lysine or generation of lactate-AMP by AARS1/2,

enabling direct lactyl group transfer (55). Driven by D-lactate

accumulation during pathological states (e.g., diabetes, dysbiosis),

chemical reactivity enables spontaneous modification, potentiated

by glyoxalase system dysregulation: methylglyoxal is converted by

glyoxalase 1 (GLO1) to lactoylglutathione (LGSH), which

undergoes non-enzymatic acyl transfer to lysine residues (55).
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Cellular lactate concentration directly modulates Kla levels

(glycolytic inhibition suppresses Kla, while mitochondrial

dysfunction or hypoxia enhances it) (56). Following installation,

specialized “reader” domains decode Kla signals to orchestrate

downstream events. Ultimately, HDAC/Sirtuin erasers hydrolyze the

lactyl-lysine bond to terminate signaling (57). Furthermore, the

glyoxalase pathway regulates non-enzymatic Kla: GLO2 hydrolyzes

LGSH to regenerate glutathione and produce D-lactate. Imbalanced

GLO1/GLO2 expression diverts the flux toward LGSH accumulation,

thereby accelerating non-enzymatic Kla (58) (Figure 1).
3 Lactylation and tumor
immunosuppression

Immune cells within the TME engage inmalignant cell surveillance

through recognition and elimination pathways. Tumorigenesis triggers

innate and adaptive immune activation; however, these malignancies

develop multifaceted evasion strategies, including genetic, epigenetic,

and metabolic reprogramming, to circumvent immune surveillance

(59). Concurrently, tumors recruit and polarize immunosuppressive

cell populations, actively sculpting an immune-permissive niche.

Critically, glycolytically derived lactate extruded into the extracellular

space functions as a metabolic intermediary and an

immunomodulatory signal. Through Kla-mediated epigenetic

rewiring, lactate actively suppresses antitumor immunity while

potentiating oncogenesis (60, 61).

Kla operates as a lactate-dependent PTM that alters chromatin

architecture and protein interactomes. Kla reprograms

transcriptional networks regulating immune evasion by modifying

histone tails (e.g., H3K18la) and non-histone targets (62). This

modification orchestrates TME immunosuppression through dual

mechanisms by suppressing effector immunity by impairing

cytosolic DNA sensing via cGAS activity attenuation and

amplifying TGF-b signaling cascades in cytotoxic lymphocytes,

while simultaneously enabling immune checkpoints by

upregulating PD-L1 expression on antigen-presenting cells and

stabilizing immunosuppressive Treg and TAM phenotypes (63).

Strikingly, elevated histone Kla correlates with advanced tumor

grade/stage and TME remodeling—manifested as increased

immunosuppressive infiltrates (Tregs, M2 macrophages) and

checkpoint molecule overexpression (PD-1, CTLA-4, LAG-3) (64,

65). These clinical observations underscore the central role of Kla in

coordinating tumor metabolic adaptation with immune

escape pathways.
3.1 Macrophages

Macrophages have exceptional phenotypic plasticity,

dynamically transitioning between pro-inflammatory (M1) and

reparative (M2) states in response to microenvironmental cues.

Modifying Kla serves as a metabolic-epigenetic switch that

orchestrates this polarization by modifying key signaling nodes,
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including cytokine networks and immune response regulators (66).

Notably, lactate accumulation reprograms macrophage bioenergetic

pathways and drives their functional repolarization from pro-

inflammatory to reparative phenotypes through shifts in

intracellular metabolite availability (67).

This Kla-mediated immunometabolic reprogramming

fundamentally alters macrophage behavior in the TME. Through

the modulation of the effector functions of TAMs, Kla promotes the

formation of an immunosuppressive niche and dampens antitumor

surveillance. Consequently, elucidating the molecular circuitry

linking Kla to macrophage immunobiology presents compelling

opportunities for developing targeted antitumor strategies.

Within the TME, Kla reprograms macrophage polarization to

drive oncogenesis. TAMs typically adopt an immunosuppressive M2

phenotype, with histone Kla levels directly correlating with this pro-

tumorigenic shift. Mechanistically, Kla modification orchestrates

TAM-dependent tumor progression through tissue-specific pathways:

in gastric cancer, H3K18la induces sustained VCAM1 expression to

activate AKT/mTOR/CXCL1 signaling and facilitate M2 macrophage

recruitment (68); in prostate cancer, Kla inhibition restores the

phagocytic capacity of macrophages to suppress tumor growth (69);

in colorectal cancer, tumor-derived lactate promotes macrophage

H3K18la to repress RARg transcription and elevate IL-6, which

activates STAT3/c-Myc signaling in cancer cells to reinforce M2-like

TAM polarization (70); and in glioma, lactate-driven Kla remodels the

immunosuppressive landscape by upregulating CD73 (tumor cells),

CD39/CCR8 (Treg cells), CD39 (macrophages), and CD73 (T cells),

establishing a purinergic cascade where CD39 hydrolyzes ATP to AMP

followed by CD73-mediated conversion to adenosine to create an

immunosuppressive niche (71). Concurrently, histone Kla in TAMs

elevates IL-10 production, a cytokine that induces T-cell anergy

through PD-1/LAG-3 upregulation (72). These findings position Kla

as a key regulator of TAM-driven immune evasion.

Studies have shown that Kla modification sites exist in TAMs, and

Kla levels correlate with macrophage transition to the M2 phenotype.

Combination therapy with PI3K and MEK inhibitors inhibited histone

Kla (H3K18la) in TAMs and controlled tumor growth in 80% of

PTEN/p53-deficient prostate cancer mice. In the remaining mice that

were non-responsive (20%), feedback activation of the Wnt/b-catenin
pathway in the cerebral cortex led to recovery of H3K18la and

inhibition of macrophage immune activity. Furthermore, adding a

Wnt pathway inhibitor increased the remission rate to 100% in mice

with prostate cancer (73). Therefore, targeting Kla modification may

exert a positive antitumor effect by influencing these cells. In aggressive

cancers (such as undifferentiated thyroid and pancreatic cancer),

VSIG4-positive TAMS (VSIG4+ TAMs) regulate SPP1 through Kla

modification, promoting neutrophil infiltration and impairing antigen-

specific immunity, forming an immunosuppressive TME. The VSIG4

gene deletion reduces lactate and H3K18la production, thereby

decreasing STAT3-mediated SPP1 transcription and disrupting

intercellular interactions between TAMs and neutrophils, improving

the immunosuppressive microenvironment (74).

TAMs are highly heterogenous in the TME, with different subsets

regulating tumor progression and treatment resistance through
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epigenetic, metabolic, and signaling pathways. TAM biomarkers, such

as CD68, CD163, and TREM2, among others, are associated with

clinical outcomes in various solid tumors, whereas CD68 is associated

with a good prognosis in colorectal cancer but typically reflects a poor

outcome in other cancers (75). TAMs support tumor growth,

metastasis, and drug resistance by secreting cytokines, promoting

angiogenesis, and mediating immunosuppression, contributing

substantially to, particularly virus-related cancers. Therapeutic

strategies targeting TAMs (such as inhibiting TREM2 or SPP1) are

potential interventions in clinical trials; nonetheless, the challenges of

target specificity and potential side effects (such as metabolic disorders)

need to be addressed (76) (Figure 2).
3.2 T cells

T cells are primarily divided into two subtypes: CD8+ and CD4+

T cells. CD4+ T cells are further classified into helper T lymphocytes
Frontiers in Immunology 06
(such as Th1, Th3, and TH17) and Tregs. CD8+ T cells, also known

as CTLs, recognize specific antigens on tumor cell surfaces and

directly kill tumor cells by releasing cytotoxic substances like

perforin and granzyme. Correspondingly, CD4+ T cells mainly

regulate the activity of other immune cells through cytokine

secretion (77). For example, Th1 cells produce IFN-g and IL-2,

which play a crucial role in activating macrophages and enhancing

T cell cytotoxicity (78). However, Treg cells inhibit immune

responses by secreting IL-10 and TGF-b and can directly interact

with effector T cells to suppress the activity of antitumor immune

cells, aiding tumor cells in evading immune surveillance and

attack (79).

Reportedly, lactate in the TME induces H3K18la modification,

which regulates immune cell functions by enhancing the

transcriptional activity of CD39, CD73, and CCR8 gene

promoters. Specifically, upregulation of the CCR8 signaling

pathway promotes the activation of Tregs, reinforcing

immunosuppression in the TME and disrupting the dynamic
FIGURE 2

Diagram illustrating the impact of lactate within the tumor microenvironment on various immune cells. It shows lactate uptake via MCT1 and GPR81,
leading to M2 polarization with related pathways and effects like cytokine production and cell differentiation. The lower section outlines immune cell
types like T cells, macrophages, and dendritic cells with corresponding proliferation, differentiation, and suppressive functions influenced by lactate.
Arrows indicate increases or decreases in activity or production.
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balance between Th17 and Treg cells (80). Additionally, significant

H3K18la enrichment is detected in Th3, Th1, and Treg cells,

indicating that histone Kla is a common PTM in activated T cells

(71). In another study, findings revealed that lactate in the TME

induces H3K18la, increasing the activity of CD39, CD73, and CCR8

gene promoters. Moreover, CCR8 pathway upregulation activates

Treg cells, enhancing immunosuppression and disrupting the

Th17/Treg balance (81).

Notably, Kla modification plays a key role in the tumor immune

microenvironment (TIME), reshaping immune cell functions, such

as inhibiting the activity of T cells and NKT cells and enhancing the

immunosuppressive function of Tregs. These effects are achieved by

activating specific genes (such as Arg1, PD-L1) and signaling

pathways (such as TGF-b), aiding tumor cells in evading immune

surveillance (4, 82, 83). Reportedly, high lactate levels suppress the

cytotoxicity and cytokine secretion of CD8+ T cells and promote the

immunosuppressive function of Tregs, helping tumors evade

immune surveillance. The acidic environment due to lactate

accumulation in the TME directly inhibits the activation and

proliferation of CD8+ T cells while supporting the survival and

function of Tregs through metabolic reprogramming (such as

enhanced oxidative phosphorylation), thus forming an

immunosuppressive microenvironment (84, 85). Lactate further

inhibits the antitumor activity of T cells by upregulating immune

checkpoint molecules like PD-L1, providing an important

metabolic basis for tumor immune escape through this multiple-

action mechanism (86).

PD-L1 is an immune checkpoint protein frequently

overexpressed in tumor cells across various solid malignancies,

including lung cancer, melanoma, and gastric carcinoma. It

mediates immune evasion by binding to the PD-1 receptor on T

cells, suppressing T cell activation and effector functions (87). The

PD-L1/PD-1 interaction inhibits critical T cell signaling pathways

(e.g., PI3K/AKT/mTOR), ultimately leading to exhaustion and

apoptosis of the T cells, creating an immunosuppressive “shield”

for tumors (88, 89). The expression mechanisms of PD-L1 in

tumors may involve signaling pathways within the TME, such as

IFN-g-induced PD-L1 expression, or activation of oncogenic

signaling pathways, including PI3K/AKT and MAPK, to promote

PD-L1 expression (90, 91). Additionally, epigenetic regulations such

as histone modifications may also influence PD-L1 expression levels

(82, 92). High PD-L1 expression is generally associated with poorer

prognosis, though this may vary by tumor type. For example, in

non-small cell lung cancer, high PD-L1 expression may reflect a

better response to immunotherapy, while in other tumors, it may

indicate stronger invasiveness (93).

Findings show that in acute myeloid leukemia, lactate, as a

substrate, promotes the nuclear translocation of E3 binding protein

(E3BP) through histone Kla modification (such as H3K18 and

H4K5, among others). E3BP binds to the lactylated histone

H4K5, enhancing the Kla level of the PD-L1 promoter region and

activating PD-L1 transcription (92). Kla modification activates the

promoter region of the PD-L1 gene, and this epigenetic regulation

provides a molecular basis for high PD-L1 expression, further

inhibiting the antitumor activity of CD8+ T cells (94, 95). Sun
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et al., in their study, identified the key role of Kla in the

immunosuppressive microenvironment and treatment resistance

of pancreatic ductal adenocarcinoma (PDAC), where high levels of

Kla in PDAC are associated with an immunosuppressive TME,

resulting in a reduction in CTLs (96). Huang et al. initially

discovered that overall Kla levels are significantly elevated in

colorectal cancer (CRC), especially in malignant tumors. Through

tissue microarrays and in vitro experiments, they validated its

correlation with tumor staging and poor prognosis, establishing

Kla as an independent prognostic factor for CRC. Meanwhile,

integrating single-cell transcriptome analysis (GSE132257) and

The Cancer Genome Atlas (TCGA) data, they screened 23 Kla-

related genes (LRGs) and constructed a prognostic risk model

(LRGS), validating its predictive ability (AUC 0.7–0.8) in TCGA

and Gene Expression Omnibus datasets. Patients in the high-risk

group had significantly lower survival rates. Findings from further

research showed that the TME of the high-risk group had reduced

CD8+ T cells and increased expression of immune checkpoint genes

(such as PD-1), increasing immune escape (97).

Reportedly, the glycolytic pathway is highly enriched in

immune-escape tumors. Lactate upregulates B7-H3 expression

through histone Kla modification (H3K18la), thereby inhibiting

the antitumor immune activity of CD8+ T cells. It also promotes B7-

H3 expression, reducing the infiltration ratio and cytotoxicity of

CD8+ T cells in the TME, facilitating tumor progression. Inhibition

of the glycolytic key enzyme LDHA or use of LDH inhibitors (such

as sodium oxalate) can enhance CD8+ T cell killing ability, reverse

tumor immune escape, and produce a synergistic effect with anti-

PD-1 therapy. In animal models, targeting lactate metabolism (such

as inhibiting LDHA or B7-H3) significantly suppresses tumor

growth and activates tumor-infiltrating CD8+ T cells, providing a

new strategy for combined immunotherapy (98) (Figure 2).
3.3 T-reg cells

Lactate accumulation induced by tumor cells suppresses effector T

cells (which lack lactate-utilizing capacity) while supporting Treg

function, enabling tumor cells to evade immune clearance. Watson

et al. discovered the metabolic adaptation mechanism of Tregs in the

TME, proposing that lactate is a key metabolic fuel for Tregs to

maintain function in low-glucose and high-lactate environments.

Tumor-infiltrating Treg cells (TIL-Tregs) exhibit reduced glucose

uptake but enhanced lactate metabolism, a metabolic profile

associated with stronger inhibitory function and stability (99). Tregs

take up lactate via MCT1 (encoded by Slc16a1), convert it to pyruvate

for entry into the TCA, and generate phosphoenolpyruvate (PEP) via

PEP carboxykinase (PEPCK), which feeds back to promote

gluconeogenesis and nucleotide synthesis to support Treg

proliferation. Slc16a1 (MCT1) knockout preserves peripheral Treg

function but significantly impairs intratumoral Treg inhibitory

function, restricting tumor growth (99). This finding reveals the

metabolic flexibility of Tregs in the TME, reducing glucose

dependence and enhancing lactate metabolism to maintain

immunosuppressive function. Additionally, MCT1 knockout
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synergizes with anti-PD-1 therapy to significantly prolong survival,

suggesting that inhibiting MCT1 or TME acidification may disrupt

Treg metabolic support and enhance the efficacy of immunotherapy.

For example, MCT1 knockout combined with anti-PD-1 therapy

significantly improves the remission rate in B16 melanoma. The

metabolic adaptability of Tregs also highlights the complexity of

tumor therapy, necessitating simultaneous intervention in metabolic

limitations of effector T cells (e.g., glucose competition) and alternative

metabolic pathways of Tregs (e.g., lactate utilization) (100).

Kla modification exerts dual regulatory effects on T cell-mediated

immune responses in the TME. Lactate, a glycolytic metabolite and a

regulator via Kla influences histone and non-histone functions to

maintain a balance between immunosuppression and immune

activation. High lactate levels suppress CD8+ T cell cytotoxicity and

cytokine secretion while promoting Treg immunosuppressive function,

aiding tumor immune evasion (60). In vitro experiments show that

high lactate environments enhance Treg stability, whereas lactate

degradation reduces their inductive effect (101). Specifically, high

lactate levels increase Kla of moesin (a membrane-cytoskeleton linker

protein) in these cells, with lactylated MOESIN enhancing TGF-b
pathway efficacy to promote stability and generation of these

immunosuppressive cells (83).

Additionally, intratumoral microbiota (e.g., Escherichia coli)

promotes colorectal cancer liver metastasis by increasing lactate

production. Lactate inhibits NF-kB signaling via Kla of RIG-I

protein, leading to M2 macrophage polarization, which further

suppresses Nlrp3 transcription, weakening CD8+ T cell antitumor

activity and enhancing regulatory Treg immunosuppression.

Moreover, lactate modulates immune cell phenotype and function

via Kla (e.g., histone H3K18 lactylation), promoting Treg proliferation/

suppression and inhibiting dendritic cell (DC) antigen presentation

(60). In these mechanisms, an immunosuppressive TME is collectively

constructed, where lactate further reinforces tumor immune escape by

activating GPR81 receptor and regulating metabolic enzymes (e.g.,

p300) (102) (Figure 2).
3.4 NKT cells

NKT cells originate from the T cell lineage and express partial T

cell markers; nevertheless, their unique TCR structure, antigen

recognit ion mode (CD1d-dependent) , and functional

characteristics classify them as an independent innate-like

lymphocyte subset (103). Despite not being traditional T cells,

their “bridge” role (connecting innate and adaptive immunity)

grants them a unique status in immune regulation, tumor

surveillance, and disease pathogenesis, complementing classical T

cells functionally (104). NKT cells are divided into two major

subsets: type I NKT cells (the majority, with conserved T cell

receptor (TCR) Va24-Ja18, recognizing CD1d-presented

glycolipid antigens like a-GalCer) and type II NKT cells (with

diverse TCRs, recognizing self-lipid antigens, such as Lyso-GM1)

(105). Activated type I NKT cells release perforin/granzyme to

induce tumor cell apoptosis, express FasL to initiate apoptosis via

binding to tumor cell Fas, and secrete cytokines (IFN-g, IL-4, tumor
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necrotic factor-a) to enhance NK/CD8+ T cell cytotoxicity (106).

They also induce DC maturation via IL-12/IL-18 secretion to

promote antigen presentation and T cell activation, stimulating

antitumor immunity (107). Type I NKT cells can suppress MDSC

and Treg immunosuppression via IFN-g secretion, while type II

NKT cells antagonize type I NKT cells (105).

Previous studies show that extracellular low pH alone impairs

NKT cell function, with the acidic microenvironment of the tumor

potentially interfering with NKT cell function through metabolic

c on t r o l . K l a mod ifi c a t i o n i n t h e TME p r omo t e s

immunosuppressive NKT cell generation. Under acidic TME

conditions, FOXP3+ cells act as potent immunosuppressants, and

prolonged lactate accumulation induces upregulation of H3K18

lactylation in NKT cells, leading to FOXP3+ NKT cell production

(108). Moreover, Kla remodels immune cell functions (e.g., by

activating genes like Arg1/PD-L1 and pathways like TGF-b),
inhibiting NKT cell activity to facilitate tumor immune evasion

(109) (Figure 2).
3.5 NK cells

Harnessing innate immunity to expand antitumor responses is

an attractive strategy. NK cells, specialized immune effector cells in

the innate immune system, considerably influence tumor immune

surveillance. Reduced NK cell activity correlates with increased

cancer susceptibility and metastasis risk (110). Unlike T/NKT cells,

NK cells lack clonotypic TCR and associated CD3 complex for

signal transduction. However, endowed with potent cytotoxicity,

NK cells exert strong responses by releasing cytolytic granules and

cytotoxic cytokines after forming immune synapses with targets

(111). In patients with cancer, these cells often exhibit dysfunctional

phenotypes characterized by altered gene expression profiles and

reduced cytotoxicity (112). Additionally, they are termed

“immunoregulatory cells” for their ability to produce cytokines/

chemokines that shape B/T cell responses and influence DC/

macrophage/neutrophil functions, reflecting the complex

biological network underlying their functions and supporting

their value in immunotherapy (113, 114).

Reports reveal that lactate suppresses NK cell activation by

inhibiting the expression of the activating receptor NKp46 (115).

When lactate concentration in the TME exceeds 20 mM, it may

induce NK cell apoptosis. Lactate also modulates immune escape by

activating GPR81 on cell membranes, affecting NK cell function

(116). These findings indicate that lactate directly or indirectly

weakens NK cell-mediated tumor immune surveillance.

Wu et al. constructed a Cox risk model for hepatocellular

carcinoma involving eight genes (e.g., ARHGEF37, NR6A1),

finding that patients with high-risk scores had lower survival

rates, with high-risk scores (correlated with Kla-related gene

expression) negatively associated with low NK cell scores,

suggesting Kla promotes tumor immune escape by inhibiting NK

cell activity. Kla-related genes (e.g., NR6A1, OSBP2, UNC119B) that

suppress NK cell function were further identified, with their

expression linked to impaired immunotherapy response. This
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indicates these genes may enhance tumor immune escape by

inhibiting NK cell function. Additionally, histone Kla induced by

lactate accumulation is valuable for breast cancer (BC) prognosis. A

Cox model based on Kla-specific genes (e.g., CCR7, IGFBP6)

enables the use of risk scores as independent biomarkers. The

significant correlation between Kla-specific genes and lactate

accumulation-related genes (e.g., P300, LDHA) reveals that Kla

promotes BC progression and immune escape by affecting NK cell

function and multiple signaling pathways (NOTCH, WNT, among

others) (117).

In another study, Kla modification was shown to affect NK cells in

the TME mainly by regulating immune cell infiltration, shaping “cold”

TMEs, and inhibiting immunoregulatory pathways. Pan-cancer

analysis through TIMER2.0 and ImmuCellAI databases revealed a

significant negative correlation between Kla score and NK cell

infiltration, particularly in adrenocortical carcinoma, uterine

carcinosarcoma, and endometrial carcinoma, among others. Kla

suppresses NK cell function by creating “cold TMEs,” with high Kla

scores correlating negatively with TME stromal/immune/estimation

scores and positively with tumor purity, indicating promotion of

“immune desert”-type TMEs where reduced NK cell infiltration

weakens tumor immune surveillance (118). Gene Set Variation

Analysis showed that Kla scores correlated negatively with

immunoregulatory pathways (IL-6/JAK/STAT3 signaling, IFN-g
response, IL-2/STAT5 signaling, among others), whose inhibition

may impair NK cell activation/proliferation/cytotoxicity. For

example, downregulated IFN-g response reduces NK cell recognition/

killing efficiency against tumor cells. Patients with high Kla scores show

poorer responses to immune checkpoint blockade (ICB) therapy with

higher disease progression rates, as ICB efficacy correlates closely with

TME immune cell infiltration. Reduced infiltration of NK cells and

other immune cells due to high Kla may underlie immunotherapy

resistance. Mutations/abnormal expression of Kla-related genes

(CREBBP, EP300, HDAC2, among others) may affect NK cell-related

gene transcription via epigenetic mechanisms. For instance, high

mutation rates in CREBBP/EP300 may regulate NK cell activating

receptor (e.g., NKG2D) expression (119, 120). As a substrate for Kla,

lactate accumulation indirectly influences NK cell recruitment/function

in the TME by driving histone/non-histone Kla (15). Future

intervention strategies targeting the lactate-Kla axis (e.g., inhibiting

lactate production or regulating Kla enzymes) may become novel

approaches to enhance NK cell antitumor activity and overcome

immunotherapy resistance (Figure 2).
3.6 Neutrophils

Neutrophils are a crucial component in the TME, exhibiting

significant phenotypic and functional heterogeneity to either exert

antitumor effects or promote tumor progression via multiple

mechanisms. This bidirectional regulation is closely associated with

their differentiation status and cytokine microenvironment in the TME

(121, 122).

Studies have uncovered the molecular mechanism by which

CD71+ neutrophils in the brain TME acquire immunosuppressive
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tumor-infiltrating neutrophils can be divided into functionally

heterogeneous subsets based on CD71 expression, with the

CD71+ subset displaying high glycolytic activity. Single-cell

sequencing and ATP consumption experiments reveal that CD71+

neutrophils specifically accumulate in tumor hypoxic/glycolytic

regions. Hypoxia enhances glycolytic flux by upregulating

GLUT1/LDHA, and intracellular lactate accumulation triggers

p300-induced histone H3K18 lactylation modification, directly

regulating arginase-1 (ARG1) expression to suppress CD8+/CD4+

T cell activity and promote tumor immune escape. This

modification specifically binds to the ARG1 gene promoter to

drive its expression, a process significantly inhibited by GNE-140

(LDHA inhibitor) or isosafrole (123).

Lactate also regulates other immune cells in the TME, such as

MDSCs and DCs. MDSCs, a heterogeneous population derived

from immature bone marrow, serve as precursors of mature

monocytes/DCs/granulocytes and are key cells promoting tumor

proliferation and immune suppression (124). Lactate induces

MDSC accumulation via granulocyte-macrophage colony-

stimulating factor and IL-6 (125). Additionally, MDSCs are

essential for TAM accumulation. When these cells migrate to

tumor sites, hypoxia and local acidification increase CD45

phosphatase activity, promoting their conversion to TAMs (126).

Lactate-induced HIF1-a also promotes MDSC differentiation into

TAMs by regulating inducible nitric oxide synthase and ARG1

expression, contributing to adaptive immune suppression (127). In

a s tudy on pancrea t i c cancer rad io therapy , MDSC

immunosuppressive phenotypes were enhanced by lactate via the

GPR81/mTOR/HIF-1a/STAT3 pathway (128) (Figure 2). Lactate

suppresses T cell-mediated immune responses by activating the

HIF-1a/NDUFA4L2 signaling pathway in DCs and controls

immune escape via paracrine activation of GPR81 on DCs (129)

(Figure 2). Therefore, targeting lactate metabolism may regulate

MDSC/DC-mediated immunosuppression.
4 Lactylation in tumor immunotherapy

With the continuous in-depth research into lactate and Kla

mechanisms in the TME, a growing interest exists in the impact of

Kla on tumors and therapeutic responses. Histone Kla is sensitive to

lactate levels: inhibiting glycolysis impairs lactate production,

subsequently reducing Kla, while increased lactate production

elevates Kla levels (130). Patients with breast cancer have undergone

histone Kla-related gene analyses, identifying Kla-related targets to

guide immunotherapy for related tumors (131). As in breast cancer,

oral cancer tissues also induced mesenchymal markers and cancer cell

migration after L - lactate treatment, but these changes were

significantly neutralized by the mitochondrial pyruvate carrier

inhibitor 7ACC2 (132). Oxalate, which inhibits lactate production,

downregulates CD39/CD73/CCR8 gene promoter activity by reducing

histone H3K18 lactylation. It also modifies the immunosuppressive

TME, promoting immune activation, suggesting that enhancing

chimeric antigen receptor cell function may represent a potential
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strategy for glioblastoma therapy (71). In a non-small cell lung cancer

study, Kla of apolipoprotein C-2 (APOC2) at K70 promotes Treg

enhancement and immunotherapy resistance by inducing elevated free

fatty acid levels (101). A specific antibody against the APOC2 K70

lactylation site has been developed, showing a positive correlation with

immunotherapy resistance in non-small cell lung cancer (101). These

findings reveal the feasibility of combination therapy via developing

site-specific antibodies against Kla. However, no therapies targeting

histone Kla site-specific antibodies have been studied, possibly because

of challenges in blocking histone Kla without affecting other normal

cell functions. The effects of various histone Kla inhibitors on other

cellular functions remain unclear.

Lactate is a key substrate involved in tumor immunosuppressive

microenvironment formation and a necessary condition for protein

Kla at high concentrations. Kla is sensitive to lactate levels: glycolysis

inhibition reduces lactate production and subsequently decreases

histone Kla, whereas increased lactate production raises Kla levels

(133). Lactate production- and transport-related enzymes, such as

MCTs and LDHA, have long been considered in antitumor

immunotherapy. MCT1, proven as a key regulator of lactate

exchange between tumor cells, serves as an HIF-1a inhibitor when

blocked (134). Given its critical role in regulating glycolysis, MCT1

inhibition is an established therapeutic modality with antimetabolic

activity. A preclinical study showed that combining the MCT1

inhibitor AZD3965 with anti-PD-1 therapy reduces lactate release

into the TME, enhancing tumor immune efficacy (48). Additionally,

combining anti-PD-1 with LDH inhibitors exhibits stronger antitumor

effects than using anti-PD-1 alone (135). Inhibiting MCT4 reverses

lactate-induced immunosuppression, and blocking MCT4 improves

the efficacy of in vivo immune checkpoint blockade (136). In another

study of hepatocellular carcinoma (HCC), inhibition ofMCT4 by using

VB124 enhanced CD8+ T-cell infiltration and cytotoxicity, thereby

inhibiting tumor growth. It is also noteworthy that the combination of

MCT4 inhibitors with anti-PD-1 immunotherapy significantly

improved the outcome of HCC patients (137). Furthermore, in vitro

intervention of lactate in Naïve CD4+ T cells can promote the

differentiation of CD4+ T cells into Treg by increasing mTOR

phosphorylation and HIF-1a synthesis, while the addition of lactate

uptake inhibitor AZD3965, LDHA inhibitor GSK2837808A, and

NADH conversion inhibitor Rotenone can reverse this differentiation

(138). Therefore, inhibiting endogenous lactate production and

transport-related enzymes (e.g., MCTs, LDHA) can be applied to

tumor therapy (Figure 3).

Intriguingly, Zong et al. proposed a method to introduce Kla at

specific protein sites via genetic code expansion (GCE) technology.

Compared with those of traditional PTM research methods (enzymatic

regulation, chemical synthesis, or site-directed mutagenesis), GCE

technology avoids imprecision caused by the broad substrate

specificity of enzymes and the inability of mutations to fully replicate

natural modification functions. GCE enables efficient suppression of

amber codons in bacteria and mammalian cells with the use of

orthogonal aminoacyl-tRNA synthetase-tRNA pairs, achieving site-

specific introduction of Kla into target proteins. This approach avoids
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minimal disruption to natural cellular mechanisms, making

experiments reliable and physiologically relevant. Furthermore, Zong

et al. successfully introduced lactylation groups into two lysine residues

of the p53 DNA-binding domain, systematically investigating their

functional effects on p53 activity in vitro and in vivo. They

demonstrated the versatility of GCE technology in exploring PTMs,

particularly the diverse Kla effects, and provided a powerful tool for

revealing new regulatory mechanisms and interactions. Additionally,

GCE technology combined with ultrasensitive proteomics could further

illuminate Kla regulation in the tumor immune suppression system and

advance synthetic biology and precision medicine (139) (Figure 3).

In summary, histones and non-histones of tumor-related

immune cells harbor abundant Kla sites. Exploring the

mechanisms and regulatory sites of Kla can help to gradually

identify safer and more effective therapeutic targets for antitumor

immunotherapy, uncovering new directions for combination

immunotherapy strategies. Moreover, reducing tumor lactate

levels inhibits Kla and disrupts the lactate metabolic balance in

the TME, representing a promising cancer treatment option that

has already been implemented in several preclinical and clinical

trials. Therefore, it is also necessary to establish synergistic effects

between lactate inhibitors and other adjuvant therapies.

In conclusion, lactate plays a key role in the tumor

immunosuppressive microenvironment and the mechanisms by

which high lactate levels affect immune cells through Kla warrant

further investigation. The focus of most emerging therapeutic

strategies currently is on developing glycolysis and lactate

inhibitors, with few interventions directly targeting Kla pathways,

leaving significant room for exploration. Balanced regulation of the

dual effects of lactate and Kla may provide new insights for

overcoming tumor-induced immunosuppression and potentially

enhance the efficacy of cancer immunotherapies (Figure 3).
5 Conclusion and perspectives

Although an expanding corpus of research indicates that

lactylation modulates transcriptional programs within TME immune

cells to facilitate oncogenesis, significant challenges persist. First, while

preliminary investigations have probed the interplay among immune

cell Kla, lactate-driven metabolism, competing post-translational

modificat ions (e .g . , acety lat ion, ubiquit inat ion) , and

immunosuppressive microenvironment dynamics, the mechanistic

underpinnings remain inadequately elucidated. Second, precise

mapping of Kla sites constitutes a critical bottleneck in deciphering

its molecular pathophysiology. Current literature predominantly

explores how tumor cell Kla governs biological functions within the

TME, whereas site-directed mutagenesis approaches to validate specific

Kla residues remain conspicuously underreported. Moreover,

conventional analytical methodologies like tandem mass

spectrometry, despite their precision, suffer from operational

complexity and protracted analytical timelines.
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Concurrently, technological revolutions are reshaping the

investigative landscape. Large-scale sequencing, machine learning,

and multi-omics integration have profoundly advanced our

understanding of immune cell heterogeneity, metabolic

reprogramming, and Kla site identification within the TME. These

advances similarly accelerate targeted therapeutic development.

Isotopic tracing coupled with super-resolution imaging now permits

real-time tracking of Kla spatiotemporal dynamics in living systems,

revealing its metabolic regulation and subcellular distribution.

Complementarily, chromatin immunoprecipitation sequencing

enables genome-wide mapping of Kla-enriched domains. The

synergistic application of these orthogonal methodologies affords

unprecedented insights into Kla’s physiological and pathological roles

across cellular contexts.

Computational biology has further catalyzed progress:

predictive algorithms (e.g., FSL-Kla, Auto-Kla) now expedite

high-fidelity Kla target identification. Integrative multi-omics

analytics and artificial intelligence-guided machine learning are

positioned to unlock transformative discoveries in Kla research.
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Seminal studies demonstrate that targeting histone Kla in immune

cells can restore effector functions and remodel immunosuppressive

niches, establishing this axis as a therapeutically compelling

frontier. Notably, structure-based drug design targeting novel

lactylation sites—particularly when integrated with established

immunotherapies such as checkpoint inhibitors (anti-PD-1/anti-

CTLA-4 antibodies) and CAR-T—constitutes a rationally

prioritized therapeutic strategy to augment antitumor responses,

representing a critical frontier warranting systematic interrogation.
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