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Mireia López-Siles

mireia.lopezs@udg.edu

Mohd Arish

dr.mohdarish@gmail.com;

kgm7mz@virginia.edu

†These authors share last authorship

RECEIVED 21 August 2025

ACCEPTED 29 August 2025

PUBLISHED 05 September 2025

CITATION
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Editorial on the Research Topic

Mucosal immunity after vaccination
The mucosal immune system is the largest immunological interface with the

environment in our body. On the one hand, it contributes to the preservation of

commensal microbiota by several mechanisms such production of secretory

immunoglobulins, maintenance of the mucus layer, mucosal cell signaling -via

production of cytokines, and chemokines-, or tolerance via regulatory T-cells, among

others. On the other hand, the mucosal immune serves as both a barrier and an active

immunological network that protects against pathogen invasion at entry sites. This

Research Topic “Mucosal Immunity after Vaccination” in Frontiers in Immunology

brings together six studies spanning human health, veterinary medicine, and

experimental vaccine platforms. Collectively, it illustrates how diverse strategies from

metabolic optimization to innovative delivery systems can converge on the goal of robust

mucosal immunity after vaccination.
Glycemic control and mucosal immune responses
after vaccination in diabetes

Mojaddidi et al. review the effects of glycemic control on systemic and mucosal

immunity in diabetic patients, demonstrating how chronic hyperglycemia compromises

epithelial barrier integrity, reduces secretory IgA production, and impairs tissue-resident

memory T cell activity. Their findings resonate with Yan et al., who highlight the

importance of intact barrier function for effective mucosal responses in pigs, and

Bhimani et al., who show that even with a novel delivery vehicle such as extracellular

vesicles, host immune competence remains critical in mice. Similarly, in COVID-19, type 2

diabetes patients with poor glycemic control show weaker immune responses and more

breakthrough infections after receiving vaccination with mRNA-BNT162b2. In contrast,

those with HbA1c < 7% mount stronger neutralizing antibody and CD4+ T-cell/cytokine

responses than poorly controlled patients (HbA1c ≥ 7%) (1).
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Vector-based mucosal vaccination in
veterinary medicine

Yan et al. developed four recombinant swine acute diarrhea

syndrome coronavirus (SADS-CoV) vectors expressing porcine

epidemic diarrhea virus (PEDV) antigens fused with immune

cell–targeting peptides. The constructs remained genetically stable

for over 20 passages, and the recombinant viruses were capable of

proliferating similarly to the wild-type virus in cell culture and

maintained their structural characteristics. When administered to

pregnant sows, it elicited strong mucosal and systemic responses

that protected neonatal piglets from PEDV challenge. This

maternal-neonatal protection model echoes other evidence that

mucosal immunization in dams can transfer effective lactogenic

immunity to offspring (2, 3). Importantly, the immune-cell

targeting strategy parallels the dendritic cell-targeted minicell

approach by Yang et al. using mice models, and demonstrates the

broader principle that rational vector design, whether viral,

bacterial, or vesicular, can significantly enhance antigen uptake

and mucosal immunity.
Extracellular vesicles as an oral
vaccine platform

Nontyphoidal Salmonella (NTS) remains a leading cause of

foodborne illness globally, responsible for significant morbidity and

mortality, particularly in young children and immunocompromised

individuals (4, 5). Despite the availability of licensed vaccines

against Salmonella typhi, no approved vaccines exist for NTS,

which is concerning given the pathogen’s increasing multidrug

resistance (6). Innovative strategies are therefore urgently needed,

and mucosal vaccination has gained attention because of its ability

to induce both local and systemic immunity at the intestinal barrier;

the primary site of pathogen invasion (7). Extracellular vesicle (EV)

based vaccines have recently emerged as a promising approach, as

EVs naturally package microbial antigens in immunogenic forms

(8). Previous work demonstrated that intranasal delivery of EVs

derived from Salmonella-infected macrophages conferred

protection against lethal challenge in mice (9). The current

findings by Bhimani et al. demonstrate that orally delivered small

extracellular vesicles (sEVs) from Salmonella-infected macrophages

protect mice from lethal Salmonella typhimurium challenge, reduce

tissue bacterial burden, and stimulate antigen-specific IgG.
Therapeutic mucosal vaccination
against HSV-2

Quadiri et al. present compelling preclinical evidence using

guinea pigs that adenovirus-based vaccines expressing human

herpes simplex virus type 2 (HSV-2) ribonucleotide reductase 2

and glycoprotein D elicit robust tissue-resident CD4+ and CD8+ T

cells in dorsal root ganglia and vaginal mucosa, leading to marked
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reductions in viral shedding and recurrent genital lesions. These

findings are significant because recurrent genital herpes remains a

major global health challenge with no licensed vaccine despite

decades of effort (10). Previous vaccine strategies, including

subunit glycoprotein D formulations, have failed to protect in

clinical trials (11), highlighting the importance of local tissue-

resident immunity. By leveraging adenovirus vectors to drive

durable mucosal T-cell responses, this study offers a promising

path toward therapeutic vaccines for genital herpes.
Gut microbiota and vaccine efficacy
against respiratory pathogens

In their timely review, Xue et al. synthesize growing evidence

that the gut microbiota critically modulates vaccine responses to

respiratory pathogens, including influenza and SARS-CoV-2. The

gut-lung axis allows commensals to influence systemic immunity,

shaping antibody titers, T-cell responses, and vaccine durability

(12). Clinical studies have linked microbiota composition with

differential antibody responses to influenza and COVID-19

vaccines (13, 14), while preclinical work shows that microbiota

disruption impairs protective immunity (15). This perspective

underscores the potential of microbiota-targeted interventions to

enhance next-generation respiratory vaccines.
Salmonella minicell-based vaccine
against Helicobacter pylori

Yang et al. developed two innovative vaccine candidates based

on engineered Salmonella minicells against H. pylori. These

minicells consist of small non-dividing nanoparticles (100~500

nm) that arise from bacteria due to premature septation during

cell division. As they can be engineered to package recombinant

proteins or plasmid DNA, they are highly versatile for drug and

protein delivery. Specifically, a multi-epitope vaccine was

developed, including both B- and T-cell epitopes that elicited

strong systemic and mucosal immunity against H. pylori,

reducing bacterial colonization and gastric pathology in vivo

when tested in mice. Specifically, the candidate coated with

dendritic cell-targeting RNA aptamer to enhance antigen delivery

and immune activation demonstrated superior immunogenicity,

characterized by greater reductions in gastric bacterial loads,

enhanced T-cell cytokine production, and increased mucosal IgA

levels. This is important because H. pylori remains a major risk

factor for gastric cancer, yet current antibiotic therapies are

undermined by rising resistance (16). Multi-epitope vaccine

strategies have shown promise in eliciting protective Th1/Th17

responses against H. pylori (17), while bacterial minicells represent

a versatile platform for safe antigen delivery (18). By combining

targeted delivery with epitope-based design, this study advances the

development of next-generation vaccines for gastric pathogens.

Together, these studies underscore how innovative approaches

across human, animal, and microbial systems are redefining the
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frontiers of mucosal vaccinology, paving the way for more effective

and durable protection against diverse pathogens. However,

differences regarding mucosal immunity exist among species and

should be considered prior to translate these findings into

clinical practice.
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