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Role of the Wnt/b-catenin
signaling pathway in the
development of HCC
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Abnormalities in the Wnt/b-catenin pathway promote the development of

hepatocellular carcinoma (HCC). Mutations in CTNNB1, which encodes b-
catenin, are frequently found in clinical HCC samples, as are loss-of-function

mutations in signaling pathway regulators such as axis inhibition protein 1 (Axin1)

and adenomatous polyposis coli (APC). The activation of the Wnt/b-catenin
pathway synergizes with other oncogenic signal molecules such as c-Met or

glypican-3, contributing to HCC development. Furthermore, Wnt/b-catenin
pathway activation in the tumour microenvironment (TME) leads to cold

tumour and resistance to immunotherapy. In this review, we discuss two

models of Wnt/b-catenin signaling activation, role of Wnt/b-catenin signaling

pathway in the development of HCC, the association between Wnt/b-catenin
pathway and tumour angiogenesis, metastasis, and immune escape in the TME,

and the targeting of this signaling pathway for HCC treatment.
KEYWORDS

Wnt/b-catenin pathway, hepatocellular carcinoma, tumourmicroenvironment, immune
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Highlights
• Abnormalities in the Wnt/b-catenin pathway promote the development of

hepatocellular carcinoma (HCC), especially through immune exclusion and

resistance to immunotherapy.

• A second oncogenic signal, such as c-Met or glypican-3, is required for the Wnt/b-
catenin pathway to contribute to HCC development; targeting these oncogenic

signal molecules in combination with inhibition of the Wnt/b-catenin signaling

promotes tumor regression.

• Therapeutic strategies targeting the Wnt/b-catenin pathway include the use of

monoclonal antibodies or small molecule inhibitors to target Wnt ligands and the

receptors, the targeting of the CTNNB1 gene or related genes, and inhibition of the

interaction between b-catenin and TCF or other nuclear transcriptional regulators.
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1 Introduction

The Wnt/b-catenin signaling pathway, also known as the

canonical Wnt signaling pathway, regulates various cellular

functions, including cell proliferation and differentiation, which

are essential for organ formation, development, and tissue

homeostasis. However, dyregulation of this pathway is involved in

the initiation and progression of various cancers, including some

solid tumours and hematological malignancies. Recent findings

suggest that the Wnt/b-catenin pathway significantly influences

cancer-related immune regulation, contributing to immune

exclusion, especially as immunotherapy becomes prominent and

expands. Wnt inhibitors may have broader applications in cancer

immunotherapy (1–3).

In the liver, Wnt/b-catenin signaling pathway plays an essential

role in maintaining liver homeostasis, metabolic zonation, and

regeneration. However, aberrant activation of this pathway drives

hepatocellular carcinoma (HCC) development, indicating its

unique regulatory mechanism in HCC progression (4–7). HCC

arises from hepatocytes through progressive genomic and

epigenomic alterations, with frequent mutations in key

components of the Wnt/b-catenin pathway—including CTNNB1

(encoding b-catenin), Axin1/2, and APC (4–8). In this review, we

discuss how dysregulation of this pathway contributes to HCC

pathogenesis and explore potential targeted therapies.
2 The molecular regulatory
mechanisms of the Wnt/b-catenin
pathway

The Wnt/b-catenin signaling pathway is generally not activated

in normal hepatocytes, except during cell regeneration (9–11).

However, it can be reactivated under specific pathological

conditions, such as cancer. b-Catenin is a crucial molecule in this

pathway and acts as a transcriptional coactivator (it is not a classical

transcription factor alone, as it lacks DNA-binding domains).

Because b-catenin lacks the intrinsic ability to bind DNA, It

needs to bind to DNA binding protein of the T-cell factor (TCF)/

lymphoid enhancer binding factor (LEF) family and recruiting

transcriptional machinery to activate gene expression

programs (10).

In normal liver tissues, b-catenin forms adherens junctions

between cells on the plasma membrane by linking E-cadherin and

the cytoskeleton-associated actin (11). When b-caten in

accumulates in the cytoplasm and enters the nucleus, it will

activate the Wnt/b-catenin signalling. However, in the absence of

extracellular Wnt ligands, the pathway remains inactive. In this

condition, b-Catenin is regulated in the cytoplasm by the GSK3b–
CK1a–APC–Axin1 complex. This complex, also known as the

“destruction complex”, consists of glycogen synthase kinase 3b
(GSK3b), casein kinase 1a (CK1a), APC, and Axin1. In normal

hepatocytes, the Wnt/b-catenin signaling pathway is OFF due to

low or absent Wnt levels caused by feedback inhibition. This occurs
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because b-catenin is phosphorylated and tagged with ubiquitin by

the “destruction complex” and subsequently degraded by

proteasomes, which keeps b-catenin levels low in the cytoplasm

and prevents its entry into the nucleus to promote target gene

expression (4–7, 10, 11).

Exon 3 of CTNNB1 encodes the N-terminal region of the b-
catenin protein (amino acid residues 5–80). This critical region

contains phosphorylation and ubiquitination sites that regulate the

stability of b-catenin protein. In cancer, hotspot mutations

frequently occur at residues D32, S33, G34, S37, T41 and S45

within exon 3. These sites play critical roles in the regulated

degradation of b-catenin: (1) S45 serves as the priming

phosphorylation site for CK1a; (2) S33, S37 and T41 are

subsequent phosphorylation sites targeted by GSK-3b; (3) D32

and G34 are necessary for binding to bTrCP (a component of

ubiquitin E3 ligase) (12, 13).

In the absence of Wnt signaling, CK1a initiates the degradation

cascade by phosphorylating S45. This primes b-catenin for

sequential phosphorylation by GSK-3b at S33, S37 and T41. The

phosphorylated b-catenin is then recognized and bound by b-TrCP,
leading to its polyubiquitination and subsequent proteasomal

degradation, thereby maintaining low activity of the Wnt

signaling pathway (12, 13).

Hotspot mutations in exon 3 disrupt this precisely ordered

phosphorylation and ubiquitination process. Consequently, b-
catenin escapes degradation, accumulates in the cytoplasm, and

translocates to the nucleus, where it drives transcriptional activation

of Wnt target genes, ultimately promoting tumorigenesis (12, 13).

In the canonical Wnt signaling pathway activation, Wnt ligands

initiate the cascade by binding to Frizzled (FZD) receptors and co-

receptors lipoprotein-related protein 5 or 6 (LRP5/6), which

promote LRP6 phosphorylation and subsequently recruit Axin

and activate Dishevelled (DVL) (11, 14).This process prevents the

activation of the “destruction complex”, and upregulates of b-
catenin in the cytoplasm. Consequently, b-catenin translocates

into the nucleus and combines with TCF/ LEF, promoting the

transcription of target genes (Figure 1A) (4–7, 10, 11, 14, 18).

There is another model of Wnt/b-catenin signaling activation.

The multivesicular bodies (MVBs) model suggests that after Wnt

binds to its receptor and recruits the b-catenin complex, Wnt and

its associated receptors are endocytosed to form MVBs. During this

process, endocytosis of the Wnt receptor encapsulates the DVL–

GSK3b–CK1a–APC–Axin1 complex along with b-catenin, which
physically separates b-catenin from its cytoplasmic substrates,

preventing b-catenin phosphorylation and facilitating its

translocation into the nucleus (Figure 1B) (15–17). The MVBs

model of b-catenin activation has long been discussed and has been

demonstrated in some cell lines.Tejeda-Muñoz N et al. found that

macropinocytosis could be induced by Wnt-stimulating agents,

such as the overexpression of DVL and FZD8 (19). In addition,

they reported that the addition of Wnt3a to several cell lines

stimulated the formation of large MVBs, which sequestered

cytosolic GSK3 (20).The findings suggest that the two models of

Wnt/b-catenin signaling activation may imply different

physiological statuses: acute versus chronic status (16).
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Another view suggests that b-catenin associates with E-

cadherin to establish cell–cell adhesion. Epidermal growth factor

receptor (EGFR), Met, and other molecules phosphorylate b-
catenin, leading to its dissociation from cell–cell adhesion. This

dissociation promotes the translocation of b-catenin into the

nucleus, thereby increasing its transcriptional activity (4, 9, 11).

The association of b-catenin with E-cadherin at cell–cell

adhesion may also play a role in the Wnt/b-catenin signaling

pathway, which requires further investigation. Currently,

considerable research has been performed on the role of nuclear

b-catenin in promoting transcription; however, studies on

membrane-associated b-catenin remain relatively scarce. Some

studies have indicated that disrupting b-catenin cell–cell adhesion

increases the motility and migratory ability of tumour cells (24).

Additionally, it is important to explore whether other b-catenin-
associated adhesion molecules, such as E-cadherin and g-catenin,
also modulate b-catenin activity within the Wnt signaling pathway

in HCC (21–24).

In a normal liver, b-catenin functions as a connector between

the intracytoplasmic tail of E-cadherin, g-catenin, and the actin

cytoskeleton to regulate cell adhesion. In HCC, epidermal growth
Frontiers in Immunology 03
factor receptor (EGFR), Met, and other factors induce tyrosine

phosphorylation of b-catenin, leading to its dissociation from cell–

cell adhesion and and activation, which further promotes its entry

into the nucleus to interact with TCF/LEF and influence gene

transcription (Figure 2) (4, 9, 11, 23-24).
3 Wnt/b-catenin pathway in HCC
development

The Wnt/b-catenin pathway is an evolutionarily conserved

signaling pathway that control fundamental physiological and

pathological processes. However, abnormal activation of the Wnt/

b-catenin signaling pathway promotes HCC (4–7, 11). The

activated Wnt/b-catenin signaling pathway synergizes with

various signals to promote the proliferation of cancer stem cells

(CSCs), drive HCC formation and facilitate tumour progression

(25, 26). Therefore, a deeper understanding of the pathogenic

factors causing abnormal Wnt/b-catenin signaling pathway

activation in HCC will aid in the development of suitable drugs

targeting this pathway for clinical treatment.
FIGURE 1

Wnt/b-catenin signaling pathway activation. (A) Model of LRP6 phosphorylation and DVL disruption of the b-catenin “destruction complex”. Wnt/b-
catenin signaling is activated when Wnt binds to the Frizzled (FZD) and lipoprotein-related protein 5 or 6 (LRP5/6) coreceptors. Subsequent
phosphorylation of LRP6 leads to the recruitment of Axin1 and Dishevelled (DVL). This process disrupts the b-catenin destruction complex, which is
composed of GSK3b, CK1a, APC, and Axin1. As a result, b-catenin is stabilized in the cytoplasm and translocates to the nucleus, where it promotes
the transcription of target genes (4–6, 10, 11). (B) Model of b-catenin inclusion in multivesicular bodies (MVBs) and escape from proteasomal
degradation. A different model of Wnt/b-catenin signaling pathway activation has been proposed, in which the formation of MVBs following the
endocytosis of the Wnt receptor encapsulates b-catenin along with the Dvl–GSK3b–CK1a–APC–Axin1 complex in MVBs. This process physically
separates b-catenin from its cytoplasmic substrates, thereby preventing its degradation and facilitating its translocation into the nucleus (15–17)
(created with Biorender.com).
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3.1 Morphological pathological
characteristics of HCC with b-catenin
mutation

The classic morphology of b-catenin-mutated HCC is

characterized by well-differentiated tumours that feature tumour

cells with abundant eosinophilic cytoplasm, thin trabeculae (≤ 2 cell

layers), pseudoglands, and bile production. However, only 58% of

cases with CTNNB1 mutations alone fully conformed to this

morphology, indicating significant heterogeneity. Clinical studies

have identified classic CTNNB1-mutated tumours as “immune

cold,” which exhibit no response to checkpoint inhibitor

therapies.Torbenson M et al. reported at least five distinct

CTNNB1-specific missense mutations: S33P (4/5), D32V (3/5),

T41A (2/5), D32G (2/7) and N387 (1/5); these mutations are

associated with the classic morphology of b-catenin-mutated

HCC (27).

Rebouissou S et al. reported that specific mutations may be

related to increased levels of b-catenin activation and the malignant

transformation of hepatocellular adenoma (HA) to HCC: (1)

Mutations at the b-TRCP binding site (D32-S37) and deletions in
Frontiers in Immunology 04
exon 3 were linked to high activity and an elevated risk of malignant

transformation. (2) T41 mutation is relative to moderate activation

of b-catenin. (3) The S45 mutation is a rather special case. (4) K335

and N387 mutations resulted in weak activation and are likely

associated with a low risk of malignant transformation to HCC (28).

Mutations within exon 3, particularly deletions and point

mutations on residues D32-S37, disrupt the b-catenin
“destruction complex” and impair the binding site for b-TrCP,
thereby suppressing b-catenin ubiquitination and degradation. This

disruption leads to the accumulation of b-catenin and strong b-
catenin activity (28).

In the b-catenin “destruction complex” model, residues S33, S37

and T41 serve as phosphorylation sites for GSK-3b (12, 13), which

play a critical role in b-catenin phosphorylation and degradation.

Point mutations at T41 typically result in moderate activity of b-
catenin, a level observed in both benign and malignant tumors.

Moderate-to-high levels of b-catenin are necessary for malignant

progression. The moderate activity of T41 point mutations provides

the “just right” signaling model in both tumor types (28).

S45 (phosphorylation sites for CK1a) mutations are complex

(12, 13), exhibiting weak activation of b-catenin in HA. However,
FIGURE 2

Tyrosine phosphorylation-induced dissociation of b-catenin from cell–cell adhesion (created with Biorender.com).
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most S45 mutant alleles in HCC are duplicated and cooperate with a

second oncogenic signal, resulting in a high activation of b-catenin.
The roles of residues K335 and N387 in regulating weak b-catenin
activity are not yet fully understood and need further

investigation (28).

CTNNB1 mutation in hepatocellular tumors activates Wnt/b-
catenin and overexpresses classical b-catenin target genes such as

GLUL (coding for glutamine synthase, GS). Immunohistochemistry

(IHC) staining of GS was related to with b-catenin activity in

hepatocellular tumors. Strong and diffuse GS staining was

associated with increased b-catenin mutation activity and tumour

malignancy, which was observed in overt HCC as well as in lesions

with borderline features between HA and HCC. In contrast, weak b-
catenin mutations, such as K335 and N387 mutations, were

demonstrated by faint GS staining and were more frequently

found in benign HA at low risk of malignant transformation (28).

In HA, b-catenin mutations may upregulate the GS gene

expression, further promoting b-catenin activity. This can lead to

the malignant transformation of the HA subtype to HCC, as

indicated by abnormal nuclear staining of b-catenin and strong

immunohistochemical staining of GS. However, GS overexpression

should not be considered the defining characteristic of increased b-
catenin activity, and many cases that do not exhibit atypical

morphologic or clinical signs of HCC may show strong GS

staining (29).In contrast, the combined use of other tissue

markers such as GPC3, HSP70, glypican-3, and CD10 can further

increase specificity and sensitivity (30).

Currently, several tissue markers related to increase b-catenin
activity are available for studying HCC. For example, CD10, a

membrane zinc-dependent metalloproteinase, is overexpressed in

relation to the aggressiveness of human cancers, particularly in

HCC (30). Kim HS reported that stromal CD10 expression

correlated with cytoplasmic b-catenin accumulation. They

speculated that CD10, which is secreted by stromal cells, may

induce other proteases or matrix metalloproteinases (MMPs),

cleaving E-cadherin at the cancer cell membrane, sequestering E-

cadherin from the membrane with b-catenin, and leading to

cytoplasmic b-catenin accumulation. However, this study focused

on breast carcinoma, and the mechanisms underlying the

dysregulation of CD10 and b-catenin in HCC need further

investigation (31).
3.2 The molecular mechanisms by which
the Wnt/b-catenin pathway regulates HCC

Most HCC cases have mutations in genes that regulate the Wnt/b-
catenin pathway. Research has shown that CTNNB1 mutations occur

in 25% of HCC cases in mouse models, whereas in HCC patients, the

CTNNB1 mutation rate is approximately 11%~40% (4, 32, 33). Most

CTNNB1 gene showed missense point mutation in exon 3, and the

frequency of the point mutation was significantly higher in non-viral

HCCs (29.4%) rather than HBV-related cases (12.7%) (34).

Torbenson M et al. analyzed data from The Cancer Genome

Atlas (TCGA) and reported that among 338 cases (7 with
Frontiers in Immunology 05
fibrolamellar carcinomas and 331 with conventional HCC), 128

cases had mutations in the CTNNB1, APC, and Axin genes (38%).

Among these, 88 cases had CTNNB1 mutations alone (26%), 4

cases had both CTNNB1 and APC mutations, 2 cases had CTNNB1

and Axin mutations, 26 cases had Axin mutations alone (8%), 7

cases had APC mutations alone (2%), and 1 case had both Axin and

APC mutations (27).

The CTNNB1 mutation rate was significantly more frequent in

males than in females (35% vs. 13%). In contrast, the mutation rates

showed no significant gender difference in Axin (8% vs. 10%) and

APC (4% vs. 2%) mutations (27).

Other Studies also have shown that APC mutations occur in 3%

of HCC patients (35–39). Furthermore, loss-of-function (LOF)

mutations in Axin1 have been identified in approximately 3–16%

of HCC patients, whereas Axin2 mutations are present in

approximately 3% of HCC patients (40–43). Additionally, loss of

function of GSK3b has been reported in HCC (44). APC, Axin and

GSK3b are primary components of the b-catenin “destruction

complex”. These mutations lead to missense and nonsense

mutations, resulting in “destruction complex” dysfunction and b-
catenin accumulation in the cytoplasm (4).

In HCC, overexpression of the Wnt/b-catenin pathway

components FZD7 and Wnt3 has been observed, leading to

activation of this pathway (45). Additionally, methylation of the

secreted frizzled-related protein genes sFRP1 and sFRP5 (46–48),

TGF-b-dependent b-catenin activation, and activation of b-catenin
by receptor tyrosine kinases have also been observed in HCC

patients (49–51).

Although the Wnt/b-catenin pathway is activated in HCC, its

activation alone is insufficient for liver tumour formation, likely due

to the disease’s heterogeneity. Instead, a second oncogenic signal is

required for the development of HCC (Table 1) (52–70). Mouse

models that overexpress wild-type or stable mutant b-catenin do

not develop HCC. However, b-catenin functions simultaneously

with other signaling pathways to promote HCC formation and

development (18). For example, neither activated b-catenin nor

overexpression of c-Met alone promotes HCC formation; however,

the combination of activated b-catenin co-expressed with c-Met via

hydrodynamic transfection enhances HCC occurrence and

progression in mice (52, 53). In HCC patients, concurrent

activation of c-Met and b-catenin gene mutations was observed

in 9%–12.5% of samples; additionally, co-activation of c-Met and

Axin1 loss-of-function mutations was found in approximately 3%–

5% of samples. The deletion of the Axin1 gene (sgAxin1) using

CRISPR/Cas9 in mice—which stabilizes b-catenin—does not lead

to HCC formation on its own; however, it cooperates with c-Met

overexpression to promote HCC development. In contrast, co-

expression of c-Met and sgAxin1 in liver-specific Ctnnb1 null

mice did not promote HCC development. This further

demonstrates that Axin1 deletion cooperates with c-Met

expression to induce HCC in mice in a manner dependent on the

b-catenin signaling pathway (66). Also, TP53 mutations were rare

found in the typical morphology of CTNNB1-mutated HCC. TP53

mutations co-occurring with specific CTNNB1 mutations show

clonal progression and multiple distinct morphologies (27).
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Interestingly, interactions between the activity of glypican-3

(GPC3) and Wnt/b-catenin have also been reported to induce

HCC. GPC3 not only serves as a diagnostic and prognostic

biomarker but also plays a functional role in activating the Wnt/

b-catenin signaling pathway. Advanced HCC is characterized by

high levels of GPC3 and the FZD receptor, whereas healthy liver

tissue typically has low concentrations of both (67). GPC3 is

associated with the Wnt/b-catenin signaling pathway to promote

HCC formation and development (68–70). Lai JP et al. reported

that cell surface glypican-3 (GPC3) stimulates Wnt/b-catenin
signaling in HCC by forming a complex with Wnt ligands via its

heparan sulfate glycosaminoglycan (HSGAG) chains. Sulfatase 2

(SULF2)—an enzyme often overexpressed in HCC—removes 6-O-

sulfate groups from HSGAG, disrupting this complex, releasing

Wnt, and leading to enhanced Wnt signaling activity (68).

Targeting this pathway, Wei Gao et al. demonstrated that an

immunotoxin against GPC3 inhibits both Wnt signaling and

protein synthesis in HCC cells, resulting in tumor regression (69).

Additionally, Dan Li et al. found that chimeric antigen receptor

(CAR) T cells targeting GPC3 effectively eliminate GPC3-positive

HCC cells in mice with xenograft or orthoptic liver tumors through

mechanisms such as reduction of Wnt signaling or induction of

perforin/granzyme-mediated apoptosis (70).
3.3 Characteristics of HCC with Wnt/
b−catenin pathway activation

Abnormal activation of the Wnt/b-catenin signaling pathway in

patients with HCC results in unique clinical and pathological

features. The rate of CTNNB1 mutation is influenced by the
Frontiers in Immunology 06
etiology of HCC. Several studies have shown a high rate of

CTNNB1 mutations in HCC associated with hepatitis C virus

(HCV) infection, with over 40% of tumours presenting mutations

(4, 71). However, findings regarding CTNNB1 mutations in HBV-

related HCC are limited, suggesting that HBV may activate the

Wnt/b-catenin signaling pathway through alternative

mechanisms (34).

Although b-catenin activation of the Wnt pathway has been

observed in liver cirrhosis tissues infected with HBV, studies have

shown that the frequency of CTNNB1 gene mutations is not related

to HBV infection. HBV may activate the Wnt pathway through

epigenetic changes associated with HBV-related HCC or may cause

dysregulation of the Wnt pathway due to effects on the TCF/b-
catenin transcription. A study by Amaddeo G, et al. found that

HBV-related HCCs exhibit significant genomic diversity and can

belong to all transcriptomic subgroups. HBV infection may lead to

TP53 mutations, overexpression of stem cell genes, and impaired

cell reprogramming associated with HBV-related HCC (72). Tran

BM, et al. also reported that the HBV pre-core protein p22 elevated

Wnt signaling by activating TCF/b-catenin transcription, which

drives liver cancer (73). Additionally, Wang MH et al. reported that

Musashi-2 (MSI2), a member of the Musashi family, upregulated b-
catenin and TCF-4/LEF-1 expression, promoting hepatitis B virus-

related HCC progression via the Wnt/b-catenin pathway (74).

Studies also have shown that in liver cirrhosis tissues associated

with HBV infection, the expression of the b-catenin and c-Myc

genes is upregulated. Furthermore, b-catenin mutations at

phosphorylation sites and their adjacent locations are associated

with increased Wnt pathway activity, which may promote the

occurrence and development of HBV-related hepatocellular

carcinoma (HBV-HCC) (34).
TABLE 1 Signaling molecules that cooperate with b-catenin in HCC development.

Cooperation Character Reference

GS Associated with malignancy (28)

TGF-b Promoted tumour proliferation, diffusion and metastasis (50, 51)

c-Met Induced tumour formation and development (52, 53)

RAS Promoted tumour cell proliferation and viability (54)

EGFR Promoted HCC metastasis (55)

MYC Associated with poor prognosis (56)

P53
Related to HCV, HBV virus infections in
HCC development

(27, 57, 58)

Akt Formed fatty hepatocellular adenomas that progressed to HCC (59)

LKB1 Conferred a better prognosis and a well-differentiated growth pattern (60)

Nrf2 Led to HCC development (61, 62)

TERT Related to HCV, HBV, HCC (63)

m6A Upregulation of FZD10-liver cancer stem cell properties and lenvatinib resistance (64)

FOXM1
Promoted metabolic reprogramming, angiogenesis, and the maintenance of cancer stem cell
properties

(65)

Glypican-3 Promoted the growth of HCC (66–70)
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HCC can be categorized into 2 main types: proliferative and

non-proliferative. Each accounts for approximately 50% of the cases

(4, 7). Multiple subtypes are further classified into these two

categories. The proliferative type is the most prevalent type

among patients infected with HBV and is characterized clinically

by elevated serum levels of alpha-fetoprotein (AFP) (75), loss-of-

function (LOF) mutations in TP53, chromosomal instability, high

vascular invasiveness, and a poor prognosis. In contrast, the non-

proliferative type is associated with HCV infection, presenting

clinically with low AFP levels, short telomeres, low vascular

invasiveness, hepatocellular differentiation, and good prognosis (4,

7, 76).

The proliferative type HCC is further subdivided into two

subtypes: a “Wnt/TGF-b subtype” and a “progenitor subtype.”

The “Wnt/TGF-b subtype” characterized by activation of the Wnt

pathway that synergizes with TGF-b, shows immune exhaustion.

The “progenitor subtype” is defined by overexpression of hepatic

progenitor markers, hyperphosphorylation of extracellular signal-

regulated kinases (ERK), inactivating mutations in Axin1and

ribosomal protein S6 kinase A3 (RPS6KA3) (7). However, the

“non-proliferative type” of HCC is more heterogeneous and

includes CTNNB1 mutations. The Wnt/b-catenin pathway is

active in both proliferative and non-proliferative HCC types,

however, it affects different HCC phenotypes. Wnt synergizes

with TGF-b, and Axin1 mutations are associated with the

proliferative type, whereas CTNNB1 mutations are associated

with the non-proliferative type. These findings suggest that

activation of downstream pathways is more important than

activation of the Wnt/b-catenin pathway alone (4, 66, 76, 77).

Kitao et al. reported that HCC exhibiting b-catenin CTNNB1

mutations displays iso-high intensity in the hepatobiliary phase

(HBP) of gadolinium ethoxybenzyl diethylenetriaminepentaacetic

acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-MRI)

(78, 79), and HCC patients with CTNNB1 mutations have a better

prognosis compared with patients with other types of HCC (80, 81).

However, some studies have suggested that CTNNB1 mutations

may not be associated with prognosis in patients with advanced

HCC (82). Prognosis is a complex characteristic of HCC and is

influenced not only by tumour factors, such as vascular invasion,

metastasis, and the tumour microenvironment, but also by non

tumour factors, such as fibrsis, cirrhosis, liver dysfunction, and

extrinsic factors. Therefore, more research is needed to determine

whether CTNNB1 mutations and Wnt/b-catenin activation affect

tumour phenotypes and patient prognosis (83–87).
3.4 The role of the Wnt/b-catenin pathway
in immunotherapy of HCC

HCC can be categorized into three classes on the basis of

immune status: “immune class”, “immune exclusion class”, and

“immune intermediate class”, each accounting for approximately

30% of the cases (78, 88). The “immune class” is characterized by

high levels of immune cell infiltration and is more likely to respond

to immune checkpoint inhibitor (ICI) therapy. On the other hand,
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the “immune exclusion class” is characterized by T-cell exclusion

from the tumour microenvironment (TME) and CTNNB1

mutations, resulting in resistance to ICI therapy. The “immune

intermediate class”, which has wild-type CTNNB1 and intermediate

levels of immune infiltration, requires further characterization to

predict the response to immunotherapies (78, 88).

CTNNB1 mutations and Wnt/b-catenin pathway activation are

closely associated with the “immune exclusion class” that is

characterized by immune exclusion and anti-immunotherapies in

HCC (Figure 3) (78, 88, 89). The Wnt/b-catenin signaling pathway

promotes communication between cancer cells and various cells in

the TME, such as fibroblasts, endothelial cells, and lymphocytes.

This communication facilitates tumour angiogenesis, metastasis,

and immune escape (89). Therefore, developing drugs that target

the Wnt/b-catenin signaling pathway in the TME can increase the

efficacy of immunotherapy (89–91).

In mouse models of HCC, Wnt ligands, such as Wnt2, Wnt3a,

and Wnt10b, produced by liver tumour cells activate the Wnt/b-
catenin pathway. This activation leads to the proliferation of

tumour-associated macrophages (TAMs) and polarization of M2-

type macrophages, thereby promoting tumour growth and

metastasis (90). Additionally, the Wnt signaling pathway plays a

significant role in thymocyte development, including the

polarization, differentiation, and maturation of thymic T cells. For

example, Wnt proteins secreted by thymic epithelial cells support

thymic development and the stabilization of regulatory T cells (91,

92). The Wnt signaling pathway also enhances the survival of

immunosuppressive Treg cells while inhibiting the expansion of

CD8+ T cells (Figure 3) (93, 94).

Furthermore, studies in mouse models of HCC have shown that

b-catenin activation inhibits the recruitment of dendritic cells,

resulting in reduced CD8+T-cell activity and the promotion of

immune escape. Preclinical research indicates that tumours with

activated b-catenin exhibit resistance to immune checkpoint

therapy that targets PD-1 (95). Moreover, inhibiting the Wnt

signaling pathway in the TME can increase the activity of natural

killer T cells and promote the secretion of interferon-gamma (IFN-

g) (96, 97).
CTNNB1 gain-of-function (GOF) mutations promote MMP9

secretion in the TME of HCC, inhibiting the activity of CD8+ T cells

and leading to the immune escape of tumour cells and resistance to

anti-PD-1 therapy. Targeting MMP9 can restore the TME and

enhance the effectiveness of anti-PD-1 treatment (98). Additionally,

by inhibiting the Wnt/b-catenin signaling pathway, the expression

of the chemokine CCL5 can be upregulated, which recruits

dendritic cells (DCs) into the TME. This results in increased

infiltration of CD8+ T cells into the TME, enhancing the

antitumour immune response (99). Furthermore, by targeting

both b-catenin and PD-L1 with a racemic supramolecular

peptide, it is possible to increase the infiltration of CD8+ T cells

at the tumour site, thereby increasing the efficacy of

immunotherapy for HCC (100).

M. Kudo et al. reported that HCC with Wnt/b-catenin
mutations is resistant to ICI therapy. In a clinical study, 10

patients with Wnt/b-catenin mutations did not respond to ICI
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therapy. In contrast, a complete response was achieved in patients

without Wnt/b-catenin mutations. Progression-free survival (PFS)

was shorter in patients with Wnt/b-catenin mutations compared to

those without mutations (2 months vs. 7.4 months). Similarly,

overall survival (OS) was also lower in patients with Wnt/b-
catenin mutations than in those without (9.1 months vs. 15.2

months). Although this study included a small number of cases, it

represents a significant breakthrough, providing clinical evidence

for the hypothesis that HCC with Wnt/b-catenin mutation/

activation behaves as an immune-cold tumour. This is due to the

reduced infiltration of CD8+ T cells, which leads to resistance to ICI

therapy (78, 101).

Most interestingly, the Wnt/b-catenin mutation did not affect

the treatment efficacy of sorafenib (78, 101, 102). These findings

suggest that the Wnt/b-catenin mutation status may not impact the

efficacy of tyrosine kinase inhibitors (TKIs) such as lenvatinib,

ramucirumab, cabozantinib, and regorafenib. However, it remains

uncertain whether combination therapies, such as ICI combined

with TKI therapy, are effective in HCC patients with Wnt/b-catenin
mutations. Some studies have shown that combination therapies

have favorable results, characterized by low progression disease

(PD) rates. In combination trials of HCC, the PD rates for

pembrolizumab plus lenvatinib were significantly lower at 7%

compared with 32.4% for pembrolizumab monotherapy (78, 101,
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102). These positive results, characterized by low PD rates in

combination immunotherapy, may largely be due to the additive

anticancer effect of lenvatinib, even in patients with HCC withWnt/

b-catenin mutations (78, 101, 102).

The Wnt signaling pathway inhibits CD8+ T-cell activity in the

TME, promoting tumour immune escape and resistance to ICI

therapy. However, several studies have suggested that the Wnt

signaling pathway may also promote antitumour effects in the TME.

For example, the Wnt pathway can stimulate the maturation of

natural killer (NK) cells and induce the generation of CD8+

memory stem cells. Additionally, the Wnt signaling pathway

promotes the survival of B cells and helps reduce the number of

myeloid-derived suppressor cells (MDSCs) in the TME (89,

103, 104).
4 Targeting the Wnt/b−catenin
pathway for HCC therapy

Recently, various therapeutic strategies targeting the Wnt/b-
catenin pathway have been developed. These strategies include the

use of monoclonal antibodies or small molecule inhibitors to target

Wnt ligands and FZD and LRP5/6 receptors. Additionally, there are

approaches aimed at stabilizing the b-catenin “destruction
FIGURE 3

Immune exclusion mediated by the Wnt/b-catenin pathway in the tumour microenvironment (TME). Activation of Wnt/b-catenin signaling facilitates
cross-communication between cancer cells and various cells in the TME, leading to cold tumours and resistance to immunotherapy. This process
involves the polarization of M2-type macrophages through Wnt2, Wnt3a, and Wnt10b; interaction with fibroblasts; enhancement of Treg survival;
promotion of abnormal vessel growth; reduction in the recruitment of CD103+ dendritic cells; decreased CCL5 production; and diminished
infiltration of CD8+ T cells and NKT cells (78, 88, 89)(created with Biorender.com).
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complex” to promote b-catenin degradation, targeting the

CTNNB1 gene, and inhibiting the interaction between b-catenin
and the nuclear transcriptional regulators (Figure 4) (4–7). Several

agents targeting the Wnt/b-catenin pathway have been evaluated in

clinical trials for the treatment of HCC or HCC-related diseases

(Table 2) (3).

The use of monoclonal antibodies or small molecules to inhibit

Wnt ligands and receptors can enhance apoptosis and suppress cell

proliferation. Porcupine, an acyltransferase, facilitates the acylation

of Wnt proteins by providing palmitoyl groups, which enhances

Wnt secretion. The small molecule inhibitor CGX1321 targets

porcupine activity, thereby preventing Wnt secretion (105, 106).

CGX1321 has been evaluated in a phase I clinical trial

(NCT02675946) for advanced solid tumours, including HCC and

cholangiocarcinoma (6).

Owing to the upregulation of FZD expression in more than 60%

of HCC cells, FZD is considered an important therapeutic target.

FZD7 inhibition significantly promoted HCC cell apoptosis.

Research has shown that soluble FZD7 (sFZD7) and monoclonal

antibodies targeting FZD7 can inhibit FZD receptor activity,

resulting in tumour growth suppression (107, 108). Additionally,

studies have shown that a fusion protein, OMP-54F28, can compete

with its ligands for the FZD8 receptor and antagonize the Wnt

signaling pathway, thereby inhibiting the growth of liver cancer,

ovarian cancer, and pancreatic cancer. OMP-54F28 was tested in a

phase I clinical trial (NCT02069145) (6).
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DKK1(Dickkopf-1) is an antagonist of the Wnt/b-catenin
signaling pathway that inhibits the activation of the pathway by

interacting with LRP5/6 and preventing Wnt from binding to the

receptor. DKK1 has diverse effects under various physiological

conditions, reflecting the complexity of the Wnt/b-catenin
signaling pathway. Studies have demonstrated that DKK1

expression is often elevated in HCC and cholangiocarcinoma,

promoting tumour proliferation, migration, and invasion (109–

111). Furthermore, the monoclonal antibody DKN-01, which

targets DKK1, was evaluated in combination with gemcitabine

and cisplatin in a phase I clinical trial in patients with HCC and

cholangiocarcinoma (NCT02375880) (6).

Small molecule inhibitors that block the interaction between b-
catenin and TCF or other related cofactors or components of

transcription complexes are promising targets for the treatment of

HCC. Several small-molecule inhibitors, including PKF115–854

and CGP049090, can block the interaction between b-catenin and

TCF, thereby inhibiting HCC growth in vivo (112, 113).To form a

transcriptionally active b-catenin/TCF complex, b-catenin recruits

transcriptional coactivators, such as cyclic AMP response element-

binding protein (CBP), along with other components of the basic

transcription machinery. The CBP/b-catenin antagonist ICG-001

and its active enantiomer PRI-724 which antagonize b-catenin/
TCF-mediated transcription and specifically eliminate tumour stem

cells (114, 115). PRI-724 was evaluated in clinical trial to treat HCV

cirrhosis (NCT02195440) (116).
FIGURE 4

Pharmacological regulators based on Wnt/b-catenin in HCC. Regulation of the Wnt signaling pathway by (1) targeting Wnt ligands and receptors
(CGX1321, OMP-54F28, and DKN-01); (2) stabilizing the b-catenin “destruction complex” with peptides; (3) targeting CTNNB1 mutations with siRNAs;
and (4) preventing b-catenin transactivity in the nucleus (PKF115-854, CGP049090, ICG-001, and PRI-724) (4–6) (created with Biorender.com).
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Stabilizing the b-catenin destruction complex and promoting b-
catenin degradation are effective strategies for inhibiting theWnt/b-
catenin pathway. When small-molecule peptides are used to block

the interaction between FZD7 and DVL, the “destruction complex”

can be stabilized, b-catenin degradation can be increased, thereby

suppressing HCC cell growth (117). Additionally, targeting

CTNNB1 with nucleic acid medicines, such as antisense

oligonucleotides (ASOs) and small interfering RNAs (siRNAs),

represents a promising approach. Studies have shown that

CTNNB1 mutations can activate the Wnt/b-catenin pathway and

drive HCC development. ASOs designed to target CTNNB1

mutations can slow HCC progression in murine models (118).

Furthermore, a strategy that utilizes lipid nanoparticles (LNPs)

combined with Dicer-substrate siRNA targeting CTNNB1

significantly inhibited liver tumour development in vivo (119).

Although the Wnt/b-catenin pathway is essential for

maintaining homeostasis in normal tissues, significant concerns

remain regarding the toxicity of inhibitors that target Wnt signaling

pathways. Therefore, identifying molecules that are more specific to

HCC is a promising strategy for targeting the Wnt/b-catenin
pathway. Research has shown that ADP-ribosylation factor

(ARF)-like 4c (Arl4c) expression is stimulated by the activation of

the b-catenin or EGFR-MAP kinase pathways, contributing to

tumourigenesis in various cancer types, including HCC. Antisense

oligonucleotides targeting Arl4c effectively inhibited HCC

development in vivo (102).
4 Conclusion and perspectives

The Wnt/b-catenin signaling pathway plays crucial roles not

only in the physiological functions of the normal liver but also in the

development of HCC (4, 5). The Wnt/b-catenin pathway has

distinct gene expression profiles and pathological characteristics

in HCC, making it a promising therapeutic target (6, 7).

Monoclonal antibodies or small molecule inhibitors that target

key regulatory factors, such as Wnt ligands, FZD receptors, DVL,

and CTNNB1 mutations, or inhibit the interaction between b-
catenin and the nuclear transcriptional regulators can partially or

completely shut down the Wnt/b-catenin signaling pathway,
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thereby suppressing tumour growth. Several small-molecule drugs

and antibodies have advanced into clinical trials and have shown

promising results.

Although some trials have been halted because of limited

compound supply or insufficient patient recruitment, no clinical

trials have ever been terminated because of a lack of drug efficacy.

Ongoing clinical trials will be completed in the coming years and

analyzed. Given the intrinsic heterogeneity of cancer, this suggests

that combination therapy involving Wnt/b-catenin pathway-

targeted drugs and anticancer medications could lead to favorable

outcomes and FDA approval (120). In recent years, interest in the

role of the Wnt/b-catenin pathway in regulating the TME and

immune evasion in HCC has increased. Research has also focused

on inhibiting the activity of the Wnt/b-catenin pathway to increase

the effectiveness of immunotherapy (4–7, 89).

Despite extensive research on this pathway in HCC

development, our understanding of its dysregulation remains

limited. Given that the Wnt/b-catenin pathway plays a crucial

role in normal tissue as well as in liver homeostasis and

regeneration, systemic inhibition of factors within this pathway

during treatment may lead to severe side effects. The off-target

effects of the Wnt/b-catenin signaling pathway include nausea,

vomiting, diarrhea, kidney damage, bone toxicity, and intestinal

toxicity. Therefore, ensuring the safety and selectivity of targeted

drugs is particularly important (121–124).

Furthermore, the Wnt/b-catenin pathway may participate in

signal transduction pathways and have multiple homologs at

different levels, which may lead to redundancy and adaptability in

individuals with specific gene deletions. Additionally, research on

the interactions between the Wnt/b-catenin signaling pathway and

other signaling pathways remains lacking, resulting in findings that

contradict those of other studies. This complicates the assessment of

the therapeutic effects of interventions in the Wnt/b-catenin
signaling pathway (1, 120).

Therefore, targeting HCC-specific Wnt/b-catenin pathway

genes is crucial for therapy. This pathway has also been shown to

be an important factor in tumour immune evasion and anti-

immunotherapy. Consequently, identifying key molecules within

this pathway to develop effective treatment strategies is a promising

area of research (125–128). Regulating the Wnt/b-catenin pathway
TABLE 2 Clinical trials evaluating Wnt/b-catenin-targeted agents in HCC or HCC-related diseases.

Agents Mechanism Phase Side effects Identifier

CGX1321(with
pembrolizumab)

Porcupine inhibitor Phase 1 NR NCT02675946

OMP-54F28 (with sorafenib) FZD8 decoy receptor Phase 1
Diarrhea, neutropenia and
decreased appetite

NCT02069145

DKN-01 DKK1 Phase 1 NR NCT02375880

PRI-724 CBP/b-catenin antagonist Phase 1

Nausea, vomiting, diarrhea,
alopecia, fatigue, neutropenia,
thrombocytopenia,
neutropenic fever

NCT02195440
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and activating the immune system is a strategy for treating HCC.

The targeting of the Wnt/b-catenin pathway in combination with

immunotherapy and the synergistic effects of TKIs will be clarified

in future studies (78). In summary, a better understanding of the

role of Wnt/b-catenin signaling in HCC will provide important

strategies for effective treatment.
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Glossary

APC adenomatous polyposis coli
Frontiers in Immunol
Axin axis inhibition protein
CK1a casein kinase I isoform a
CBP cyclic AMP response element-binding protein
Dkk Dickkopf protein
DVL Dishevelled
EGFR epidermal growth factor receptor
ERK extracellular signal-regulated kinases
FZD Frizzled
FZD8 frizzled family receptor 8
FRPs frizzled protein-related proteins
Gd-EOB-DTPA-MRI gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid-

enhanced magnetic resonance imaging
GSK-3 glycogen synthase kinase-3
ogy 15
HBP hepatobiliary phase
HCC hepatocellular carcinoma
HIF1a hypoxia-inducible factor 1a
HBV chronic hepatitis B
HCV hepatitis C virus
ICI immune checkpoint inhibitor
LRP5/6 lipoprotein–related protein 5 or 6
LEF lymphocyte enhancer factor
Met Hepatocyte Growth Factor Receptor
RPS6KA3 ribosomal protein S6 kinase A3
sFZD7 soluble FZD7
TCF T-cell factor
TKIs tyrosine kinase inhibitors.
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