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Introduction: Low back pain (LBP), primarily driven by intervertebral disc
degeneration (IDD), imposes a significant global health burden. While type 2
diabetes mellitus (T2DM) is a recognized risk factor for IDD, the shared molecular
mechanisms remain incompletely characterized.

Methods: This study employed integrated bioinformatics (WGCNA, machine
learning - LASSO, RF, ANN) on human T2DM and IDD transcriptomic datasets,
alongside scRNA-seq analysis of diabetic mouse nucleus pulposus (NP) tissue, to
identify key drivers of diabetes-associated IDD.

Results: Bioinformatics analysis of human data identified three diagnostic
biomarkers (S100A12, IL1R1, FCGR2B) and constructed a robust ANN
diagnostic model (AUCs: 0.744-0.868). IL1R1 emerged as the most significant
risk factor. scRNA-seq revealed altered cellular composition in diabetic discs,
notably increased proportion of granulocytes (predominantly neutrophils) and
decreased proportion of nucleus pulposus (NP) cells. IL1IR1 was highly expressed
in specific diabetes-associated NP subpopulations and showed significant
positive correlation with neutrophil infiltration. Functional enrichment linked
ILIR1 to inflammation, DNA repair, and immune pathways. Furthermore, we
constructed a regulatory network (STAT1/STAT6-IL1IR1-miRNAs-IncRNAs) and
identified icariin as a potential therapeutic candidate via molecular docking.
Discussion: These findings establish IL1R1 as a pivotal molecular bridge
connecting T2DM and IDD, driven by neutrophil-mediated inflammation and
NP cell dysfunction, offering novel diagnostic and therapeutic avenues.
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Introduction

Low back pain, primarily caused by intervertebral disc
degeneration (IDD), imposes a substantial economic burden
exceeding $100 billion annually in direct and indirect costs (1-3).
It not only severely impairs patients’ quality of life but also places
significant pressure on society. The multifactorial etiology of IDD
complicates the development of personalized prevention and
treatment strategies (4-6). Among these factors, metabolic
disturbances within the intervertebral disc are a major contributor
to degeneration (7, 8).

As the most prevalent systemic metabolic disorder, type 2
diabetes mellitus (T2DM) significantly threatens elderly
populations (9). While diabetes complications such as retinopathy
and nephropathy are well-established, emerging evidence
implicates diabetes-induced metabolic dysregulation and systemic
inflammation in IDD pathogenesis (10-12). Elevated glucose levels
stimulate advanced glycation end product (AGE) accumulation,
and excessive AGEs mediate dysregulated proteoglycan synthesis
and disc fibrosis (13). Additionally, diabetic microangiopathy may
compromise nutrient delivery to disc tissues, reducing nutrient
availability and impairing metabolic waste clearance (14).
Nevertheless, investigations into shared genetic and molecular
mechanisms linking diabetes and IDD remain limited.

To address this gap, this study employs bioinformatics
approaches to identify common biomarkers associated with both
T2DM and IDD. By integrating weighted gene co-expression
network analysis (WGCNA), machine learning, single-cell
sequencing (scRNA-seq) analysis, and protein docking, we aim to
determine key genes involved in this process, thereby providing
novel insights into the pathogenesis of diabetes-associated
intervertebral disc degeneration.

Materials and methods
Public data sources

All data were obtained from the Gene Expression Omnibus
(GEO) database (https://www.ncbi.nlm.nih.gov/geo/)
(Supplementary Table 1). The dataset GSE7014 comprised
microarray data from 36 patients, from which 10 TIDM samples
were excluded, retaining 26 samples (20 T2DM and 6 normal
samples) for subsequent analysis. For IDD, expression data were
integrated from two independent datasets, GSE124272 and
GSE34095, resulting in a combined set of 11 degenerated disc
samples and 11 normal controls.

Batch effect correction and quality control

To mitigate technical variations between datasets, we applied a
systematic normalization and batch correction pipeline. Expression
data were merged by gene symbol and normalized using the
quantile method via the limma package. Batch effects were
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subsequently corrected using the removeBatchEffect function
from limma. Correction efficacy was evaluated using principal
component analysis (PCA) and expression distribution boxplots.
PCA was carried out on scaled data using prcomp, and results were
visualized through scatter plots with batch-wise confidence ellipses.

Diabetes mouse model and scRNA-seq
processing

All animal experiments were approved by the Ethics Committee
of Beijing Shijitan Hospital, Capital Medical University (Approval
No. Sjtkyll-1x-2021105), and were conducted in accordance with the
institutional guidelines for the care and use of laboratory animals.
ScRNA-seq data were generated from nucleus pulposus cells of 10
C57BL/6 mice. Diabetes was first induced in all mice by a high-fat/
high-sucrose diet and a single intraperitoneal injection of
streptozotocin (55 mg/kg). Thereafter, mice were divided into two
groups (5 vs. 5): One group remained diabetic, whereas the other
received treatment to achieve normoglycemia and served as the
treated control group. NPCs were isolated following the
experimental protocol described by Andrew Bratsman et al. (15).

Briefly, nucleus pulposus tissues were minced and washed with
RPMI-1640 medium (Gibco, C11875500137). Tissue dissociation was
performed using a vascular tissue dissociation kit (Bestopcell,
BA3310) according to the manufacturer’s instructions. After
digestion, the cell suspension was filtered through a 70-um nylon
strainer (Thermo Fisher Scientific, 22-363-548) to remove debris and
centrifuged at 300 x g for 5 min at 4 °C. The pellet was resuspended in
PBS (Bioss, C7033) supplemented with 5% fetal bovine serum (FBS;
Solarbio, $9020). Red blood cells were lysed using a red blood cell lysis
buffer, followed by incubation for 15 min at 4 °C and centrifugation at
450 x g for 5 min at 4 °C. The cell pellet was washed twice with PBS
containing 5% FBS and resuspended in the same buffer. Cell
concentration and viability were assessed using CountStar, and the
suspension was adjusted to a density of 600-1,200 living cells
per microliter.

Single-cell encapsulation and library preparation were
performed using the CelCode® Single Cell 3" Transcriptome Kit
v1.0 following the manufacturer’s protocol. Approximately 70 UL of
master mix and cell suspension, 50 pL of barcoded gel beads, and 45
UL of partitioning oil were loaded into the CelCode® Driver to
generate gel bead-in-emulsions (GEMs). Reverse transcription was
performed to synthesize barcoded cDNA, which was then amplified
by PCR. Sequencing libraries were constructed and normalized
before being sequenced on an MGI DNBSEQ-T7 platform with
paired-end 150-bp reads (PE150), achieving a minimum depth of
50,000 reads per cell. All sequencing services were provided by
Bestopcell (Beijing).

Raw sequencing data were demultiplexed and aligned to the
reference genome using the CelScene® pipeline with default
parameters. The feature-barcode matrix was generated using the
CelScene® count module, which performed alignment, filtering,
barcode assignment, and UMI counting. Dimensionality reduction
was conducted via PCA, and the top 10 principal components were
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used for cluster identification using both K-means and graph-based
clustering algorithms.

Differential gene screening

Differentially expressed genes (DEGs) in T2DM and IDD were
identified using the limma package in R, with thresholds set at [log, fold
change (FC)| > 0.5 and an adjusted p-value < 0.05. Volcano plots and
heatmaps were generated using the ggplot2 and pheatmap packages.

WGCNA

WGCNA was employed to identify clinically relevant co-
expression gene modules (16). First, gene expression data were
preprocessed by filtering highly variable genes based on median
absolute deviation (MAD > 0.5), and outlier samples were removed
via hierarchical clustering. The pickSoftThreshold function in the
WGCNA package was used to determine the optimal soft-
thresholding power (B) for constructing a scale-free topology
network. A weighted adjacency matrix was then computed and
converted into a topological overlap matrix (TOM) to assess gene
co-expression connectivity.

Hierarchical clustering based on TOM dissimilarity was
performed to group genes with similar expression patterns into
modules. Dynamic tree cutting (height = 0.25) was applied to merge
closely related modules. Module eigengenes (MEs) were calculated,
and their correlations with clinical traits were analyzed to identify
key modules associated with disease phenotypes.

PPl network analysis

The STRING database was utilized to construct protein—protein
interaction (PPI) networks, visualized using Cytoscape (v3.10.3).
Module analysis was performed with the MCODE plugin, and hub
genes were identified using the cytoHubba plugin.

Machine learning

Advanced machine learning algorithms were employed to
develop a predictive model for diabetes-associated IDD. Least
absolute shrinkage and selection operator (LASSO) regression was
implemented using the glmnet package (17). The Random Forest
(RF) algorithm was executed via the randomForest package in R
(18). Additionally, an artificial neural network (ANN) model was
constructed using the neuralnet and neuralnettools packages (19).

Immune infiltration

The relative abundance of 22 immune cell subtypes in these
samples was estimated using the CIBERSORT algorithm (20).
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Pearson correlation analysis was conducted to examine
associations between key genes and immune cell subtypes.

Molecular regulatory network of key genes

The HTFtarget database predicted transcription factors interacting
with key genes (21). mRNA-miRNA interactions were explored using
PITA, microT, and TargetScan, with consensus predictions retained.
MiRNet, Starbase, and LncBase v3 identified miRNA-IncRNA
interactions, validated if consistent across databases (22-24).
LncACTdb 3.0 predicted IncRNA-transcription factor interactions (25).

Drug—gene interactions and protein—
protein docking

DrugBank analyzed drug-gene interactions, whereas PyMOL
facilitated protein—protein docking and molecular visualization (26).

Statistical analysis

All data processing and analyses were performed using R
software (Version 4.4.1). For bulk RNA-seq differential expression
analysis, the limma package was used. For comparisons between
two groups in other analyses, the Wilcoxon test was applied.
Differences in ILIR1 expression across NP cell subclusters were
assessed using the Kruskal-Wallis test. Spearman correlation
analysis was conducted to examine the relationship between key
genes and immune cells, with a p-value < 0.05 considered
statistically significant.

Results

Identification of DEGs in IDD and T2DM

Figure 1 depicts the study flowchart. The expression profile dataset
GSE7014 was normalized. For the IDD datasets (GSE124272 and
GSE34095), raw data were integrated, and batch effects were corrected
using the removeBatchEffect function from the limma R package. The
efficacy of this batch effect correction was assessed using PCA, as
visualized in Figure 2. After merging the batch-corrected data,
normalization was performed, followed by the generation of volcano
plots and heatmaps for differential expression analysis of two datasets
(Figure 3). In the figure, red dots represent significantly upregulated
differentially expressed genes, and blue dots represent significantly
downregulated genes.

Construction of WGCNA and gene module screening

The WGCNA algorithm was utilized to identify key gene
modules closely associated with IDD, with the soft thresholding
power (f) set to 8. The dynamic tree-cutting algorithm delineated
16 gene modules, among which the blue module exhibited the most
significant correlation (correlation coefficient = 0.56) compared
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Flowchart of the study.

with other modules. Consequently, the blue module was selected as
the key module for subsequent analyses (Figure 4).

Protein—protein interaction network
construction

Intersection analysis of DEGs related to IDD, genes from the
IDD-associated blue module, and T2DM-related DEGs revealed
nine overlapping genes. Given that genes and their encoded
proteins may interact, a PPI network was constructed using the
STRING tool, comprising 99 nodes (Figure 5). To identify the most
interconnected module within the network, the MCODE plugin was
applied, yielding 45 key nodes. Further analysis using the
cytoHubba plugin with MCC, MCN, and EPC algorithms
identified nine common hub genes: IL1B, CXCRI, FCGRIA,
S100A12, FCGR2A, C5AR1, IL1R1, FCGR2B, and IL1R2 (Figure 6).

Identification and validation of key genes
in diabetes-associated IDD

Multiple machine learning algorithms were employed to screen reliable
biomarkers for diabetes-associated IDD. The LASSO regression
algorithm identified three potential diagnostic markers, whereas the
RF algorithm detected nine diagnostic genes. Venn diagram analysis
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ultimately revealed three overlapping diagnostic markers: S100A12,
ILIR1, and FCGR2B. The ANN diagnostic model was established
based on gene weights, and its performance was evaluated using
receiver operating characteristic (ROC) curves (Figure 7). The area
under the curve (AUC) values for S100A12, IL1R1, and FCGR2B were
0.744, 0.785, and 0.868, respectively, indicating robust diagnostic
efficacy for diabetes-associated IDD. Although all three genes
exhibited statistically significant differences between the normal and
IDD groups, forest plot analysis demonstrated that ILIR1 was the most
prominent risk factor specific to IDD (Figure 8).

scRNA-seq analysis

scRNA-seq data underwent standardized processing, including
quality control, normalization, and unsupervised dimensionality
reduction clustering. Principal component analysis and a resolution
of 0.1 yielded eight cell clusters (Figure 9). Based on cluster-specific
markers, four major cell types were identified in diabetic mouse
intervertebral discs: granulocytes (most abundant, highly expressing
S100A10, FN1, PRDXI1, CRIP1, and AHNK), NP cells (highly
expressing ACAN, COLIA1, CLU, SOX9, SBSN, and SDC4),
monocytes (highly expressing PSAP, CTSS, and TGFBI), and
neurons (highly expressing PCSKIN, STMN2, SNCG, CALCA,
and TAC) (Figure 10).

Comparative analysis of overall cell proportions revealed that
diabetic mice exhibited a significant increase in granulocytes and
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Gene expression data before and after batch effect removal. (A) Box plot before batch effect removal. (B) Box plot after batch effect removal.
(C) PCA results before batch effect removal. (D) PCA results after batch effect removal.

monocytes and a decrease in NP cells compared with controls.
Further analysis of the core gene ILIR1 demonstrated its high
expression in NP cells. Subsequent subclustering of NP cells
identified five distinct subpopulations based on highly expressed
genes: NP progenitor cells (NPPCs, highly expressing KRTS,
KRT18, KRT19, and DSP), effector NP cells (effector NPc, highly
expressing FGF21, STC2, NPHS2, and WNT7B), immune-matrix
interacting NP cells (IM-INT NPc, expressing S100A8/A9,
ADAMS, and THBSI1), inflammatory-stress end-stage NP cells
(IS-ES NPc, highly expressing CXCL1, CXCL2, SAAI, SAA2, and
GAS6)), and osteochondrogenic NP cells (OC NPc, highly
expressing SP7, ALPL, IBSP, and VIT). Analysis revealed an
expansion of effector NP and IS-ES NP subpopulations in
diabetic conditions (Supplementary Table 2). Within the NP
compartment, these two subpopulations served as the
predominant hubs of ILIR1 expression, with levels significantly
exceeding those in other NP subtypes (Figure 11). KEGG and GO
enrichment analyses of these subpopulations revealed their
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involvement in pathways such as the complement and
coagulation cascade, TGF-B signaling, and rheumatoid arthritis,
as well as biological processes including extracellular matrix
organization and acute inflammatory response (27) (Figure 12).

Immune infiltration, molecular regulatory
network, and drug interaction analysis of
IL1IR1

The CIBERSORT algorithm was applied to investigate immune
cell infiltration in diabetes-associated IDD samples across 22
immune cell types. Compared with controls, IDD samples
exhibited statistically significant differences in plasma cells and
activated NK cells. Further analysis of the core gene IL1R1 and its
relationship with immune cell infiltration revealed a positive
correlation with neutrophils and negative correlations with
activated NK cells and dendritic cells.
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To elucidate the characteristics of diabetes-associated IDD, gene
set enrichment analysis (GSEA) of IL1R1 was performed,
highlighting its association with seven key pathways: DNA
mismatch repair, N-glycan biosynthesis, primary
immunodeficiency, base excision repair, DNA replication,
homologous recombination, and asthma. A regulatory network
encompassing TFs/mRNAs/miRNAs/IncRNAs was constructed,
including axes such as STAT1/IL1R1/hsa-let-7a-3p/IncRNA and
STAT2/IL1R1/hsa-miR-125a-3p/IncRNA. The cytoHubba plugin
identified IncRNA-involved regulatory circuits. DrugBank
database screening nominated icariin as a candidate therapeutic
compound. Additionally, the binding pocket of ILIRI with
potential drugs was predicted (Figure 13).

Discussion

The etiology of IDD is multifactorial, involving both
endogenous genetic susceptibility and exogenous stress factors
such as aging, mechanical overload, nutritional deficiency, and
notably, metabolic disorders (14). Diabetes mellitus, as a systemic
metabolic disease, directly or indirectly contributes to alterations in
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the metabolic environment of various organs (10). Multiple clinical
studies have demonstrated a strong positive correlation between
T2DM and IDD, with longer disease duration and poorer glycemic
control associated with more severe disc degeneration (11).
Fundamental research suggests that elevated glucose levels lead to
increased accumulation of AGEs, which induce structural changes
in the cartilage endplate, ultimately resulting in nutrient deprivation
of NP cells and an elevated risk of IDD (13). Although an
association between these two conditions has been established,
studies utilizing bioinformatics and machine learning to identify
diagnostic biomarkers linking IDD and diabetes remain limited.
In this study, we analyzed gene expression profiles associated
with T2DM and IDD to identify shared pathogenic genes. WGCNA
was employed to discern gene modules specific to IDD, facilitating
further screening of IDD-related gene expression. Through
intersection analysis of module genes and DEGs, nine hub genes
were precisely identified using multiple algorithms. Machine
learning methods subsequently pinpointed three key genes:
IL1R1, S100A12, and FCGR2B. Based on these genes, an artificial
neural network diagnostic model was developed, which exhibited
robust predictive performance even in models of non-diabetic disc
degeneration. In clinical cohorts, it is challenging to isolate the effect
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of diabetes on IDD progression due to the frequent presence of
confounding comorbidities in diabetic patients. Moreover, the
systemic complications of diabetes often manifest over prolonged
periods, posing challenges in translating high-quality clinical
findings into targeted interventions for diabetes-associated IDD.
Our approach offers distinct advantages by leveraging multi-omics
analysis and machine learning to identify key protein factors at the
genetic level, thereby laying the groundwork for potential
therapeutic targets. Notably, these key genes were identified for
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the first time in the context of diabetes-associated IDD, and ROC
analysis confirmed their diagnostic potential.

To investigate the direct and indirect effects of diabetes on
intervertebral discs, we established a T2DM mouse model and
performed scRNA-seq on NP tissues. The sequencing results
show four distinct cell subpopulations: NP cells, granulocytes,
neurons, and monocytes. The proportion of NP cells was
significantly higher in diabetic treatment control mice, whereas
granulocytes and monocytes were more abundant in diabetic mice.
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among these genes in the PPl network.
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Further examination of key gene expression across cell types
demonstrated marked differential expressions of IL1R1 and
S100A12, with IL1R1 upregulated in diabetic mice and S100A12
elevated in controls. Given the central role of NP cells in disc
function and degeneration, we prioritized IL1R1 for subsequent
investigation. Subclustering of NP cells identified five
subpopulations: NPPCs, effector NP cells, IM-INT NP cells, IS-ES
NP cells, and OC NP cells. Diabetic mice exhibited altered
proportions of all subpopulations except NPPCs, with increased
frequencies of effector NP cells, IM-INT NP cells, and OC NP cells.
IL1IR1 was highly expressed in effector and IS-ES NP cells.
Mechanistically, ILIR1 binds interleukin-1 (IL-1) and recruits IL-
1 receptor accessory protein (IL-1RAP), initiating a signaling
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cascade via Toll/interleukin-1 receptor (TIR) domains that
activates MyD88 and IRAK, thereby mediating inflammatory
responses. Additionally, IL1R1 transcription is regulated by NF-
KB/JNK/MEK pathways, with p38 MAPK signaling being essential
for its expression (28-30). It is noteworthy that although potential
differences in gene regulatory networks exist between mouse models
and human patients, the fundamental role of IL-1 signaling in
propagating inflammatory responses is highly conserved across
species. These findings align with the chronic systemic
inflammation characteristic of diabetes.

Current evidence indicates that the intervertebral disc functions
as an immune-privileged site, with macrophages representing the
primary immune cell population involved in disc degeneration.
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Notably, our scRNA-seq results reveal that beyond monocytes,
granulocytes also represent a significant cellular component in
diabetes-associated IDD. Analysis of immune cell infiltration for
the key diabetes-disc degeneration gene IL1R1 revealed that IL1R1
expression exhibited a significant positive correlation with
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neutrophils, and a significant negative correlation with activated
dendritic cells and activated natural killer cells. Neutrophils,
members of the granulocyte family, primarily function to
phagocytose and digest invading bacteria and fungi, serving as the
first line of defense in the innate immune system. The substantial
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infiltration of granulocytes revealed by scRNA-seq robustly
confirms that the systemic inflammatory response triggered by
diabetes is also present within the intervertebral disc. These
findings suggest that ILIR1 may play a pivotal bridging role
connecting diabetes and intervertebral disc degeneration. We
performed qPCR on intervertebral disc tissue from an
independent cohort of mice. The results confirmed a significant
upregulation of IL1IR1 in the diabetic group (p < 0.05), which is
highly consistent with our scRNA-seq findings (Supplementary
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Figure 1). However, we did not observe significant morphological
differences between the control and diabetic groups under the
duration of diabetes induction used in this study according to the
H&E staining of disc tissues (Supplementary Figure 2). This
discrepancy may indicate that diabetes initially drives a molecular
and inflammatory pathology within the disc microenvironment,
which precedes overt structural degeneration.

The presence of abundant neutrophils within the intervertebral
discs of diabetic mice is not surprising. Extensive research has
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established that neutrophils are prevalent in various chronic
diseases, including, besides diabetes, atherosclerosis, non-alcoholic
fatty liver disease (NAFLD), and autoimmune diseases (31, 32).
Neutrophils, by triggering neutrophil extracellular traps (NETs),
can clear senescent vasculature, thereby creating conditions for
reparative angiogenesis in ischemic retinas. In diabetic
nephropathy, neutrophils can induce glomerular endothelial cell
dysfunction and pyroptosis, leading to further kidney damage (33).
Moreover, the interaction between neutrophils and platelets is
recognized as a key driver of thrombo-inflammation in thrombo-
occlusive vascular diseases. Consequently, targeting the
mechanisms of platelet-neutrophil interaction, platelet activation/
aggregation, and neutrophil recruitment holds promise as a
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potential therapeutic strategy to mitigate thrombo-inflammation
in diabetic patients (34). Our data strongly associate IL1R1
signaling with neutrophil infiltration and NP cell dysfunction
under diabetic conditions, the precise mechanistic connections
require further investigation. We propose a testable hypothesis:
Systemic hyperglycemia and metabolic dysfunction in T2DM lead
to the accumulation of AGEs and chronic systemic inflammation.
This inflammatory state promotes neutrophil activation and
infiltration into the disc environment, likely aided by diabetic
microangiopathy and disruption of immune privilege. Once
infiltrated, neutrophils serve as a key source of pro-inflammatory
cytokines, including IL-1f3. The activation of ILIRI signaling on NP
cells—particularly in effector and inflammatory-stress end-stage
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subpopulations—then triggers downstream cascades via NF-xB and
MAPK pathways. This promotes a catabolic phenotype in NP cells,
marked by ECM degradation, cellular senescence, and a senescence-
associated secretory phenotype (SASP).

The potential link between IL1R1 signaling and cellular senescence
is further supported by our GSEA. GSEA of ILIR1 highlighted DNA

Frontiers in Immunology

mismatch repair as the most enriched pathway. Impaired mismatch
repair exacerbates DNA damage accumulation, promoting cellular
senescence or apoptosis (35, 36). Given the inherently weak repair
capacity of terminally differentiated NP cells, senescent or apoptotic NP
cells may adopt a SASP, releasing pro-inflammatory factors that
amplify degeneration in a vicious cycle (37, 38).
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We also constructed an integrated regulatory network centered
on ILIR1, incorporating transcription factors (TFs), mRNAs,
miRNAs, and IncRNAs. Key regulatory axes included STAT1/
IL1R1/hsa-let-7a-3p/LPP-AS2 and STAT6/ILIR1/hsa-miR-125a-
3p/LINC. These circuits elucidate the mechanisms sustaining
aberrant gene expression in diabetes-associated IDD. Non-coding
RNAs (miRNAs, IncRNAs) critically regulate inflammation,
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extracellular matrix degradation, and senescence/apoptosis—
processes that collectively drive IDD (39).

While current clinical management of IDD primarily targets pain
relief without addressing core degenerative mechanisms, in silico drug
screening offers an approach to identify potential therapeutic
candidates. Among them, icariin, a natural flavonoid derived from
Epimedium, has been suggested by previous pharmacological studies to
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subclusters. (E) Differential expression of the core gene IL1R1 in different subclusters.

possess properties relevant to degeneration, such as anti-inflammatory
and antioxidant effects (40, 41). Notably, its documented mechanism,
antagonizing NF-xB and MAPK-mediated pro-inflammatory cascades,
could be conceptually aligned with the IL1R1-driven pathology
implicated in our study of diabetes-associated IDD (42). Preliminary
molecular docking analysis indicated potential binding modes between
icariin and IL1R1, forming a hypothesis for a putative interaction that
warrants future experimental validation in vitro and in vivo.
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Limitations

Our bioinformatics analysis implicates the ILIR1 gene as
potentially exerting a profound influence on the occurrence and
progression of IDD within the context of diabetes mellitus. However,
several limitations warrant acknowledgment. First, the bioinformatics
analysis of human transcriptomic data is constrained by the relatively
small sample sizes of the publicly available datasets utilized. This
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limitation may affect the statistical power and generalizability of the
identified differentially expressed genes, co-expression modules, and
machine learning model. Although we employed rigorous
computational methods and cross-validation to generate robust
hypotheses, future validation in larger, independent clinical cohorts is
essential to confirming the diagnostic utility of the identified
biomarkers, particularly IL1R1. Second, it is important to note that
the mouse model employed in this study was designed to induce
T2DM but not overt IDD through additional mechanical or injury-
based means like the needle puncture method. Therefore, we observed
significant molecular alterations within the disc cells of diabetic mice.
We cannot definitively state that our model recapitulates the full
spectrum of structural IDD. This necessitates a cautious
interpretation of our findings. The potential causal relationship

Frontiers in Immunology

between ILIRI expression and the progression of IDD should be
viewed as a hypothesis generated from our scRNA-seq data, rather
than as an established fact. Future studies utilizing T2DM models
combined with controlled disc injury or aging models are essential to
conclusively establishing the mechanistic link and causal role of IL1IR1
in driving diabetes-accelerated disc degeneration. Third, although
bioinformatic analyses suggested the potential therapeutic relevance
of icariin, this prediction requires rigorous experimental confirmation.
Robust in vivo efficacy data in relevant models and evidence from
large-scale clinical studies are currently lacking in substantiating its use
for IDD. Future work will focus on validating these predictions through
in vitro and in vivo functional studies. Finally, the inherent complexity
of diabetes as a metabolic disorder introduces potential confounding
factors, such as variations in patient lifestyle, comorbidities, and
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(A) Immune infiltration analysis. (B) Association between IL1IR1 and different immune cells. (C) GSEA of ILIR1. (D) Circular regulatory signaling
pathway. (E) Alluvial diagram of the TF=mRNA-miRNA-IncRNA network. (F, G). Icariin—IL1R1 interaction analysis. Protein—protein docking between

IL1R1 and targeting drug (blue).

medication regimens. While our controlled animal model aimed to
isolate the effects of hyperglycemia, these human-specific variables
could influence gene expression profiles and potentially confound the
observed associations in clinical datasets. Future studies incorporating
detailed patient stratification and covariate analysis will be essential to
translating these findings into the clinical context.
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Conclusion

This study employed integrated bioinformatics approaches to

identify three key genes and construct a diagnostic model for diabetes-
associated IDD. Notably, ILIR1 emerged as closely associated with this

condition and was established as an independent risk factor.
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