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Introduction: Low back pain (LBP), primarily driven by intervertebral disc

degeneration (IDD), imposes a significant global health burden. While type 2

diabetes mellitus (T2DM) is a recognized risk factor for IDD, the shared molecular

mechanisms remain incompletely characterized.

Methods: This study employed integrated bioinformatics (WGCNA, machine

learning - LASSO, RF, ANN) on human T2DM and IDD transcriptomic datasets,

alongside scRNA-seq analysis of diabetic mouse nucleus pulposus (NP) tissue, to

identify key drivers of diabetes-associated IDD.

Results: Bioinformatics analysis of human data identified three diagnostic

biomarkers (S100A12, IL1R1, FCGR2B) and constructed a robust ANN

diagnostic model (AUCs: 0.744-0.868). IL1R1 emerged as the most significant

risk factor. scRNA-seq revealed altered cellular composition in diabetic discs,

notably increased proportion of granulocytes (predominantly neutrophils) and

decreased proportion of nucleus pulposus (NP) cells. IL1R1 was highly expressed

in specific diabetes-associated NP subpopulations and showed significant

positive correlation with neutrophil infiltration. Functional enrichment linked

IL1R1 to inflammation, DNA repair, and immune pathways. Furthermore, we

constructed a regulatory network (STAT1/STAT6-IL1R1-miRNAs-lncRNAs) and

identified icariin as a potential therapeutic candidate via molecular docking.

Discussion: These findings establish IL1R1 as a pivotal molecular bridge

connecting T2DM and IDD, driven by neutrophil-mediated inflammation and

NP cell dysfunction, offering novel diagnostic and therapeutic avenues.
KEYWORDS

intervetebral disc degeneration, diabetes mellitus Type 2, multiomic analyses,
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Introduction

Low back pain, primarily caused by intervertebral disc

degeneration (IDD), imposes a substantial economic burden

exceeding $100 billion annually in direct and indirect costs (1–3).

It not only severely impairs patients’ quality of life but also places

significant pressure on society. The multifactorial etiology of IDD

complicates the development of personalized prevention and

treatment strategies (4–6). Among these factors, metabolic

disturbances within the intervertebral disc are a major contributor

to degeneration (7, 8).

As the most prevalent systemic metabolic disorder, type 2

diabetes mellitus (T2DM) significantly threatens elderly

populations (9). While diabetes complications such as retinopathy

and nephropathy are well-established, emerging evidence

implicates diabetes-induced metabolic dysregulation and systemic

inflammation in IDD pathogenesis (10–12). Elevated glucose levels

stimulate advanced glycation end product (AGE) accumulation,

and excessive AGEs mediate dysregulated proteoglycan synthesis

and disc fibrosis (13). Additionally, diabetic microangiopathy may

compromise nutrient delivery to disc tissues, reducing nutrient

availability and impairing metabolic waste clearance (14).

Nevertheless, investigations into shared genetic and molecular

mechanisms linking diabetes and IDD remain limited.

To address this gap, this study employs bioinformatics

approaches to identify common biomarkers associated with both

T2DM and IDD. By integrating weighted gene co-expression

network analysis (WGCNA), machine learning, single-cell

sequencing (scRNA-seq) analysis, and protein docking, we aim to

determine key genes involved in this process, thereby providing

novel insights into the pathogenesis of diabetes-associated

intervertebral disc degeneration.
Materials and methods

Public data sources

All data were obtained from the Gene Expression Omnibus

(GEO) database (ht tps : / /www.ncbi .n lm.nih .gov/geo/)

(Supplementary Table 1). The dataset GSE7014 comprised

microarray data from 36 patients, from which 10 T1DM samples

were excluded, retaining 26 samples (20 T2DM and 6 normal

samples) for subsequent analysis. For IDD, expression data were

integrated from two independent datasets, GSE124272 and

GSE34095, resulting in a combined set of 11 degenerated disc

samples and 11 normal controls.
Batch effect correction and quality control

To mitigate technical variations between datasets, we applied a

systematic normalization and batch correction pipeline. Expression

data were merged by gene symbol and normalized using the

quantile method via the limma package. Batch effects were
Frontiers in Immunology 02
subsequently corrected using the removeBatchEffect function

from limma. Correction efficacy was evaluated using principal

component analysis (PCA) and expression distribution boxplots.

PCA was carried out on scaled data using prcomp, and results were

visualized through scatter plots with batch-wise confidence ellipses.
Diabetes mouse model and scRNA-seq
processing

All animal experiments were approved by the Ethics Committee

of Beijing Shijitan Hospital, Capital Medical University (Approval

No. Sjtkyll-lx-2021105), and were conducted in accordance with the

institutional guidelines for the care and use of laboratory animals.

ScRNA-seq data were generated from nucleus pulposus cells of 10

C57BL/6 mice. Diabetes was first induced in all mice by a high-fat/

high-sucrose diet and a single intraperitoneal injection of

streptozotocin (55 mg/kg). Thereafter, mice were divided into two

groups (5 vs. 5): One group remained diabetic, whereas the other

received treatment to achieve normoglycemia and served as the

treated control group. NPCs were isolated following the

experimental protocol described by Andrew Bratsman et al. (15).

Briefly, nucleus pulposus tissues were minced and washed with

RPMI-1640 medium (Gibco, C11875500137). Tissue dissociation was

performed using a vascular tissue dissociation kit (Bestopcell,

BA3310) according to the manufacturer’s instructions. After

digestion, the cell suspension was filtered through a 70-mm nylon

strainer (Thermo Fisher Scientific, 22-363-548) to remove debris and

centrifuged at 300 × g for 5 min at 4 °C. The pellet was resuspended in

PBS (Bioss, C7033) supplemented with 5% fetal bovine serum (FBS;

Solarbio, s9020). Red blood cells were lysed using a red blood cell lysis

buffer, followed by incubation for 15min at 4 °C and centrifugation at

450 × g for 5 min at 4 °C. The cell pellet was washed twice with PBS

containing 5% FBS and resuspended in the same buffer. Cell

concentration and viability were assessed using CountStar, and the

suspension was adjusted to a density of 600–1,200 living cells

per microliter.

Single-cell encapsulation and library preparation were

performed using the CelCode® Single Cell 3′ Transcriptome Kit

v1.0 following the manufacturer’s protocol. Approximately 70 mL of
master mix and cell suspension, 50 mL of barcoded gel beads, and 45
mL of partitioning oil were loaded into the CelCode® Driver to

generate gel bead-in-emulsions (GEMs). Reverse transcription was

performed to synthesize barcoded cDNA, which was then amplified

by PCR. Sequencing libraries were constructed and normalized

before being sequenced on an MGI DNBSEQ-T7 platform with

paired-end 150-bp reads (PE150), achieving a minimum depth of

50,000 reads per cell. All sequencing services were provided by

Bestopcell (Beijing).

Raw sequencing data were demultiplexed and aligned to the

reference genome using the CelScene® pipeline with default

parameters. The feature-barcode matrix was generated using the

CelScene® count module, which performed alignment, filtering,

barcode assignment, and UMI counting. Dimensionality reduction

was conducted via PCA, and the top 10 principal components were
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used for cluster identification using both K-means and graph-based

clustering algorithms.
Differential gene screening

Differentially expressed genes (DEGs) in T2DM and IDD were

identified using the limma package in R, with thresholds set at |log2 fold

change (FC)| > 0.5 and an adjusted p-value < 0.05. Volcano plots and

heatmaps were generated using the ggplot2 and pheatmap packages.
WGCNA

WGCNA was employed to identify clinically relevant co-

expression gene modules (16). First, gene expression data were

preprocessed by filtering highly variable genes based on median

absolute deviation (MAD > 0.5), and outlier samples were removed

via hierarchical clustering. The pickSoftThreshold function in the

WGCNA package was used to determine the optimal soft-

thresholding power (b) for constructing a scale-free topology

network. A weighted adjacency matrix was then computed and

converted into a topological overlap matrix (TOM) to assess gene

co-expression connectivity.

Hierarchical clustering based on TOM dissimilarity was

performed to group genes with similar expression patterns into

modules. Dynamic tree cutting (height = 0.25) was applied to merge

closely related modules. Module eigengenes (MEs) were calculated,

and their correlations with clinical traits were analyzed to identify

key modules associated with disease phenotypes.
PPI network analysis

The STRING database was utilized to construct protein–protein

interaction (PPI) networks, visualized using Cytoscape (v3.10.3).

Module analysis was performed with the MCODE plugin, and hub

genes were identified using the cytoHubba plugin.
Machine learning

Advanced machine learning algorithms were employed to

develop a predictive model for diabetes-associated IDD. Least

absolute shrinkage and selection operator (LASSO) regression was

implemented using the glmnet package (17). The Random Forest

(RF) algorithm was executed via the randomForest package in R

(18). Additionally, an artificial neural network (ANN) model was

constructed using the neuralnet and neuralnettools packages (19).
Immune infiltration

The relative abundance of 22 immune cell subtypes in these

samples was estimated using the CIBERSORT algorithm (20).
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Pearson correlation analysis was conducted to examine

associations between key genes and immune cell subtypes.
Molecular regulatory network of key genes

The HTFtarget database predicted transcription factors interacting

with key genes (21). mRNA–miRNA interactions were explored using

PITA, microT, and TargetScan, with consensus predictions retained.

MiRNet, Starbase, and LncBase v3 identified miRNA-lncRNA

interactions, validated if consistent across databases (22–24).

LncACTdb 3.0 predicted lncRNA-transcription factor interactions (25).
Drug–gene interactions and protein–
protein docking

DrugBank analyzed drug–gene interactions, whereas PyMOL

facilitated protein–protein docking and molecular visualization (26).
Statistical analysis

All data processing and analyses were performed using R

software (Version 4.4.1). For bulk RNA-seq differential expression

analysis, the limma package was used. For comparisons between

two groups in other analyses, the Wilcoxon test was applied.

Differences in IL1R1 expression across NP cell subclusters were

assessed using the Kruskal–Wallis test. Spearman correlation

analysis was conducted to examine the relationship between key

genes and immune cells, with a p-value < 0.05 considered

statistically significant.
Results

Identification of DEGs in IDD and T2DM

Figure 1 depicts the study flowchart. The expression profile dataset

GSE7014 was normalized. For the IDD datasets (GSE124272 and

GSE34095), raw data were integrated, and batch effects were corrected

using the removeBatchEffect function from the limma R package. The

efficacy of this batch effect correction was assessed using PCA, as

visualized in Figure 2. After merging the batch-corrected data,

normalization was performed, followed by the generation of volcano

plots and heatmaps for differential expression analysis of two datasets

(Figure 3). In the figure, red dots represent significantly upregulated

differentially expressed genes, and blue dots represent significantly

downregulated genes.

Construction of WGCNA and gene module screening

The WGCNA algorithm was utilized to identify key gene

modules closely associated with IDD, with the soft thresholding

power (b) set to 8. The dynamic tree-cutting algorithm delineated

16 gene modules, among which the blue module exhibited the most

significant correlation (correlation coefficient = 0.56) compared
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with other modules. Consequently, the blue module was selected as

the key module for subsequent analyses (Figure 4).
Protein–protein interaction network
construction

Intersection analysis of DEGs related to IDD, genes from the

IDD-associated blue module, and T2DM-related DEGs revealed

nine overlapping genes. Given that genes and their encoded

proteins may interact, a PPI network was constructed using the

STRING tool, comprising 99 nodes (Figure 5). To identify the most

interconnected module within the network, the MCODE plugin was

applied, yielding 45 key nodes. Further analysis using the

cytoHubba plugin with MCC, MCN, and EPC algorithms

identified nine common hub genes: IL1B, CXCR1, FCGR1A,

S100A12, FCGR2A, C5AR1, IL1R1, FCGR2B, and IL1R2 (Figure 6).
Identification and validation of key genes
in diabetes-associated IDD

Multiple machine learning algorithms were employed to screen reliable

biomarkers for diabetes-associated IDD. The LASSO regression

algorithm identified three potential diagnostic markers, whereas the

RF algorithm detected nine diagnostic genes. Venn diagram analysis
Frontiers in Immunology 04
ultimately revealed three overlapping diagnostic markers: S100A12,

IL1R1, and FCGR2B. The ANN diagnostic model was established

based on gene weights, and its performance was evaluated using

receiver operating characteristic (ROC) curves (Figure 7). The area

under the curve (AUC) values for S100A12, IL1R1, and FCGR2B were

0.744, 0.785, and 0.868, respectively, indicating robust diagnostic

efficacy for diabetes-associated IDD. Although all three genes

exhibited statistically significant differences between the normal and

IDD groups, forest plot analysis demonstrated that IL1R1 was the most

prominent risk factor specific to IDD (Figure 8).
scRNA-seq analysis

scRNA-seq data underwent standardized processing, including

quality control, normalization, and unsupervised dimensionality

reduction clustering. Principal component analysis and a resolution

of 0.1 yielded eight cell clusters (Figure 9). Based on cluster-specific

markers, four major cell types were identified in diabetic mouse

intervertebral discs: granulocytes (most abundant, highly expressing

S100A10, FN1, PRDX1, CRIP1, and AHNK), NP cells (highly

expressing ACAN, COL1A1, CLU, SOX9, SBSN, and SDC4),

monocytes (highly expressing PSAP, CTSS, and TGFBI), and

neurons (highly expressing PCSK1N, STMN2, SNCG, CALCA,

and TAC) (Figure 10).

Comparative analysis of overall cell proportions revealed that

diabetic mice exhibited a significant increase in granulocytes and
FIGURE 1

Flowchart of the study.
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monocytes and a decrease in NP cells compared with controls.

Further analysis of the core gene IL1R1 demonstrated its high

expression in NP cells. Subsequent subclustering of NP cells

identified five distinct subpopulations based on highly expressed

genes: NP progenitor cells (NPPCs, highly expressing KRT8,

KRT18, KRT19, and DSP), effector NP cells (effector NPc, highly

expressing FGF21, STC2, NPHS2, and WNT7B), immune-matrix

interacting NP cells (IM-INT NPc, expressing S100A8/A9,

ADAM8, and THBS1), inflammatory-stress end-stage NP cells

(IS-ES NPc, highly expressing CXCL1, CXCL2, SAA1, SAA2, and

GAS6)), and osteochondrogenic NP cells (OC NPc, highly

expressing SP7, ALPL, IBSP, and VIT). Analysis revealed an

expansion of effector NP and IS-ES NP subpopulations in

diabetic conditions (Supplementary Table 2). Within the NP

compartment, these two subpopulations served as the

predominant hubs of IL1R1 expression, with levels significantly

exceeding those in other NP subtypes (Figure 11). KEGG and GO

enrichment analyses of these subpopulations revealed their
Frontiers in Immunology 05
involvement in pathways such as the complement and

coagulation cascade, TGF-b signaling, and rheumatoid arthritis,

as well as biological processes including extracellular matrix

organization and acute inflammatory response (27) (Figure 12).
Immune infiltration, molecular regulatory
network, and drug interaction analysis of
IL1R1

The CIBERSORT algorithm was applied to investigate immune

cell infiltration in diabetes-associated IDD samples across 22

immune cell types. Compared with controls, IDD samples

exhibited statistically significant differences in plasma cells and

activated NK cells. Further analysis of the core gene IL1R1 and its

relationship with immune cell infiltration revealed a positive

correlation with neutrophils and negative correlations with

activated NK cells and dendritic cells.
FIGURE 2

Gene expression data before and after batch effect removal. (A) Box plot before batch effect removal. (B) Box plot after batch effect removal.
(C) PCA results before batch effect removal. (D) PCA results after batch effect removal.
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To elucidate the characteristics of diabetes-associated IDD, gene

set enrichment analysis (GSEA) of IL1R1 was performed,

highlighting its association with seven key pathways: DNA

mi sma t ch r ep a i r , N - g l y c an b i o s yn th e s i s , p r ima r y

immunodeficiency, base excision repair, DNA replication,

homologous recombination, and asthma. A regulatory network

encompassing TFs/mRNAs/miRNAs/lncRNAs was constructed,

including axes such as STAT1/IL1R1/hsa-let-7a-3p/lncRNA and

STAT2/IL1R1/hsa-miR-125a-3p/lncRNA. The cytoHubba plugin

identified lncRNA-involved regulatory circuits. DrugBank

database screening nominated icariin as a candidate therapeutic

compound. Additionally, the binding pocket of IL1R1 with

potential drugs was predicted (Figure 13).
Discussion

The etiology of IDD is multifactorial, involving both

endogenous genetic susceptibility and exogenous stress factors

such as aging, mechanical overload, nutritional deficiency, and

notably, metabolic disorders (14). Diabetes mellitus, as a systemic

metabolic disease, directly or indirectly contributes to alterations in
Frontiers in Immunology 06
the metabolic environment of various organs (10). Multiple clinical

studies have demonstrated a strong positive correlation between

T2DM and IDD, with longer disease duration and poorer glycemic

control associated with more severe disc degeneration (11).

Fundamental research suggests that elevated glucose levels lead to

increased accumulation of AGEs, which induce structural changes

in the cartilage endplate, ultimately resulting in nutrient deprivation

of NP cells and an elevated risk of IDD (13). Although an

association between these two conditions has been established,

studies utilizing bioinformatics and machine learning to identify

diagnostic biomarkers linking IDD and diabetes remain limited.

In this study, we analyzed gene expression profiles associated

with T2DM and IDD to identify shared pathogenic genes. WGCNA

was employed to discern gene modules specific to IDD, facilitating

further screening of IDD-related gene expression. Through

intersection analysis of module genes and DEGs, nine hub genes

were precisely identified using multiple algorithms. Machine

learning methods subsequently pinpointed three key genes:

IL1R1, S100A12, and FCGR2B. Based on these genes, an artificial

neural network diagnostic model was developed, which exhibited

robust predictive performance even in models of non-diabetic disc

degeneration. In clinical cohorts, it is challenging to isolate the effect
FIGURE 3

Screening DEGs of diabetes and IDD. (A, B). When comparing IDD (n=11) and normal (n=11) samples, a volcano plot and heatmap for DEGs is
shown. (C, D). When comparing T2DM (n=20) and normal (n=6) samples, a volcano plot and heatmap for DEGs is shown.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1692185
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yi et al. 10.3389/fimmu.2025.1692185
of diabetes on IDD progression due to the frequent presence of

confounding comorbidities in diabetic patients. Moreover, the

systemic complications of diabetes often manifest over prolonged

periods, posing challenges in translating high-quality clinical

findings into targeted interventions for diabetes-associated IDD.

Our approach offers distinct advantages by leveraging multi-omics

analysis and machine learning to identify key protein factors at the

genetic level, thereby laying the groundwork for potential

therapeutic targets. Notably, these key genes were identified for
Frontiers in Immunology 07
the first time in the context of diabetes-associated IDD, and ROC

analysis confirmed their diagnostic potential.

To investigate the direct and indirect effects of diabetes on

intervertebral discs, we established a T2DM mouse model and

performed scRNA-seq on NP tissues. The sequencing results

show four distinct cell subpopulations: NP cells, granulocytes,

neurons, and monocytes. The proportion of NP cells was

significantly higher in diabetic treatment control mice, whereas

granulocytes and monocytes were more abundant in diabetic mice.
FIGURE 4

Identification of the most associated module genes via WGCNA in IDD. (A) Based on the results of scale independence and average connectivity,
b=8 was selected as the best soft threshold. (B) Gene co-expression modules are displayed in various colors beneath the gene tree. (C) Heatmap of
the association between modules and IDD. (D) Heatmap of the association between different modules.
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Further examination of key gene expression across cell types

demonstrated marked differential expressions of IL1R1 and

S100A12, with IL1R1 upregulated in diabetic mice and S100A12

elevated in controls. Given the central role of NP cells in disc

function and degeneration, we prioritized IL1R1 for subsequent

investigation. Subclustering of NP cells identified five

subpopulations: NPPCs, effector NP cells, IM-INT NP cells, IS-ES

NP cells, and OC NP cells. Diabetic mice exhibited altered

proportions of all subpopulations except NPPCs, with increased

frequencies of effector NP cells, IM-INT NP cells, and OC NP cells.

IL1R1 was highly expressed in effector and IS-ES NP cells.

Mechanistically, IL1R1 binds interleukin-1 (IL-1) and recruits IL-

1 receptor accessory protein (IL-1RAP), initiating a signaling
Frontiers in Immunology 08
cascade via Toll/interleukin-1 receptor (TIR) domains that

activates MyD88 and IRAK, thereby mediating inflammatory

responses. Additionally, IL1R1 transcription is regulated by NF-

kB/JNK/MEK pathways, with p38 MAPK signaling being essential

for its expression (28–30). It is noteworthy that although potential

differences in gene regulatory networks exist between mouse models

and human patients, the fundamental role of IL-1 signaling in

propagating inflammatory responses is highly conserved across

species. These findings align with the chronic systemic

inflammation characteristic of diabetes.

Current evidence indicates that the intervertebral disc functions

as an immune-privileged site, with macrophages representing the

primary immune cell population involved in disc degeneration.
FIGURE 5

(A) Venn diagram shows that there are 99 intersected genes among DEGs of IVD, blue module genes of IVD, and DEGs of T2DM. (B) The relationship
among these genes in the PPI network.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1692185
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yi et al. 10.3389/fimmu.2025.1692185
Notably, our scRNA-seq results reveal that beyond monocytes,

granulocytes also represent a significant cellular component in

diabetes-associated IDD. Analysis of immune cell infiltration for

the key diabetes-disc degeneration gene IL1R1 revealed that IL1R1

expression exhibited a significant positive correlation with
Frontiers in Immunology 09
neutrophils, and a significant negative correlation with activated

dendritic cells and activated natural killer cells. Neutrophils,

members of the granulocyte family, primarily function to

phagocytose and digest invading bacteria and fungi, serving as the

first line of defense in the innate immune system. The substantial
FIGURE 6

Visualization of different algorithms in PPI network. (A). The first module of the PPI network. (B–D). Visualization of the MNC, MCC, and EPC
algorithms. (E). Nine common hub genes were identified by different algorithms of cytoHubba plugin.
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infiltration of granulocytes revealed by scRNA-seq robustly

confirms that the systemic inflammatory response triggered by

diabetes is also present within the intervertebral disc. These

findings suggest that IL1R1 may play a pivotal bridging role

connecting diabetes and intervertebral disc degeneration. We

performed qPCR on intervertebral disc tissue from an

independent cohort of mice. The results confirmed a significant

upregulation of IL1R1 in the diabetic group (p < 0.05), which is

highly consistent with our scRNA-seq findings (Supplementary
Frontiers in Immunology 10
Figure 1). However, we did not observe significant morphological

differences between the control and diabetic groups under the

duration of diabetes induction used in this study according to the

H&E staining of disc tissues (Supplementary Figure 2). This

discrepancy may indicate that diabetes initially drives a molecular

and inflammatory pathology within the disc microenvironment,

which precedes overt structural degeneration.

The presence of abundant neutrophils within the intervertebral

discs of diabetic mice is not surprising. Extensive research has
FIGURE 7

Identification of the key genes. (A, B). Key genes were identified form hub genes by machine learning LASSO regression. (C, D). Key genes were
identified from hub genes by the Random Forest (RF) algorithm. (E). S100A12, IL1R1, and FCGR2B were identified by overlapping. (F). Artificial neural
networks (ANN) model of the key genes.
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established that neutrophils are prevalent in various chronic

diseases, including, besides diabetes, atherosclerosis, non-alcoholic

fatty liver disease (NAFLD), and autoimmune diseases (31, 32).

Neutrophils, by triggering neutrophil extracellular traps (NETs),

can clear senescent vasculature, thereby creating conditions for

reparative angiogenesis in ischemic retinas. In diabetic

nephropathy, neutrophils can induce glomerular endothelial cell

dysfunction and pyroptosis, leading to further kidney damage (33).

Moreover, the interaction between neutrophils and platelets is

recognized as a key driver of thrombo-inflammation in thrombo-

occlusive vascular diseases. Consequently, targeting the

mechanisms of platelet–neutrophil interaction, platelet activation/

aggregation, and neutrophil recruitment holds promise as a
Frontiers in Immunology 11
potential therapeutic strategy to mitigate thrombo-inflammation

in diabetic patients (34). Our data strongly associate IL1R1

signaling with neutrophil infiltration and NP cell dysfunction

under diabetic conditions, the precise mechanistic connections

require further investigation. We propose a testable hypothesis:

Systemic hyperglycemia and metabolic dysfunction in T2DM lead

to the accumulation of AGEs and chronic systemic inflammation.

This inflammatory state promotes neutrophil activation and

infiltration into the disc environment, likely aided by diabetic

microangiopathy and disruption of immune privilege. Once

infiltrated, neutrophils serve as a key source of pro-inflammatory

cytokines, including IL-1b. The activation of IL1R1 signaling on NP

cells—particularly in effector and inflammatory-stress end-stage
FIGURE 8

Validation of the key genes. (A,B). The key genes are significantly expressed in IDD. (C, D). ROC curves of the key in the training set and control set.
(E). ROC analysis of the key genes of ANN model. (F). Forest plot of the key genes in IDD.
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subpopulations—then triggers downstream cascades via NF-kB and

MAPK pathways. This promotes a catabolic phenotype in NP cells,

marked by ECM degradation, cellular senescence, and a senescence-

associated secretory phenotype (SASP).

The potential link between IL1R1 signaling and cellular senescence

is further supported by our GSEA. GSEA of IL1R1 highlighted DNA
Frontiers in Immunology 12
mismatch repair as the most enriched pathway. Impaired mismatch

repair exacerbates DNA damage accumulation, promoting cellular

senescence or apoptosis (35, 36). Given the inherently weak repair

capacity of terminally differentiated NP cells, senescent or apoptotic NP

cells may adopt a SASP, releasing pro-inflammatory factors that

amplify degeneration in a vicious cycle (37, 38).
FIGURE 9

(A). Single-cell RNA sequencing of nucleus pulposus cells extracted from 10 mice reveals the heterogeneity of disc cells. (B, C). Umap and tSNE plot
showing the unbiased classification.
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We also constructed an integrated regulatory network centered

on IL1R1, incorporating transcription factors (TFs), mRNAs,

miRNAs, and lncRNAs. Key regulatory axes included STAT1/

IL1R1/hsa-let-7a-3p/LPP-AS2 and STAT6/IL1R1/hsa-miR-125a-

3p/LINC. These circuits elucidate the mechanisms sustaining

aberrant gene expression in diabetes-associated IDD. Non-coding

RNAs (miRNAs, lncRNAs) critically regulate inflammation,
Frontiers in Immunology 13
extracellular matrix degradation, and senescence/apoptosis—

processes that collectively drive IDD (39).

While current clinical management of IDD primarily targets pain

relief without addressing core degenerative mechanisms, in silico drug

screening offers an approach to identify potential therapeutic

candidates. Among them, icariin, a natural flavonoid derived from

Epimedium, has been suggested by previous pharmacological studies to
FIGURE 10

(A) The intervertebral disc cells were clustered into four groups using UMAP based on the expression of specific genes. (B) Heatmap showing
differentially expressed genes in four clusters. (C) Differentially expressed gene heatmap. (D) Rose plot indicating the heterogeneity of cell cluster
percentage between normal sample and diabetes sample. (E) Key gene expression in subclusters.
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possess properties relevant to degeneration, such as anti-inflammatory

and antioxidant effects (40, 41). Notably, its documented mechanism,

antagonizing NF-kB andMAPK-mediated pro-inflammatory cascades,

could be conceptually aligned with the IL1R1-driven pathology

implicated in our study of diabetes-associated IDD (42). Preliminary

molecular docking analysis indicated potential binding modes between

icariin and IL1R1, forming a hypothesis for a putative interaction that

warrants future experimental validation in vitro and in vivo.
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Limitations

Our bioinformatics analysis implicates the IL1R1 gene as

potentially exerting a profound influence on the occurrence and

progression of IDD within the context of diabetes mellitus. However,

several limitations warrant acknowledgment. First, the bioinformatics

analysis of human transcriptomic data is constrained by the relatively

small sample sizes of the publicly available datasets utilized. This
FIGURE 11

(A) Heatmap showing differentially expressed genes in five clusters of the NP cell. (B) Heterogeneity of cell cluster percentage in different samples.
(C) UMP plot displays the characteristics of subcluster cells and the expression of core gene IL1R1. (D) Key gene IL1R1 expression in various
subclusters. (E) Differential expression of the core gene IL1R1 in different subclusters.
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limitation may affect the statistical power and generalizability of the

identified differentially expressed genes, co-expression modules, and

machine learning model. Although we employed rigorous

computational methods and cross-validation to generate robust

hypotheses, future validation in larger, independent clinical cohorts is

essential to confirming the diagnostic utility of the identified

biomarkers, particularly IL1R1. Second, it is important to note that

the mouse model employed in this study was designed to induce

T2DM but not overt IDD through additional mechanical or injury-

based means like the needle puncture method. Therefore, we observed

significant molecular alterations within the disc cells of diabetic mice.

We cannot definitively state that our model recapitulates the full

spectrum of structural IDD. This necessitates a cautious

interpretation of our findings. The potential causal relationship
Frontiers in Immunology 15
between IL1R1 expression and the progression of IDD should be

viewed as a hypothesis generated from our scRNA-seq data, rather

than as an established fact. Future studies utilizing T2DM models

combined with controlled disc injury or aging models are essential to

conclusively establishing the mechanistic link and causal role of IL1R1

in driving diabetes-accelerated disc degeneration. Third, although

bioinformatic analyses suggested the potential therapeutic relevance

of icariin, this prediction requires rigorous experimental confirmation.

Robust in vivo efficacy data in relevant models and evidence from

large-scale clinical studies are currently lacking in substantiating its use

for IDD. Future work will focus on validating these predictions through

in vitro and in vivo functional studies. Finally, the inherent complexity

of diabetes as a metabolic disorder introduces potential confounding

factors, such as variations in patient lifestyle, comorbidities, and
FIGURE 12

(A, B). GO and KEGG enrichment analyses in effector NP cells. (C, D). GO and KEGG enrichment analyses in inflammatory stress-related NP.
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medication regimens. While our controlled animal model aimed to

isolate the effects of hyperglycemia, these human-specific variables

could influence gene expression profiles and potentially confound the

observed associations in clinical datasets. Future studies incorporating

detailed patient stratification and covariate analysis will be essential to

translating these findings into the clinical context.
Frontiers in Immunology 16
Conclusion

This study employed integrated bioinformatics approaches to

identify three key genes and construct a diagnostic model for diabetes-

associated IDD. Notably, IL1R1 emerged as closely associated with this

condition and was established as an independent risk factor.
FIGURE 13

(A) Immune infiltration analysis. (B) Association between IL1R1 and different immune cells. (C) GSEA of IL1R1. (D) Circular regulatory signaling
pathway. (E) Alluvial diagram of the TF–mRNA–miRNA–lncRNA network. (F, G). Icariin–IL1R1 interaction analysis. Protein–protein docking between
IL1R1 and targeting drug (blue).
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