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Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have

emerged as central regulators of immune cell function and inflammatory

processes. The UPR, mediated by three principal ER-resident sensors, IRE1a,
PERK and ATF6, maintains cellular homeostasis under stress conditions but also

contributes to pathogenesis when dysregulated. Recent studies revealed that the

UPR plays critical roles not only in protein folding but also in directing immune

cell fate, activation, and cytokine production. Although significant advances have

been made, various questions remain regarding the cell-type-specific and

context-dependent functions of ER stress responses. Understanding these

mechanisms would be crucial for developing targeted therapies. Therefore, in

this review, we provide a comprehensive overview of how ER stress and the UPR

influence various immune cell types, including monocytes, macrophages,

dendritic cells, granulocytes, T cells, B cells, microglia, and astrocytes, within

both peripheral and central immune systems.
KEYWORDS

endoplasmic reticulum stress, unfolded protein response, immune cells, PERK (PKR-like

endoplasmic reticulum kinase), ATF6 (activating transcription factor 6), IRE1 (inositol-
requiring enzyme 1)
1 Introduction: ER Stress and UPR

Endoplasmic reticulum (ER) is the largest organelle in the mammalian cell, performing

a wide range of essential functions, including the synthesis, transport, and folding of

proteins (1–3). It is also the primary site for the synthesis of lipids and steroids,

carbohydrate metabolism, and calcium storage (1, 4). A dysfunction in the ER’s protein-

folding capacity leads to the accumulation of unfolded or misfolded proteins in the ER, a

state known as “ER stress” (5). This stress is triggered by a variety of pathological

conditions, including depletion of calcium or redox homeostasis, glucose and energy

deprivation, hypoxia, the accumulation of misfolded mutant proteins, and pathogen

infection (2, 5–8). To counteract this, cells activate a sophisticated signaling network
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known as the Unfolded Protein Response (UPR). The UPR is

orchestrated by three ER-transmembrane sensors: Inositol-

requiring enzyme 1 (IRE1), protein kinase RNA (PKR)-like ER

kinase (PERK), and activating transcription factor-6 (ATF6) (9)

(Figure 1). Both IRE1 and ATF6 exist as two isoforms, a and b, and
the a-isoforms are considered the primary mediators of the UPR

(10, 11). The primary function of IRE1 is to splice X-box-binding

protein 1 (XBP1) mRNA, producing a transcription factor, spliced

XBP1 (XBP1s), that alleviates ER stress by enhancing protein-

folding and degradation pathways (10, 12). PERK mitigates ER

stress by phosphorylating eukaryotic translation initiation factor-2a
(eIF2a) to globally attenuate protein synthesis, while paradoxically

promoting the translation of the activating transcription factor-4

(ATF4), which can induce the key pro-apoptotic factor C/EBP-

homologous protein (CHOP) (10, 12). ATF6 responds to ER stress

by trafficking to the Golgi, where cleavage liberates its cytosolic

domain, ATF6 fragment (ATF6f), to act as a potent transcription

factor that primarily upregulates cytoprotective genes (9, 10, 12).

Experimentally, these UPR pathways are often studied by inducing

ER stress with chemical agents that promote the accumulation of

unfolded proteins, most notably tunicamycin (Tm), which inhibits

N-linked glycosylation, and thapsigargin (Tg), which disrupts ER

calcium homeostasis (13). In its adaptive phase, the UPR aims to

restore homeostasis by attenuating protein translation, upregulating

ER chaperones, and enhancing ER-associated degradation (ERAD)

of misfolded proteins (14). However, under severe and/or
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prolonged stress, the UPR switches from a pro-survival to a pro-

apoptotic program, triggering cell death (15).

Indeed, chronic ER stress and the ensuing dysregulation of the

UPR affect the several physical functions of cells, such as secretion of

hormones from pancreatic b-cells and adipocytes, resulting in the

pathogenesis of numerous human diseases, spanning from metabolic

conditions like diabetes and obesity to neurodegenerative disorders

such as Alzheimer’s and Parkinson’s disease (16–18). Furthermore,

the pathological role of ER stress extends to a range of diseases,

including autoimmune conditions like rheumatoid arthritis and

systemic lupus erythematosus, as well as cancer (19–23).

A state of chronic and/or low-grade inflammation is now

understood to be a key pathological hallmark at the root of a

wide range of diseases, including type 2 diabetes, cancer,

rheumatoid arthritis and Alzheimer’s disease (24–29). Central to

these inflammatory processes are immune cells, whose aberrant

activation and dysfunction play key roles in disease progression (30,

31). Within these immune cells, the ER serves as a critical nexus for

sensing cellular status and orchestrating adaptive responses.

Therefore, ER stress and the UPR may contribute to various

diseases by affecting immune cell function and thereby inducing

various inflammation.

Currently, the information on the role of ER stress and UPR in

immune cells remains insufficient. In this review we focused on and

summarized current understanding of the association of ER stress

and UPR with immune cell functions.
FIGURE 1

Overview of the ER stress and UPR in mammalian cell. ER stress, triggered by a wide range of physiological and pathological stimuli, leads to the
activation of three canonical sensor proteins (IRE1, PERK and ATF6) located on the ER membrane. These pathways orchestrate an adaptive program
to restore homeostasis in ER. Beyond this core function, the UPR is intricately linked to the regulation of immune system, modulating critical
processes in immune cells such as cytokine production, polarization, differentiation, NETosis, and neuroinflammation. The yellow box indicates
indirect stimuli that affect ER function. The orange box indicates direct stimuli that affect ER function. ER, endoplasmic reticulum; UPR, unfolded
protein response; IRE1, inositol-requiring enzyme 1; XBP1, X-box-binding protein 1; XBP1s, spliced XBP1; PERK, protein kinase RNA (PKR)-like ER
kinase; eIF2a, eukaryotic translation initiation factor-2a; ATF4, activating transcription factor-4; ATF6, activating transcription factor-6; ATF6f, ATF6
fragment; SFAs, saturated fatty acids; Tm, tunicamycin; Tg, thapsigargin; NETs, neutrophil extracellular traps.
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2 ER stress in immune cells as a driver
of inflammation

ER stress has emerged as a critical modulator of the

development, activation, and effector functions of both innate and

adaptive immune cells. Each of these cell types relies on the ER not

only for the synthesis and processing of proteins but also for

integrating environmental signals that influence their fate and

function. Dysregulated ER stress responses can thus profoundly

affect immune homeostasis and contribute to pathological

inflammation and tissue damage.
2.1 Peripheral immune cells

2.1.1 Monocytes
Monocytes circulate in the blood, defend against pathogens via

phagocytosis, and differentiate into macrophages or dendritic cells

(DCs) to support immune responses and tissue repair (32).

Tg-induced ER stress has been shown to induce an

inflammatory phenotype in monocytes, leading to the increased

mRNA expression of pro-inflammatory cytokines interleukin-6

(IL-6) and IL-8 (33). Furthermore, Tg-induced ER stress in

monocytes has been shown to amplify TNF-a production in

response to stressors such as lipopolysaccharide (LPS) and

palmitic acid (34).

2.1.2 Macrophages
Macrophages are a diverse population of innate immune

phagocytes found in all tissues, where they act as sentinels

essential for homeostasis, tissue repair, and host defense (35).

Conventionally, their activation states are described as a spectrum

between two main poles: the pro-inflammatory ‘M1’ phenotype,

which is central to host defense against infection, and the anti-

inflammatory, tissue-reparative ‘M2’ phenotype (36).

In macrophages, saturated fatty acids (SFAs) engage the IRE1a
pathway to promote the activation of the nucleotide-binding

oligomerization domain-like receptor family, pyrin domain-

containing 3 (NLRP3) inflammasome, which in turn leads to the

secretion of IL-1b, a pro-inflammatory cytokine closely linked to

insulin resistance (37). A key study by Shan et al. demonstrated that

myeloid-specific deletion of IRE1a protects mice from diet-induced

obesity and insulin resistance by promoting a shift from pro-

inflammatory M1 to anti-inflammatory M2 macrophage

polarization in adipose tissue (38). Corroborating the therapeutic

importance of these genetic findings, pharmacological inhibition of

IRE1a has also been shown to be highly effective. In mice with diet-

induced obesity, administering a specific inhibitor of IRE1a’s RNase
activity (STF-083010) significantly ameliorated insulin resistance and

protected against obesity by increasing thermogenesis (39). The

primary mechanism involved reducing the accumulation of pro-

inflammatory adipose tissue macrophages (ATMs), specifically the

‘M1-like’ CD11c+ and metabolically activated CD9+ subsets, thereby

curtailing adipose inflammation (39). While the IRE1a pathway is a

clear driver of this process, other branches of the UPR also contribute
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to the activation of macrophages, including the PERK-ATF4 axis.

Indeed, a study demonstrated that deficiency of ATF4, a transcription

factor downstream of the PERK pathway, suppresses the SFA-

induced expression of the pro-inflammatory cytokine IL-6 in

macrophages (40). In addition to these macrophage-intrinsic

pathways, a key study demonstrated that in obese mice, high fat

diet-induced CHOP expression, particularly within adipocytes, alters

the local tissue environment in a way that drives the polarization of

ATMs towards the pro-inflammatory M1 phenotype, resulting in the

induction of insulin resistance (41).

2.1.3 Dendritic cells
As professional antigen-presenting cells, DCs play critical roles

for innate and adaptive immune systems (42). DCs orchestrate the

adaptive immune response by presenting captured antigens to naive

T cells to provide activation signals, and by producing key

instructive cytokines, such as IL-12 and IL-23, for direct T cell

differentiation (42–44).

Although dispensable for DCs homeostasis in the steady state,

upon activation by both R848 and palmitic acid, ATF6a contributes

to the production of critical pro-inflammatory cytokines, including

IL-12p70 and IL-6 (45). Beyond the ATF6a pathway, other arms of

the UPR also act as potent modulators of cytokine production in

activated DCs. It has been demonstrated that inducing ER stress

with classical chemical stressors, such as Tm or Tg, in DCs

stimulated with pathogen-associated molecular patterns (PAMPs)

markedly enhanced the mRNA expression of the pro-inflammatory

cytokine IL-23 (46). The underlying mechanism was shown to be

dependent on specific UPR branches; the IRE1a pathway was

essential for the IL-23 response to the fungal PAMP zymosan,

while the PERK pathway was required for the response to the

bacterial PAMP LPS. In addition, XBP1s has been shown to be

indispensable for the development and survival of DCs (47). Recent

reports indicate that tripartite motif containing 29 (TRIM29),

known as a member of E3 ubiquitin ligase, promotes PERK-

mediated ER stress immune response by inducing SUMOylation

and stability of PERK (48). Moreover, TRIM29 is reported to

negatively regulate the innate immune response against virus

infections by inhibiting production of type I IFNs, such as IFN-a
and IFN-b, in DCs and macrophages (49–51). These findings

suggest that TRIM29-PERK axis would be a target for ER stress-

associated immune disorders.
2.1.4 Granulocytes (neutrophils, eosinophils and
basophils)

Granulocytes, which include neutrophils, eosinophils, and

basophils, play important roles in inflammation, encompassing

both pathogen clearance and immunoregulation (52).

Neutrophils are the most abundant leukocytes and essential first

responders in acute inflammation, where they contribute to host

defense and tissue repair (53). However, they exacerbate disease

through mechanisms including the release of proteases, such as

neutrophil elastase, and the formation of Neutrophil Extracellular

Traps (NETs), which has established them as a promising therapeutic

target for a range of chronic inflammatory conditions (53).
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In lupus hyperactivated IRE1a in neutrophils directly drives

pathological NETosis, a highly inflammatory process, as

demonstrated by the finding that pharmacological inhibition of

IRE1a (4m8C) reduces this process (54).
Eos inophi l s are now unders tood to be versa t i l e

immunomodulatory cells that bridge innate and adaptive immunity

(55). They fulfill this role by modulating the functions of B and T cells

and through antigen presentation. Furthermore, they communicate

extensively with other innate immune cells, including macrophages

and DCs, to regulate the overall inflammatory environment. A study

revealed that the IRE1a-XBP1s pathway is selectively and absolutely

required for eosinophil differentiation, while being dispensable for the

development of other granulocytes like neutrophils (56).

Basophils, rare granulocytes sharing features of both innate and

adaptive immunity, contribute to allergic inflammation by expressing

the high-affinity IgE receptor (FceRI) and releasing mediators, such

as histamine, in response to IgE-mediated stimulation (57, 58). The

role of ER stress in basophils remains poorly defined, though initial

evidence suggests a distinct reliance on the UPR. IgE receptor-

mediated stimulation of basophils leads to the activation of the

IRE1a pathway (59). However, the physiological significance of this

activation is not yet well understood.

2.1.5 T cells
T cells play a pivotal role in directing the adaptive immune

response, which ensures the effective and specific clearance of

invading pathogens (60). Conversely, dysfunction of T cell

development or activity contributes to the pathogenesis of a wide

spectrum of human illnesses, such as immunodeficiencies,

autoimmune conditions, and allergic disorders. Conventional T

cells are broadly divided into two main classes: CD4+ helper T cells

that orchestrate the immune response, and CD8+ cytotoxic T cells

that eliminate target cells (61).

In tumor-infiltrating T cells, the PERK pathway of the UPR has

been identified as a key driver of cellular exhaustion and energy

depletion (62). Pharmacological (GSK2606414) or genetic

inhibition of the PERK pathway in T cells was shown to preserve

their energy reserves and enhance their anti-tumor effector

functions, suggesting that targeting ER stress is a promising

strategy to bolster T cell-mediated immunity (62). UPR also plays

a critical role in shaping the differentiation of specific T helper cell

subsets. This is particularly evident in the case of T helper-17

(Th17) cells, a pro-inflammatory subset strongly implicated in the

pathogenesis of autoimmune diseases. A key study revealed that ER

stress inducers like Tm and Tg, markedly enhance the

differentiation of naive T cells into Th17 cells (63). The IRE1a-
XBP1s pathway is also crucial for the function of T helper 2 (Th2)

cells, a subset involved in allergic responses and anti-helminth

immunity. The IRE1a-XBP1s pathway plays a critical role during

Th2 cell activation by regulating the expression and secretion of

their signature cytokines, as well as their proliferation (64). ER

stress also critically influences regulatory T cells (Tregs), which are

essential for immune tolerance and inflammation control. ER stress

has been shown to mediate the detrimental effects of the stress

hormone cortisol on Tregs function (65). Specifically, cortisol
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exposure in the presence of a specific antigen reduces TGF-b
expression from Tregs, an effect that is prevented by the ER stress

inhibitor BiP inducer X. Beyond this, ER stress also plays critical

roles in the broader dysregulation of Th17/Treg balance (66). For

example, the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), has

been demonstrated to suppress reactive oxygen species (ROS)

production, consequently inhibiting Th17 differentiation and

promoting Treg differentiation. In addition, it has been reported

that in patients with ulcerative colitis, a synergistic effect between

environmental factors and ER stress inhibits the differentiation of

Tr1 cells, an IL-10-producing subset of Tregs (67).

2.1.6 B cells and plasma cells
B cells perform a variety of crucial immune functions, including

not only their classical roles in antibody production and antigen

capture via the B cell receptor (BCR), but also their capacity to act as

antigen-presenting cells (68, 69).

The differentiation of B cells into professional antibody-

secreting plasma cells is a process critically dependent on the

IRE1a-XBP1s pathway (70, 71). These plasma cells can produce a

diverse repertoire of antibody classes, each tailored for distinct and

specialized effector functions within the immune system (68). While

the IRE1a pathway is critical for differentiation, it is also co-opted

by malignant plasma cells in multiple myeloma, where its inhibition

suppresses the secretion of not only immunoglobulin light chains

but also key growth factors and cytokines, such as vascular

endothelial growth factor (VEGF), IL-1a, IL-6, and IL-8 (72).
2.2 Neuronal cells

2.2.1 Microglias
Microglia are the resident immune cells of the central nervous

system, forming a dynamic and motile network that continuously

surveys their local environment (73).

ER stress in microglia has been shown to drive pathological

inflammatory responses, while its pharmacological inhibition with

4-PBA is protective (74). Furthermore, a key study utilized mice

with a microglia-specific deletion of the ER stress sensor IRE1a.
When challenged with a high fat diet, male mice with this deletion

were significantly protected from obesity, glucose intolerance, and

hypothalamic inflammation compared to their wild-type

counterparts (75). In addition to the IRE1a pathway, the PERK

branch of the UPR has also been implicated as a key driver of pro-

inflammatory microglial polarization. For instance, a study using

LPS-stimulated microglia showed that the compound ascorbic acid

6-palmitate significantly inhibited the activation of the PERK/eIF2a
pathway (76). This suppression of ER stress, in turn, helped restore

the M1/M2 balance by promoting an anti-inflammatory M2

phenotype, evidenced by increased expression of IL-10 and

Arginase-1. High glucose, a key feature of diabetes, has also been

shown to induce a state of PERK branch activation in microglia. For

example, an in vitro study demonstrated that exposing microglial

cells to hyperglycemic conditions led to the upregulation of the key

ER stress markers CHOP and phosphorylated eIF2a via PERK
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pathway (77). This activation of the pro-apoptotic ER stress

pathway highlighted the vulnerability of microglia to

glucotoxicity-induced ER stress.

2.2.2 Astrocytes
Astrocytes are the most abundant glial cells in the central

nervous system and are essential for neuronal homeostasis and

function (78). Although astrocytes are not classically categorized as

immune cells due to their neuroepithelial origin, they are
Frontiers in Immunology 05
increasingly recognized as key regulators and effectors of

neuroinflammatory responses (79, 80).

It has been demonstrated in vitro that inducing ER stress in

astrocytes drives the expression of the pro-inflammatory cytokines,

TNF-a and IL-6 (81). Crucially, this inflammatory response was

significantly suppressed by co-treatment with a specific PERK

inhibitor (GSK2606414), providing direct evidence for the PERK

pathway’s causal role in driving astrocyte-mediated inflammation.

Beyond increasing cytokine production, PERK activation drives
TABLE 1 Summary of the roles of the UPR in immune cells.

Cell
UPR pathway
/molecule

Function Reference

Monocyte ER stress
IL-6 and IL-8 production.
Enhancement of LPS- and palmitic-induced TNF-a production.

(33)
(34)

Macrophage IRE1a
IL-1b secretion by SFAs.
M1 polarization.
Accumulation of pro-inflammatory ATMs.

(37)
(38)
(39)

ATF4 SFA-induced expression of IL-6. (40)

Adipocyte CHOP Polarization of macrophages towards the M1 phenotype. (41)

DCs ATF6a Production of IL-12p70 and IL-6. (45)

IRE1a Enhancing IL-23 expression by fungal PAMP zymosan. (46)

PERK Enhancing IL-23 expression by bacterial PAMP LPS. (46)

XBP1 Development and survival. (47)

Macrophage/DCs PERK Suppression of type I IFNs production. (49–51)

Neutrophil IRE1a NET formation. (54)

Eosinophil IRE1a-XBP1s Differentiation. (56)

Basophil IRE1a Activated by IgE receptor stimulation. (59)

T cell PERK
Cellular exhaustion and energy depletion (tumor-infiltrating T cells).
Attenuation of anti-tumor effector functions.

(62)

ER stress Differentiation of naive T cells into Th17 cells. (63)

IRE1a-XBP1s Activation, regulating their cytokine expression, secretion, and proliferation of Th2 cell. (64)

ER stress Decreased TGF-b expression from Treg. (65)

ER stress Promoting Th17 differentiation. (66)

ER stress Inhibition of Tr1 cell differentiation. (67)

B cell/Plasma cell IRE1a-XBP1s Differentiation into plasma cells. (70, 71)

IRE1a Secretion of immunoglobulin light chains, VEGF, IL-1a, IL-6, and IL-8. (72)

Microglia ER stress Neuroinflammation. (74)

IRE1a
Enhancement of high fat diet-induced obesity, glucose intolerance, and hypothalamic
inflammation.

(75)

PERK/eIF2a Suppression of promotion to M2 type. (76)

p-eIF2a/CHOP Activated by high glucose. (77)

Astrocyte PERK
Expression of TNF-a and IL-6.
Neuronal loss.

(81)
(82)

ER stress Enhancement of high glucose-induced IL-6, TNF-a and IL-18 secretion. (83)
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astrocytes into a pathological ‘reactivity state,’ causing them to lose

neuroprotective functions while gaining neurotoxic properties.

Crucially, a landmark study confirmed this causal link, as

astrocyte-specific genetic inhibition of the PERK pathway was

sufficient to prevent neuronal loss and extend survival in a prion

disease model (82). Furthermore, it has been reported that

hyperglycemic conditions activate UPR pathways in astrocytes,

resulting in an increased secretion of the pro-inflammatory

cytokines TNF-a, IL-6 and IL-18 (83).
2.3 ER stress and inflammasome

Inflammasomes function as cytoplasmic platforms that sense

PAMPs and/or danger-associated molecular patterns (DAMPs),

playing a key role in orchestrating host immune homeostasis in

various cells (84–86). Upon activation, they recruit and activate

caspase-1, which in turn processes pro-inflammatory cytokines

such as IL-1b and IL-18 and induces pyroptosis, a lytic form of

programmed cell death (84, 85, 87). Among several types of

inflammasomes, the NLRP3 inflammasome is the most extensively

studied and appears particularly responsive to cellular stress signals

(84). Recent studies have elucidated that ER stress-induced UPR

activates NF-kB signaling, leading to promotion of expression of

NLRP3 and IL-1b, resulting in activation of inflammasome (88).

Moreover, ER stress-induced calcium leakage from the ER into the

mitochondria leads to an increase in mitochondrial ROS (mROS)

production. These changes act as triggers for various endocrine

system diseases. Indeed, in models of fatty liver ischemia/

reperfusion, ER stress in macrophages induces mitochondrial

calcium overload, which in turn promotes mROS production and

activates NLRP3 signaling (89). In the hyperglycemic state of

diabetes, elevated ER stress leads to an increase in NLRP3

inflammasome-dependent IL-1b secretion, which causes b-cell
dysfunction and promotes obesity and insulin resistance (90).

Similar ER stress-inflammasome pathways have been implicated in

neurodegenerative disease. In Parkinson’s disease, pathological

a-synuclein aggregates have been shown to induce a profound ER

stress response in microglia, which subsequently promotes the

activation of the NLRP3 inflammasome (91). Thus, ER stress also

contributes to the activation of inflammasome which plays central

roles in the pathogenesis of chronic inflammation, metabolic diseases,

and neurodegenerative conditions.
2.4 Relation of pro-inflammatory cytokines
released from immune cells to endocrine
cells

The release of pro-inflammatory cytokines from immune cells is

a critical driver of widespread endocrine dysfunction. Cytokines,

such as TNF-a and IL-6, have been shown to directly impair insulin

receptor signaling in metabolic tissues, thereby contributing to the

development of insulin resistance (92–94). Moreover, pro-

inflammatory cytokines, including IL-1, IL-6, and TNF-a, are
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implicated in glucocorticoid resistance, thereby compromising the

body’s endogenous anti-inflammatory feedback mechanisms (95,

96). In addition to interfering with hormone signaling, pro-

inflammatory cytokines induce ER stress in endocrine tissues,

resulting in disruptions in protein folding, hormone synthesis,

and secretion, and may ultimately promote apoptosis (6).

Notably, in pancreatic b-cells, pro-inflammatory cytokines, IL-1b
and IFN-g, amplify ER stress, resulting in the pathogenesis of type 1

diabetes (97). Additionally, IFN-a induces ER stress in thyroid cells,

which lead to thyroid cell apoptosis (98).
3 Conclusion

ER stress and the UPR are now recognized as central regulators of

immune cell fate and function. Far beyond their canonical roles in

protein quality control, the UPR branches, IRE1a, PERK and ATF6,

serve as critical signaling hubs that translate environmental and

metabolic cues into immune responses. This review highlighted how

ER stress shapes inflammation bymodulating cytokine production, cell

differentiation, and polarization across diverse immune cell types,

including monocytes, macrophages, DCs, granulocytes, T cells, B

cells, and glial cells such as microglia and astrocytes (Figure 1;

Table 1). Notably, dysregulated ER stress skews immune responses

toward pathological inflammation, contributing to the progression of

metabolic, autoimmune, neurodegenerative, and malignant diseases.

However, our understanding remains incomplete. Various questions

remain regarding cell-type specificity, temporal dynamics, and the

crosstalk between UPR pathways. Future studies should aim to unravel

these complexities using conditional genetic models and systems-level

approaches. Moreover, targeted pharmacological modulation of

specific UPR branches holds therapeutic promise for controlling

inflammation without compromising essential ER functions. In

conclusion, deciphering the immunological roles of ER stress

responses offers a novel and fertile avenue for therapeutic

intervention in a wide range of inflammatory diseases.
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