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Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) have
emerged as central regulators of immune cell function and inflammatory
processes. The UPR, mediated by three principal ER-resident sensors, IREla,
PERK and ATF6, maintains cellular homeostasis under stress conditions but also
contributes to pathogenesis when dysregulated. Recent studies revealed that the
UPR plays critical roles not only in protein folding but also in directing immune
cell fate, activation, and cytokine production. Although significant advances have
been made, various questions remain regarding the cell-type-specific and
context-dependent functions of ER stress responses. Understanding these
mechanisms would be crucial for developing targeted therapies. Therefore, in
this review, we provide a comprehensive overview of how ER stress and the UPR
influence various immune cell types, including monocytes, macrophages,
dendritic cells, granulocytes, T cells, B cells, microglia, and astrocytes, within
both peripheral and central immune systems.

KEYWORDS

endoplasmic reticulum stress, unfolded protein response, immune cells, PERK (PKR-like
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1 Introduction: ER Stress and UPR

Endoplasmic reticulum (ER) is the largest organelle in the mammalian cell, performing
a wide range of essential functions, including the synthesis, transport, and folding of
proteins (1-3). It is also the primary site for the synthesis of lipids and steroids,
carbohydrate metabolism, and calcium storage (1, 4). A dysfunction in the ER’s protein-
folding capacity leads to the accumulation of unfolded or misfolded proteins in the ER, a
state known as “ER stress” (5). This stress is triggered by a variety of pathological
conditions, including depletion of calcium or redox homeostasis, glucose and energy
deprivation, hypoxia, the accumulation of misfolded mutant proteins, and pathogen
infection (2, 5-8). To counteract this, cells activate a sophisticated signaling network
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known as the Unfolded Protein Response (UPR). The UPR is
orchestrated by three ER-transmembrane sensors: Inositol-
requiring enzyme 1 (IREL), protein kinase RNA (PKR)-like ER
kinase (PERK), and activating transcription factor-6 (ATF6) (9)
(Figure 1). Both IRE1 and ATF6 exist as two isoforms, o and 3, and
the o-isoforms are considered the primary mediators of the UPR
(10, 11). The primary function of IRE1 is to splice X-box-binding
protein 1 (XBP1) mRNA, producing a transcription factor, spliced
XBP1 (XBP1s), that alleviates ER stress by enhancing protein-
folding and degradation pathways (10, 12). PERK mitigates ER
stress by phosphorylating eukaryotic translation initiation factor-2o.
(eIF2a) to globally attenuate protein synthesis, while paradoxically
promoting the translation of the activating transcription factor-4
(ATF4), which can induce the key pro-apoptotic factor C/EBP-
homologous protein (CHOP) (10, 12). ATF6 responds to ER stress
by trafficking to the Golgi, where cleavage liberates its cytosolic
domain, ATF6 fragment (ATF6f), to act as a potent transcription
factor that primarily upregulates cytoprotective genes (9, 10, 12).
Experimentally, these UPR pathways are often studied by inducing
ER stress with chemical agents that promote the accumulation of
unfolded proteins, most notably tunicamycin (Tm), which inhibits
N-linked glycosylation, and thapsigargin (Tg), which disrupts ER
calcium homeostasis (13). In its adaptive phase, the UPR aims to
restore homeostasis by attenuating protein translation, upregulating
ER chaperones, and enhancing ER-associated degradation (ERAD)
of misfolded proteins (14). However, under severe and/or
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prolonged stress, the UPR switches from a pro-survival to a pro-
apoptotic program, triggering cell death (15).

Indeed, chronic ER stress and the ensuing dysregulation of the
UPR affect the several physical functions of cells, such as secretion of
hormones from pancreatic B-cells and adipocytes, resulting in the
pathogenesis of numerous human diseases, spanning from metabolic
conditions like diabetes and obesity to neurodegenerative disorders
such as Alzheimer’s and Parkinson’s disease (16-18). Furthermore,
the pathological role of ER stress extends to a range of diseases,
including autoimmune conditions like rheumatoid arthritis and
systemic lupus erythematosus, as well as cancer (19-23).

A state of chronic and/or low-grade inflammation is now
understood to be a key pathological hallmark at the root of a
wide range of diseases, including type 2 diabetes, cancer,
rheumatoid arthritis and Alzheimer’s disease (24-29). Central to
these inflammatory processes are immune cells, whose aberrant
activation and dysfunction play key roles in disease progression (30,
31). Within these immune cells, the ER serves as a critical nexus for
sensing cellular status and orchestrating adaptive responses.
Therefore, ER stress and the UPR may contribute to various
diseases by affecting immune cell function and thereby inducing
various inflammation.

Currently, the information on the role of ER stress and UPR in
immune cells remains insufficient. In this review we focused on and
summarized current understanding of the association of ER stress
and UPR with immune cell functions.
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FIGURE 1

Overview of the ER stress and UPR in mammalian cell. ER stress, triggered by a wide range of physiological and pathological stimuli, leads to the
activation of three canonical sensor proteins (IRE1, PERK and ATF6) located on the ER membrane. These pathways orchestrate an adaptive program
to restore homeostasis in ER. Beyond this core function, the UPR is intricately linked to the regulation of immune system, modulating critical
processes in immune cells such as cytokine production, polarization, differentiation, NETosis, and neuroinflammation. The yellow box indicates
indirect stimuli that affect ER function. The orange box indicates direct stimuli that affect ER function. ER, endoplasmic reticulum; UPR, unfolded
protein response; IREL, inositol-requiring enzyme 1; XBP1, X-box-binding protein 1; XBP1s, spliced XBP1; PERK, protein kinase RNA (PKR)-like ER
kinase; elF2a, eukaryotic translation initiation factor-2o; ATF4, activating transcription factor-4; ATF6, activating transcription factor-6; ATF6f, ATF6
fragment; SFAs, saturated fatty acids; Tm, tunicamycin; Tg, thapsigargin; NETs, neutrophil extracellular traps.
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2 ER stress in immune cells as a driver
of inflammation

ER stress has emerged as a critical modulator of the
development, activation, and effector functions of both innate and
adaptive immune cells. Each of these cell types relies on the ER not
only for the synthesis and processing of proteins but also for
integrating environmental signals that influence their fate and
function. Dysregulated ER stress responses can thus profoundly
affect immune homeostasis and contribute to pathological
inflammation and tissue damage.

2.1 Peripheral immune cells

2.1.1 Monocytes

Monocytes circulate in the blood, defend against pathogens via
phagocytosis, and differentiate into macrophages or dendritic cells
(DCs) to support immune responses and tissue repair (32).

Tg-induced ER stress has been shown to induce an
inflammatory phenotype in monocytes, leading to the increased
mRNA expression of pro-inflammatory cytokines interleukin-6
(IL-6) and IL-8 (33). Furthermore, Tg-induced ER stress in
monocytes has been shown to amplify TNF-o production in
response to stressors such as lipopolysaccharide (LPS) and
palmitic acid (34).

2.1.2 Macrophages

Macrophages are a diverse population of innate immune
phagocytes found in all tissues, where they act as sentinels
essential for homeostasis, tissue repair, and host defense (35).
Conventionally, their activation states are described as a spectrum
between two main poles: the pro-inflammatory ‘M1’ phenotype,
which is central to host defense against infection, and the anti-
inflammatory, tissue-reparative ‘M2’ phenotype (36).

In macrophages, saturated fatty acids (SFAs) engage the IRElo
pathway to promote the activation of the nucleotide-binding
oligomerization domain-like receptor family, pyrin domain-
containing 3 (NLRP3) inflammasome, which in turn leads to the
secretion of IL-1P, a pro-inflammatory cytokine closely linked to
insulin resistance (37). A key study by Shan et al. demonstrated that
myeloid-specific deletion of IRElc. protects mice from diet-induced
obesity and insulin resistance by promoting a shift from pro-
inflammatory M1 to anti-inflammatory M2 macrophage
polarization in adipose tissue (38). Corroborating the therapeutic
importance of these genetic findings, pharmacological inhibition of
IREla has also been shown to be highly effective. In mice with diet-
induced obesity, administering a specific inhibitor of IRE1o’s RNase
activity (STF-083010) significantly ameliorated insulin resistance and
protected against obesity by increasing thermogenesis (39). The
primary mechanism involved reducing the accumulation of pro-
inflammatory adipose tissue macrophages (ATMs), specifically the
‘MI-like’ CD11c" and metabolically activated CD9" subsets, thereby
curtailing adipose inflammation (39). While the IRE1o pathway is a
clear driver of this process, other branches of the UPR also contribute
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to the activation of macrophages, including the PERK-ATF4 axis.
Indeed, a study demonstrated that deficiency of ATF4, a transcription
factor downstream of the PERK pathway, suppresses the SFA-
induced expression of the pro-inflammatory cytokine IL-6 in
macrophages (40). In addition to these macrophage-intrinsic
pathways, a key study demonstrated that in obese mice, high fat
diet-induced CHOP expression, particularly within adipocytes, alters
the local tissue environment in a way that drives the polarization of
ATMs towards the pro-inflammatory M1 phenotype, resulting in the
induction of insulin resistance (41).

2.1.3 Dendritic cells

As professional antigen-presenting cells, DCs play critical roles
for innate and adaptive immune systems (42). DCs orchestrate the
adaptive immune response by presenting captured antigens to naive
T cells to provide activation signals, and by producing key
instructive cytokines, such as IL-12 and IL-23, for direct T cell
differentiation (42-44).

Although dispensable for DCs homeostasis in the steady state,
upon activation by both R848 and palmitic acid, ATF6a. contributes
to the production of critical pro-inflammatory cytokines, including
IL-12p70 and IL-6 (45). Beyond the ATF60. pathway, other arms of
the UPR also act as potent modulators of cytokine production in
activated DCs. It has been demonstrated that inducing ER stress
with classical chemical stressors, such as Tm or Tg, in DCs
stimulated with pathogen-associated molecular patterns (PAMPs)
markedly enhanced the mRNA expression of the pro-inflammatory
cytokine IL-23 (46). The underlying mechanism was shown to be
dependent on specific UPR branches; the IRElo. pathway was
essential for the IL-23 response to the fungal PAMP zymosan,
while the PERK pathway was required for the response to the
bacterial PAMP LPS. In addition, XBP1s has been shown to be
indispensable for the development and survival of DCs (47). Recent
reports indicate that tripartite motif containing 29 (TRIM29),
known as a member of E3 ubiquitin ligase, promotes PERK-
mediated ER stress immune response by inducing SUMOylation
and stability of PERK (48). Moreover, TRIM29 is reported to
negatively regulate the innate immune response against virus
infections by inhibiting production of type I IFNs, such as IFN-o.
and IFN-f, in DCs and macrophages (49-51). These findings
suggest that TRIM29-PERK axis would be a target for ER stress-
associated immune disorders.

2.1.4 Granulocytes (neutrophils, eosinophils and
basophils)

Granulocytes, which include neutrophils, eosinophils, and
basophils, play important roles in inflammation, encompassing
both pathogen clearance and immunoregulation (52).

Neutrophils are the most abundant leukocytes and essential first
responders in acute inflammation, where they contribute to host
defense and tissue repair (53). However, they exacerbate disease
through mechanisms including the release of proteases, such as
neutrophil elastase, and the formation of Neutrophil Extracellular
Traps (NETs), which has established them as a promising therapeutic
target for a range of chronic inflammatory conditions (53).
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In lupus hyperactivated IREla in neutrophils directly drives
pathological NETosis, a highly inflammatory process, as
demonstrated by the finding that pharmacological inhibition of
IRElo (4u8C) reduces this process (54).

Eosinophils are now understood to be versatile
immunomodulatory cells that bridge innate and adaptive immunity
(55). They fulfill this role by modulating the functions of B and T cells
and through antigen presentation. Furthermore, they communicate
extensively with other innate immune cells, including macrophages
and DCs, to regulate the overall inflammatory environment. A study
revealed that the IRE1ai-XBP1s pathway is selectively and absolutely
required for eosinophil differentiation, while being dispensable for the
development of other granulocytes like neutrophils (56).

Basophils, rare granulocytes sharing features of both innate and
adaptive immunity, contribute to allergic inflammation by expressing
the high-affinity IgE receptor (FceRI) and releasing mediators, such
as histamine, in response to IgE-mediated stimulation (57, 58). The
role of ER stress in basophils remains poorly defined, though initial
evidence suggests a distinct reliance on the UPR. IgE receptor-
mediated stimulation of basophils leads to the activation of the
IRElo pathway (59). However, the physiological significance of this
activation is not yet well understood.

2.1.5T cells

T cells play a pivotal role in directing the adaptive immune
response, which ensures the effective and specific clearance of
invading pathogens (60). Conversely, dysfunction of T cell
development or activity contributes to the pathogenesis of a wide
spectrum of human illnesses, such as immunodeficiencies,
autoimmune conditions, and allergic disorders. Conventional T
cells are broadly divided into two main classes: CD4" helper T cells
that orchestrate the immune response, and CD8" cytotoxic T cells
that eliminate target cells (61).

In tumor-infiltrating T cells, the PERK pathway of the UPR has
been identified as a key driver of cellular exhaustion and energy
depletion (62). Pharmacological (GSK2606414) or genetic
inhibition of the PERK pathway in T cells was shown to preserve
their energy reserves and enhance their anti-tumor effector
functions, suggesting that targeting ER stress is a promising
strategy to bolster T cell-mediated immunity (62). UPR also plays
a critical role in shaping the differentiation of specific T helper cell
subsets. This is particularly evident in the case of T helper-17
(Th17) cells, a pro-inflammatory subset strongly implicated in the
pathogenesis of autoimmune diseases. A key study revealed that ER
stress inducers like Tm and Tg, markedly enhance the
differentiation of naive T cells into Th17 cells (63). The IRElo-
XBP1s pathway is also crucial for the function of T helper 2 (Th2)
cells, a subset involved in allergic responses and anti-helminth
immunity. The IRE1a-XBP1s pathway plays a critical role during
Th2 cell activation by regulating the expression and secretion of
their signature cytokines, as well as their proliferation (64). ER
stress also critically influences regulatory T cells (Tregs), which are
essential for immune tolerance and inflammation control. ER stress
has been shown to mediate the detrimental effects of the stress
hormone cortisol on Tregs function (65). Specifically, cortisol
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exposure in the presence of a specific antigen reduces TGF-3
expression from Tregs, an effect that is prevented by the ER stress
inhibitor BiP inducer X. Beyond this, ER stress also plays critical
roles in the broader dysregulation of Th17/Treg balance (66). For
example, the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), has
been demonstrated to suppress reactive oxygen species (ROS)
production, consequently inhibiting Th17 differentiation and
promoting Treg differentiation. In addition, it has been reported
that in patients with ulcerative colitis, a synergistic effect between
environmental factors and ER stress inhibits the differentiation of
Trl cells, an IL-10-producing subset of Tregs (67).

2.1.6 B cells and plasma cells

B cells perform a variety of crucial immune functions, including
not only their classical roles in antibody production and antigen
capture via the B cell receptor (BCR), but also their capacity to act as
antigen-presenting cells (68, 69).

The differentiation of B cells into professional antibody-
secreting plasma cells is a process critically dependent on the
IRE10i-XBP1s pathway (70, 71). These plasma cells can produce a
diverse repertoire of antibody classes, each tailored for distinct and
specialized effector functions within the immune system (68). While
the IREla pathway is critical for differentiation, it is also co-opted
by malignant plasma cells in multiple myeloma, where its inhibition
suppresses the secretion of not only immunoglobulin light chains
but also key growth factors and cytokines, such as vascular
endothelial growth factor (VEGF), IL-10,, IL-6, and IL-8 (72).

2.2 Neuronal cells

2.2.1 Microglias

Microglia are the resident immune cells of the central nervous
system, forming a dynamic and motile network that continuously
surveys their local environment (73).

ER stress in microglia has been shown to drive pathological
inflammatory responses, while its pharmacological inhibition with
4-PBA is protective (74). Furthermore, a key study utilized mice
with a microglia-specific deletion of the ER stress sensor IRElo.
When challenged with a high fat diet, male mice with this deletion
were significantly protected from obesity, glucose intolerance, and
hypothalamic inflammation compared to their wild-type
counterparts (75). In addition to the IRElo pathway, the PERK
branch of the UPR has also been implicated as a key driver of pro-
inflammatory microglial polarization. For instance, a study using
LPS-stimulated microglia showed that the compound ascorbic acid
6-palmitate significantly inhibited the activation of the PERK/eIF20.
pathway (76). This suppression of ER stress, in turn, helped restore
the M1/M2 balance by promoting an anti-inflammatory M2
phenotype, evidenced by increased expression of IL-10 and
Arginase-1. High glucose, a key feature of diabetes, has also been
shown to induce a state of PERK branch activation in microglia. For
example, an in vitro study demonstrated that exposing microglial
cells to hyperglycemic conditions led to the upregulation of the key
ER stress markers CHOP and phosphorylated eIlF2o via PERK
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pathway (77). This activation of the pro-apoptotic ER stress
pathway highlighted the vulnerability of microglia to
glucotoxicity-induced ER stress.

2.2.2 Astrocytes

Astrocytes are the most abundant glial cells in the central
nervous system and are essential for neuronal homeostasis and
function (78). Although astrocytes are not classically categorized as
immune cells due to their neuroepithelial origin, they are

TABLE 1 Summary of the roles of the UPR in immune cells.

UPR pathway

10.3389/fimmu.2025.1694102

increasingly recognized as key regulators and effectors of
neuroinflammatory responses (79, 80).

It has been demonstrated in vitro that inducing ER stress in
astrocytes drives the expression of the pro-inflammatory cytokines,
TNF-o and IL-6 (81). Crucially, this inflammatory response was
significantly suppressed by co-treatment with a specific PERK
inhibitor (GSK2606414), providing direct evidence for the PERK
pathway’s causal role in driving astrocyte-mediated inflammation.
Beyond increasing cytokine production, PERK activation drives

/molecule Function Reference
Monocyte ER stress ;I;:a;lzjnliﬁ E;()Ldftlsc-n:r?c.i palmitic-induced TNF-o production. gz;
IL-1P secretion by SFAs. (37)
Macrophage IRElo M1 polarization. (38)
Accumulation of pro-inflammatory ATMs. (39)
ATF4 SFA-induced expression of IL-6. (40)
Adipocyte CHOP Polarization of macrophages towards the M1 phenotype. (41)
DCs ATF60, Production of IL-12p70 and IL-6. (45)
IRElo Enhancing IL-23 expression by fungal PAMP zymosan. (46)
PERK Enhancing IL-23 expression by bacterial PAMP LPS. (46)
XBP1 Development and survival. (47)

Macrophage/DCs PERK Suppression of type I IFNs production. (49-51)
Neutrophil IRElo NET formation. (54)
Eosinophil IRElo-XBP1s Differentiation. (56)
Basophil IRElo Activated by IgE receptor stimulation. (59)
el PERK enston o i vumor oo o, ©
ER stress Differentiation of naive T cells into Th17 cells. (63)
IRElai-XBP1s Activation, regulating their cytokine expression, secretion, and proliferation of Th2 cell. (64)
ER stress Decreased TGF-f expression from Treg. (65)
ER stress Promoting Th17 differentiation. (66)
ER stress Inhibition of Trl cell differentiation. (67)
B cell/Plasma cell IRElo-XBP1s Differentiation into plasma cells. (70, 71)
IRElo Secretion of immunoglobulin light chains, VEGF, IL-10,, IL-6, and IL-8. (72)
Microglia ER stress Neuroinflammation. (74)
IRElo: Fnhancement of high fat diet-induced obesity, glucose intolerance, and hypothalamic 75)
inflammation.

PERK/eIF20u Suppression of promotion to M2 type. (76)
p-elF20/CHOP Activated by high glucose. (77)
o
ER stress Enhancement of high glucose-induced IL-6, TNF-o and IL-18 secretion. (83)
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astrocytes into a pathological ‘reactivity state,’ causing them to lose
neuroprotective functions while gaining neurotoxic properties.
Crucially, a landmark study confirmed this causal link, as
astrocyte-specific genetic inhibition of the PERK pathway was
sufficient to prevent neuronal loss and extend survival in a prion
disease model (82). Furthermore, it has been reported that
hyperglycemic conditions activate UPR pathways in astrocytes,
resulting in an increased secretion of the pro-inflammatory
cytokines TNF-o, IL-6 and IL-18 (83).

2.3 ER stress and inflammasome

Inflammasomes function as cytoplasmic platforms that sense
PAMPs and/or danger-associated molecular patterns (DAMPs),
playing a key role in orchestrating host immune homeostasis in
various cells (84-86). Upon activation, they recruit and activate
caspase-1, which in turn processes pro-inflammatory cytokines
such as IL-1B and IL-18 and induces pyroptosis, a lytic form of
programmed cell death (84, 85, 87). Among several types of
inflammasomes, the NLRP3 inflammasome is the most extensively
studied and appears particularly responsive to cellular stress signals
(84). Recent studies have elucidated that ER stress-induced UPR
activates NF-kB signaling, leading to promotion of expression of
NLRP3 and IL-1PB, resulting in activation of inflammasome (88).
Moreover, ER stress-induced calcium leakage from the ER into the
mitochondria leads to an increase in mitochondrial ROS (mROS)
production. These changes act as triggers for various endocrine
system diseases. Indeed, in models of fatty liver ischemia/
reperfusion, ER stress in macrophages induces mitochondrial
calcium overload, which in turn promotes mROS production and
activates NLRP3 signaling (89). In the hyperglycemic state of
diabetes, elevated ER stress leads to an increase in NLRP3
inflammasome-dependent IL-1f secretion, which causes B-cell
dysfunction and promotes obesity and insulin resistance (90).
Similar ER stress-inflammasome pathways have been implicated in
neurodegenerative disease. In Parkinson’s disease, pathological
o-synuclein aggregates have been shown to induce a profound ER
stress response in microglia, which subsequently promotes the
activation of the NLRP3 inflammasome (91). Thus, ER stress also
contributes to the activation of inflammasome which plays central
roles in the pathogenesis of chronic inflammation, metabolic diseases,
and neurodegenerative conditions.

2.4 Relation of pro-inflammatory cytokines
released from immune cells to endocrine
cells

The release of pro-inflammatory cytokines from immune cells is
a critical driver of widespread endocrine dysfunction. Cytokines,
such as TNF-o and IL-6, have been shown to directly impair insulin
receptor signaling in metabolic tissues, thereby contributing to the
development of insulin resistance (92-94). Moreover, pro-
inflammatory cytokines, including IL-1, IL-6, and TNF-o., are
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implicated in glucocorticoid resistance, thereby compromising the
body’s endogenous anti-inflammatory feedback mechanisms (95,
96). In addition to interfering with hormone signaling, pro-
inflammatory cytokines induce ER stress in endocrine tissues,
resulting in disruptions in protein folding, hormone synthesis,
and secretion, and may ultimately promote apoptosis (6).
Notably, in pancreatic B-cells, pro-inflammatory cytokines, IL-1f3
and IFN-v, amplify ER stress, resulting in the pathogenesis of type 1
diabetes (97). Additionally, IFN-o induces ER stress in thyroid cells,
which lead to thyroid cell apoptosis (98).

3 Conclusion

ER stress and the UPR are now recognized as central regulators of
immune cell fate and function. Far beyond their canonical roles in
protein quality control, the UPR branches, IREla,, PERK and ATF6,
serve as critical signaling hubs that translate environmental and
metabolic cues into immune responses. This review highlighted how
ER stress shapes inflammation by modulating cytokine production, cell
differentiation, and polarization across diverse immune cell types,
including monocytes, macrophages, DCs, granulocytes, T cells, B
cells, and glial cells such as microglia and astrocytes (Figure 1;
Table 1). Notably, dysregulated ER stress skews immune responses
toward pathological inflammation, contributing to the progression of
metabolic, autoimmune, neurodegenerative, and malignant diseases.
However, our understanding remains incomplete. Various questions
remain regarding cell-type specificity, temporal dynamics, and the
crosstalk between UPR pathways. Future studies should aim to unravel
these complexities using conditional genetic models and systems-level
approaches. Moreover, targeted pharmacological modulation of
specific UPR branches holds therapeutic promise for controlling
inflammation without compromising essential ER functions. In
conclusion, deciphering the immunological roles of ER stress
responses offers a novel and fertile avenue for therapeutic
intervention in a wide range of inflammatory diseases.
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