

OPEN ACCESS

EDITED AND REVIEWED BY
Betty Diamond,
Feinstein Institute for Medical Research,
United States

*CORRESPONDENCE Iman M. Talaat italaat@sharjah.ac.ae

RECEIVED 28 August 2025 ACCEPTED 04 September 2025 PUBLISHED 12 September 2025

CITATION

Elemam NM, Talaat IM, El Meligy OA and Hundt JE (2025) Editorial: Cellular and molecular regulators in non-neoplastic immune-mediated diseases. *Front. Immunol.* 16:1694308. doi: 10.3389/fimmu.2025.1694308

COPYRIGHT

© 2025 Elemam, Talaat, El Meligy and Hundt. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Cellular and molecular regulators in non-neoplastic immune-mediated diseases

Noha M. Elemam^{1,2}, Iman M. Talaat^{1,2,3*}, Omar A. El Meligy⁴ and Jennifer E. Hundt⁵

¹Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates, ²Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates, ³Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt, ⁴Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt, ⁵Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany

KEYWORDS

autoimmune disorders, inflammatory conditions, cellular regulators, molecular signaling pathways, immune-mediated diseases, therapeutic targets

Editorial on the Research Topic

Cellular and molecular regulators in non-neoplastic immunemediated diseases

Non-neoplastic immune-mediated diseases, including autoimmune and inflammatory disorders, arise from dysregulated cellular and molecular networks that drive chronic inflammation and tissue damage. Understanding the roles of cellular and molecular regulators is crucial for elucidating the mechanisms that drive these diseases and for developing more targeted and effective therapeutic strategies. In this Research Topic, we aimed to highlight studies that explore the roles of immune cell subsets, cytokines, chemokines, signaling pathways, and genetic factors in disease pathogenesis. By identifying novel immune regulators, the overarching goal is to foster precision medicine approaches that improve diagnosis, treatment, and patient outcomes.

One clinical challenge emerging from such immune dysregulation is chronic, difficult-to-heal skin wounds, particularly those linked to inflammatory disorders. Addressing this, Alghazali et al. investigated the role of Rab7 inhibition in promoting adipose-derived stem cell (ASC) differentiation into keratinocyte-like cells. Treatment with the Rab7 inhibitor CID-1067700 enhanced epidermal marker expression (P63, cytokeratin 5/14, filaggrin), reduced vimentin expression, and increased anti-inflammatory activity. Complementary microarray and protein array analyses revealed upregulation of HMOX-1, downregulation of proinflammatory signaling pathways (TNF, IL-17, chemokine, cytokine-receptor interactions), and reduced cytokine secretion. Together, these results point to the combined regenerative and anti-inflammatory potential of ASCs for managing chronic wounds.

Moving from tissue repair to systemic immune regulation, Wang et al. addressed the challenge of complement activation in autoimmune diseases and transplant rejection. While current complement inhibitors provide systemic blockade but increase the risk of infection, the authors designed bispecific antibodies (bsAbs) that locally recruit endogenous complement regulators, such as factor H (FH) or C4b-binding protein (C4BP), to cell

Elemam et al. 10.3389/fimmu.2025.1694308

surface antigens. These bsAbs successfully inhibited the classical, lectin, and alternative pathways, thereby protecting erythrocytes, leukocytes, and liposomes from complement-mediated lysis. This innovative approach highlights the potential of targeted complement inhibition to strike a balance between efficacy and safety.

In a different autoimmune context, immune thrombocytopenia (ITP) exemplifies the role of T-cell dysregulation in disease pathogenesis. Its pathogenesis involves both autoantibody production and T-cell-mediated platelet destruction, driven by autoreactive Th1, Th2, and Th17 responses alongside impaired Treg function. Genetic predispositions further exacerbate T-cell abnormalities. The review by Bu et al. emphasized how loss of tolerance underpins these mechanisms and discusses emerging therapies targeting T-cell pathways as promising strategies for ITP management.

Expanding on the theme of systemic autoimmune disorders, Systemic Lupus Erythematosus (SLE) illustrates the interplay between cytokines and organ-specific manifestations. In addition to its characteristic autoantibody production and multi-organ involvement, SLE frequently presents with oral lesions that significantly impair quality of life. Elemam et al. reviewed evidence implicating interleukins, interferons, and growth factors in shaping inflammation, apoptosis, and autoantibody generation. By framing cytokines as central regulators of SLE, the review underscores the therapeutic potential of targeting these pathways to improve both systemic and oral disease outcomes.

Central to these autoimmune processes are lymphocyte subsets, which orchestrate immune homeostasis and defense. Advances in immunophenotyping have refined our understanding of T, B, and natural killer (NK) cell populations, illuminating their developmental trajectories and functional specialization. Dysregulated subset distribution is increasingly recognized in autoimmune diseases, infections, malignancies, and treatment responses. As Chen et al. emphasized, monitoring lymphocyte subsets provides not only mechanistic insights but also valuable diagnostic and prognostic information that can inform precision therapies.

Beyond cellular subsets, molecular mediators also shape immune outcomes. The review by Gao et al. highlighted the role of cathepsin S (CTSS), a lysosomal cysteine protease expressed in immune cells, in regulating antigen presentation, intracellular signaling, and extracellular processes such as protease-activated receptor activation and matrix remodeling. Dysregulated CTSS activity is associated with autoimmune diseases, chronic inflammation, and malignancies, making it a promising therapeutic target for innovative interventions.

Finally, transcriptional regulation offers another layer of immune regulation. An et al. investigated the transcription factor

Kruppel-like factor 4 (KLF4), which is known to regulate immunosuppressive and antithrombotic pathways, and its interaction with CD55, a regulator of T- and B-cell responses. Using endothelial cells and macrophages, the authors demonstrated that KLF4 upregulates CD55, which then recruits p-CREB (phosphorylated cAMP-responsive element-binding protein-1) and CBP (CREB-binding protein) to drive KLF4 transcriptional activity. This CD55-KLF4 axis was shown to suppress proinflammatory and pro-coagulant proteins while inducing homeostatic factors, revealing a novel mechanism critical for vascular and immune homeostasis.

Author contributions

NE: Writing – original draft, Writing – review & editing. IT: Writing – original draft, Writing – review & editing. OE: Writing – original draft, Writing – review & editing. JH: Writing – original draft, Writing – review & editing.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.