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Objective: Breast cancer remains the leading cause of cancer-associated death

for women globally. For the group of ER+ breast cancer patients, there are still

some problems of poor prognosis that need to be solved. This study aims to

identify the poor prognostic tumor subgroups for the prognostic stratification of

ER+ patients.

Methods: Through a comprehensive multi-omics strategy, we systematically

characterized the biological and clinical significance of MUCL1+CD24+ cells in

breast cancer, and we used multiplex immunohistochemistry to confirm the

poor role of MUCL1+CD24+ cells.

Results: Single-cell transcriptomics unraveled the cellular ontogeny and immune

microenvironment interactions of this subset, while bulk RNA sequencing

exposed significant pathway heterogeneity and differential immunotherapy

responses associated with varying cellular abundance levels. Genomic

landscape analysis pinpointed specific somatic mutations correlated with

MUCL1(+) CD24(+) cell infiltration patterns, findings that were subsequently

validated through multiplex immunohistochemistry to demonstrate strong

prognostic value. Crucially, we developed a clinically translatable radiomics

approach that successfully correlated specific MRI features with cellular

prevalence, establishing a foundation for noninvasive detection of this

aggressive cellular subpopulation.

Conclusions: This integrative approach, spanning molecular to imaging analyses,

provides novel insights into both the biological drivers and clinical implications of

MUCL1(+) CD24(+) cells in breast cancer progression.
KEYWORDS

ER+ breast cancer, MUCL1(+) CD24(+) cells, tumor microenvironment, radiomics,
single-cell RNA sequencing
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Introduction

Breast cancer remains the predominant cause of cancer-

associated mortality in the female population globally (1). The

remarkable molecular heterogeneity of this malignancy results in

significantly divergent clinical prognoses among affected individuals

(2). Estrogen receptor-positive (ER+) breast cancer represents nearly

70% of all breast malignancies (3). Although the continuous research

and development of endocrine therapy and CDK4/6 inhibitors have

enabled ER+ breast cancer patients to have a better prognosis, the

development of endocrine resistance remains a critical clinical

challenge, especially in advanced disease stages (4, 5). Current data

indicate that approximately 40%–50% of metastatic ER+ cases

acquire treatment resistance within 24 months, frequently resulting

in disease progression and diminished survival outcomes (6).

Therefore, it is of vital importance to explore the factors of poor

prognosis in the group of ER+ breast cancer patients, which is of great

significance for the formulation of treatment strategies and the

screening of people with poor prognosis.

The emergence of single-cell transcriptomic profiling has

revolutionized our understanding of tumor heterogeneity,

facilitating the discovery of rare cellular subpopulations that

contribute to treatment refractoriness (7). This technological

breakthrough enables the correlation of genomic alterations with

cell-specific transcriptional programs, offering novel opportunities

to decipher resistance mechanisms and discover actionable

vulnerabilities (8). Besides that, advanced imaging modalities such

as MRI, CT, and PET now play a pivotal role in predicting

therapeutic response, molecular subtyping, and prognostic

stratification in oncology (9). The integration of radiomic features

with multi-omics data offers a transformative approach for

discovering clinically relevant biomarkers and personalized

treatment strategies.

In this study, we identified a tumor subgroup characterized by

high CD24 and MUCL1 expression, which was linked to poor

prognosis and invasive behavior. We also uncovered somatic

mutations associated with the infiltration of CD24(+) MUCL1(+)

cells, along with potential inhibitors for personalized treatment in ER+

breast cancer. Furthermore, a radiomic model effectively estimated the

infiltration levels of these cells. Overall, our findings offer a new

therapeutic target and a non-invasive strategy for immunotherapy and

individualized treatment in ER+ breast cancer patients.
Materials and methods

Data collection and quality control

A total of 14 single-cell RNA sequencing data including seven

ER+ breast cancer and seven paired lymph node metastatic tissues

were downloaded from GSE161529 (10). The Seurat (v4.3.3) (11)

package is used for single-cell sequencing quality control processes

including standardization, clustering, and dimensionality

reduction. Rigorous quality control was implemented, including

(1) the removal of low-quality cells based on mitochondrial gene
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content (<20%), unique molecular counts (>500 transcripts/cell),

and detected genes (>200 genes/cell). Doubletdfinder (v2.0.4) (12)

and harmony packages were utilized to remove the mixed cells and

batch effect. Bulk RNA expression profiles were also obtained from

TCGA database. Patients with complete clinical information and

expression profiles were included in the subsequent analysis.

Finally, 474 breast cancer samples with ER status (+), PR

status (+/-), and HER2 status (-) were included in the study. To

reduce the effect of gene length and depth of sequencing, the format

of the matrix was transformed into TPM.
Downstream analyses of scRNA-seq

A total of 40 cell clusters were identified after strict quality control

procedures. The cell types were further annotated based on public

research (13). Eight main cell types were annotated, and epithelial

cells were isolated for malignant cell identification. The CNV

correlation and score were calculated by infercnv (v1.14.2) (14)

package. The details could be found in a referenced study (15).

Subsequently, the same procedure as previously described was

performed on the cluster resolution of malignant cells. The epitools

(v0.5-10.1) package was used to investigate the tissue preference of

malignant cell subgroups. The top marker genes of each tumor

subgroup were analyzed by the “findallmarker” function. The

trajectory inference and cell developmental direction of malignant

cells were analyzed by using SCP (v0.4.7.9000) and vector packages.

Additionally, the dynamic lineages of tumor cells were reconstructed,

and gene clusters were further annotated based on biological process.
Estimation of cell abundance

Since single-cell data cannot directly reflect cell abundance, bulk

RNA data was used to infer cell abundance. The single-cell RNA

matrix was used as referenced matrix, while the TCGA-BRCA

matrix was used as observed matrix. CIBERSORTX (https://

cibersortx.stanford.edu/) was utilized to infer cell abundance. The

high and low abundance of the C4 subgroup was divided based on

the median value of the absolute score of C4. The statistics of

survival analysis was investigated by log-rank test.
Gene set enrichment analysis

The differential genes between high and low abundance of the C4

subgroup was evaluated by using the limma (v3.54.2) (16) package.

All significant genes were reordered and analyzed based on hallmark

gene sets. P-value <0.05 was considered statistically significant.
Genomic mutation analysis

The TCGA-BRCA somatic mutation data was downloaded by

using the tcgabiolinks (v2.26.0) (17) package. Maftools (v2.14.0)
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(18) package was used to integrate genomic profiles. The differential

mutations between the high- and low-C4 groups are identified by

the mafCompare function. Fisher’s exact test was used to detect

statistical significance. Co-occurrence and co-exclusion patterns

between genes were identified by the somatic interactions function.
TIDE and CMAP analysis

Tumor immune dysfunction and exclusion (TIDE) analysis was

conducted by using an online database (http://tide.dfci.harvard.edu/).

Concretely, the expression matrix was scaled and uploaded to the

TIDE database. The TIDE score of each sample was obtained, and

chi-square test was used to detect the statistical differences in

immune responses between the high- and low-C4 subgroups. The

potential drugs for high-C4 patients were identified by using the

CMAP database (19). The details could be found in our

previous study.
Non-invasive radiomics construction

A total of 11 ER+ breast cancers with both molecular subtype

information and radiomic imaging profiles were included in the

study. Pyradiomics (v3.0.1) was used to extract the radiomics

features. Two experienced radiologists with over 10 years of

experience in breast oncology together performed fully the

manual segmentation of the tumors. All features underwent Z-

score normalization, and Pearson correlation was used to filter

candidate features correlated with C4 cluster infiltration (p < 0.05).

LASSO regression algorithm was performed to establish a linear

regression model to estimate the C4 cluster abundance. Pearson

correlation and ROC curve were used to calculate the association

between the abundance of C4 cluster and radiomic score and assess

the discriminative efficiency of the model.
Breast cancer specimens

A total of 30 ER+ breast cancer specimens from patients who

underwent surgery were collected at Tianjin Medical University

Cancer Institute and Hospital. Informed written consent was

obtained from the participants. The study was approved by the

Ethical Committee of Tianjin Medical University Cancer Institute

and Hospital and adhered to the ethical guidelines of the

Helsinki Declaration.
Multiplexed fluorescent IHC staining and
H&E staining

The consecutive ER+ breast cancer tissues were used to evaluate

the expression level of EpCAM, MUCL1, and CD24. In brief, 5-mm
slides were deparaffinized and rehydrated through a graded series of

ethanol solutions prior to antigen retrieval in heated citric acid
Frontiers in Immunology 03
buffer (pH 6.0). Each slide was put through three sequential rounds

of staining, each including a protein block with blocking buffer

followed by primary antibody and corresponding secondary HRP-

conjugated antibody. Each HRP-conjugated antibody mediated the

covalent binding of a different fluorophore for signal amplification.

This reaction was followed by additional antigen retrieval in heated

citric acid buffer (pH 6.0) in microwave for 15 min to remove the

bound antibodies before the next step. After three sequential

reactions, the slides were counterstained with DAPI for 10 min

and mounted with fluorescence mounting medium. Anti-EPCAM

(GB12274, Servicebio), anti-MUCL1 (BS-17247R, Bioss), and anti-

CD24 (BS-23867R, Bioss) were used. Images were acquired with a

Nikon Eclipse C1 microscope.

For histological examination, a paraffin-embedded ear tissue

was cut into 5-mm sections with H&E staining (G1120, Solarbio)

and other staining protocols accordingly (G3632 and

G3670, Solarbio).
Statistical analysis

All bioinformatics analyses in this study were based on R studio

(v4.2.2) and python 3.7. All statistical methods can be found in the

corresponding methods sections.
Results

Annotation of cell types in ER+ breast
cancer single-cell data

To investigate different cell types in ER+ breast cancer, single-

cell transcriptomic analysis was performed on 14 ER+ breast cancer

samples from GSE161529, including seven primary ER+ breast

cancer tissues and seven paired lymph node metastatic tissues.

Rigorous quality control and doublet removal were implemented as

previously described. Following rigorous quality control and

normalization, a total of 63,369 high-confidence cells were

obtained, and 40 distinct cell clusters were identified (Figures 1A,

B). Dimensionality reduction using uniform manifold

approximation and projection and t-distributed stochastic

neighbor embedding demonstrated the clear segregation of the

annotated cell populations (Figures 1C, D). Then, cell type

annotation was performed by integrating marker gene expression

with reference datasets from online databases. We identified eight

major cell populations: B cells (N = 817), endothelial cells (N = 434),

epithelial cells (N = 41,860), fibroblasts (N = 2444), mast cells (N =

340), myeloid cells (N = 4433), plasma cells (N = 2,520), and T/NK

cells (N = 10,521) (Figure 1E). Standard marker genes were

employed for population annotation, including EPCAM

(epithelial), PECAM1 (endothelial), and other well-characterized

identifiers. In summary, eight main cell types in ER+ breast cancers

were identified for the subsequent research. Subsequently, we

performed DNA copy number variation analysis to recognize

highly confident malignant cells. As shown in Figures 2A–G,
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malignant cells presented obvious high CNV correlation coefficient

and CNV score compared to normal epithelial cells and myeloid

cells, indicating that the set threshold successfully distinguishes

tumor cells from normal cells. The tumor cells were standardized

and clustered, and 10 tumor subgroups were identified. Tissue

preference analysis showed clusters 5–9 (C5–C9) to be more

likely enriched in primary ER+ breast cancer tissues, while

clusters 0–4 (C0–C4) were more inclined to be enriched in lymph

node metastatic tissues (Figure 2H). Taken together, tumor cells
Frontiers in Immunology 04
were successfully isolated, and 10 distinct tumor subgroups were

firstly identified for subsequent analyses.
The cell trajectory and heterogeneity in
tumor microenvironment

Deciphering the intrinsic lineage dynamics of cell clusters is

crucial to elucidate their multifaceted roles in tumor
FIGURE 1

Annotation of cell types in ER+ breast cancer single-cell data. Reduced-dimension visualization of t-distributed stochastic neighbor embedding (a)
and uniform manifold approximation and projection (b) of cell clusters in single-cell RNA datasets, with each color representing a different cell type.
Reduced-dimension visualization of t-distributed stochastic neighbor embedding (c) and uniform manifold approximation and projection (d) of cell
types in single-cell RNA datasets, with each color representing a different cell type. (e) Heatmap showing the specific markers for cell annotation.
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microenvironment (TME) remodeling. Thus, we analyzed the

landmark genes with the highest expression in 10 different cell

populations and presented them in the form of heat maps

(Figure 3A). Cell trajectory analysis indicated six potential cell

lineages that existed in these 10 clusters (Figure 3B), and each

trajectory was displayed separately with the pseudo-time

development (Figure 3C). Then, cell development analysis was

conducted for validation, showing that lineage 4 and lineage 7 were

the differentiation starting point of cell development, which is

consistent with the results of the pseudo-temporal analysis.
Frontiers in Immunology 05
Meanwhile, we presented the trends of cell differentiation and

development (Figure 3D). We note that C4 is the branching point

of all phylogenetic evolutionary trajectories, suggesting that this

subgroup has a high degree of phylogenetic plasticity. Dynamic cell

trajectory analysis was also performed to confirm the changes of

biological function and markers (Figure 3E). Collectively, our findings

delineate the cellular ontogeny of ER+ cells and their associated

transcriptional reprogramming during tumor progression. The

identified molecular signatures may serve as diagnostic biomarkers

for ER+ patients’ subpopulations and novel therapeutic targets.
FIGURE 2

Isolation of malignant cells from epithelial cells. (a–g) The copy number variation (CNV) correlation and score of each primary ER+ breast cancer
were visualized by scatter plot. (h) Tissue preference confirmed the enrichment tendency of each tumor subgroup.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1695689
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1695689
MUCL1(+) CD24(+) subcluster was
correlated with prognostic outcomes of ER
+ breast cancer patients

Survival analysis using the KM-plotter platform revealed

significant prognostic differences among breast cancer subclusters.

Patients in the C4 subgroup exhibiting high invasiveness
Frontiers in Immunology 06
demonstrated markedly reduced overall survival (OS), suggesting

aggressive clinical behavior (Figure 4A). Based on the analysis results

in the previous study (Figure 3A), the markers of the C4 subgroup

were identified as MUCL1, CD24, KRT7, S100A10, and VIM

(Supplementary Table S1). A multiplex immunohistochemistry

(mIHC) was performed on tumor specimens from ER+ breast

cancer patients and based on the expression levels of C4-specific
FIGURE 3

Characterization of cell trajectory of tumor cells. (a) Heatmap showing the overexpressed gene expression level of each tumor subgroup.
Pseudotime cell trajectory of tumor cells (b) and six potential cell lineages (c). (d) Cell developmental analysis confirmed the origin of cell states.
(e) Dynamic gene expression heatmap showing the gene expression tendency based on lineages 3 and 4. GO_BP, gene ontology biological process.
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markers (MUCL1 and CD24); these cases were stratified into C4-high

invasive and C4-low invasive subgroups (Figure 4B). Subsequently,

we evaluated the differences in DFS between the two groups of

people, the results of which indicated that the population with a high

expression of MUCL1 and CD24 had a worse prognosis (Figure 4C).

Besides that, the GSEA enrichment analysis results of the two groups

of people showed that high expressions of MUCL1 and CD24 were

positively associated with the EMT process (Figure 4D) as well as the

TGF-b signaling pathway (Figure 4E). These findings demonstrate

that the C4 subgroup, characterized by dual MUCL1(+) CD24(+)
Frontiers in Immunology 07
expression, correlates with aggressive tumor behavior and inferior

clinical outcomes.
The somatic mutations were associated
with the upregulation of MUCL1(+) CD24
(+) cells

Given the established role of somatic mutations in modulating

cellular infiltration patterns, we propose that tumor-derived genetic
FIGURE 4

CD24(+) MUCL1(+) cells were associated with unfavorable survival of ER+ breast cancer patients. (a) Kaplan–Meier curve showing the survival
probability of high and low abundance of C4 subgroup according to the median value of enrichment score. (b) Multiplex immunohistochemistry
indicating the number of CD24(+) MUCL1(+) cells in ER+ breast cancer tissues. (c) Disease-free survival outcome of high- and low- abundance of
CD24(+) MUCL1(+) cells. (d, e) Gene set enrichment analyses suggesting that the high abundance of CD24(+) MUCL1(+) cells was associated with
epithelial–mesenchymal transition and TGF-beta signaling pathways.
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alterations may similarly regulate MUCL1(+) CD24(+) cell expression

within the tumor microenvironment. To identify the most important

somatic mutations related to the infiltration of MUCL1(+) CD24(+)

cells, we grouped the patients into high- and low-MUCL1(+) CD24(+)

groups as previously described. The SNV analysis showed that the

somatic mutations of PIK3CA (P < 0.001), TAF1 (P < 0.01), and

AKT1 (P < 0.05) were closely associated with the high-MUCL1(+)

CD24(+) group (Figure 5A). Notably, the MUCL1(+) CD24(+) high-

expression group exhibited significant genetic interaction patterns,

with strong co-occurrence andmutual exclusivity relationships among

key alterations (Figure 5B). In contrast, these patterns were markedly

attenuated in the low-expression cohort (Figure 5C). These results
Frontiers in Immunology 08
reveal a subtle relationship between MUCL1(+) CD24(+) cells and

somatic mutations.
MUCL1(+) CD24(+) subcluster
demonstrated association with immune
response modulation

The previous study expounded that C4 subgroup cells may have

a prognostic predictive role in ER+ breast cancer. Subsequently, we

explored the performance of this type of subgroup in immune

response and breast cancer treatment. The immune escape ability of
FIGURE 5

Genomic landscape of high and low infiltration levels of CD24(+) MUCL1(+) cells. (a) Forest plot illustrating the focal somatic single-nucleotide
variant (SNV) being significantly different between patients with high and low CD24(+) MUCL1(+) cell infiltrations. OR >1 indicates a higher SNV
frequency in the high CD24(+) MUCL1(+) cell infiltration group. OR <1 indicates a higher SNV frequency in the low infiltration group. *P < 0.05,
**P < 0.01, ***P < 0.001. (b, c) Landscape of gene co-mutations in patients with low and high abundance of CD24(+) MUCL1(+) cells.
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the ER+ breast cancer cell population was evaluated by using the

TIDE database (http://tide.dfci.harvard.edu/) (Figure 6A), and there

were significant differences in the immune response ability in the

groups with high and low infiltration of the C4 subpopulation, the

results of which indicated that a higher percentage of C4

subpopulation exhibited a lower immune response (Figure 6B).

Then, drugs with high sensitivity to the C4 subgroup were screened
Frontiers in Immunology 09
out based on the scores. The top-ranked ones include 7b-cis, BMS-

345541, and THM-I-94 (Figure 6C). Meanwhile, the included drugs

and their potential mechanisms are listed in Figure 6D. These

findings revealed that the C4 subgroup is also involved in immune

response and drug sensitivity regulatory process. Further research is

conducive to providing new targets and treatment strategies for

clinical practice.
FIGURE 6

Exploration of potential therapies for patients with high infiltration level of CD24(+) MUCL1(+). (a) Correlation between TIDE score and immune
response status. (b) Correlation between different C4 groups and immune response status. (c) Heatmap showing several results of CMAP with
specific scores of drugs. (d) Potential drugs identified for patients with a high infiltration level of C4.
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Noninvasive MRI radiomics could be a
promising tool to evaluate the infiltration
of MUCL1(+) CD24(+) subcluster in ER+
breast cancer

Given the significant clinical associations of the MUCL1(+)

CD24(+) population, we systematically evaluated its therapeutic

potential applications. Our analysis included 61 ER+ breast cancer

patients from the TCGA cohort with paired bulk RNA-seq and

dynamic contrast-enhanced MRI (DCE-MRI) data. The tumor

regions were segmented using the radiomics module in 3D Slicer

software (Figure 7A). Pearson correlation analysis was performed to

further identify significant radiomic features associated with the

abundance of MUCL1(+) CD24(+) population (Supplementary

Table S2). Then, we employed the LASSO regression algorithm

based on 14 valuable features to develop a predictive model to

estimate MUCL1(+) CD24(+) subpopulation abundances,

balancing the feature selection with regularization to optimize

model performance (Figures 7B, C, Supplementary Table S3). The

cohort was randomly divided into the training set (N = 43) and the

validation set (N = 18). Then, the analysis revealed that the

infiltration level of the C4 cluster and the radiomics score showed a

strong positive correlation in both the training set (Figure 7D) and

the validation set (Figure 7E). Besides that, the exploratory analysis

based on ROC curve also showed a potential association between

radiomic score and the infiltration of C4 cluster infiltration in both

the training set (Figure 7F) and the validation set (Figure 7G). In

summary, we established a clinically applicable radiomics model that

accurately predicts C4 cluster abundance, offering a non-invasive

approach to personalize therapy for ER+ breast cancer patients.
Discussion

This investigation delineates a distinct C4 cellular

subpopulation within ER+ breast cancer, identified via single-cell

transcriptomic profiling and defined by the co-expression of

MUCL1 and CD24. This phenotype demonstrated a significant

correlation with adverse clinical outcomes, prompting further

interrogation of its biological determinants. We also explored the

dynamic evolution of different clusters to reveal the characteristics

of each subtype. Additionally, we analyzed potential somatic

mutations linked to the infiltration of these clusters. Finally, a

radiomic model was established to estimate the abundance of

target C4 cluster. To our knowledge, this is the first study to

characterize the role of MUCL1(+) CD24 (+) cells in ER+ breast

cancer using multi-omics strategies, including spatial

transcriptomics and radiomics. Our research provides pioneering

insights into the pro-tumor effects and potential clinical

applications of MUCL1(+) CD24 (+) cells in ER+ breast cancer.

Single-cell RNA sequencing has opened up new avenues for the

development of tumor markers, and a large number of studies have

focused on the subpopulation analysis of the tumor
Frontiers in Immunology 10
microenvironment—for instance, Ma et al. (20) identified a distinct

luminal subgroup with a high expression level of HPN to diagnose

and stratify early-stage prostate cancer by tissue-based single-cell

RNA sequencing. Yang et al. (21) found a CEBPB+ tumor subcluster

that specifically drives the formation of M2 tumor-associated

macrophages to promote malignancy growth in glioblastoma.

Additionally, Guo et al. (22) discovered that a metastasis-associated

cell cluster overexpressed RAB13 in ovarian cancer by analyzing the

primary and pair lymph metastatic node tissues. These studies

demonstrate the great potential of single-cell sequencing in the

development of tumor biomarkers. It is worth noting that studies

analyzing subgroups of breast cancer have also been reported. Wang

et al. (15) identified a tumor subgroup that overexpressed NENF,

which is associated with distant metastasis of triple-negative breast

cancer. Two distinct molecular subtypes of breast cancer stem cells

have also been reported by analyzing single-cell RNA data (23).

However, few studies have focused on the tumor heterogeneity of ER

+ breast cancer. Our study reported a tumor cluster (C4 subgroup)

with double-positive status of CD24 and MUCL1 in ER+ breast

cancer, which was strongly associated with tumor metastasis. We

noted that the C4 subgroup is at the differentiation bifurcation point

between primary ER+ breast cancer and lymph node metastases.

More interestingly, cell preference analysis showed that the C4

subgroup was enriched in primary tumor tissue, which suggests

that the C4 subgroup may be the pre-differentiation state of lymph

node metastatic tumor cells, showing a high degree of lineage

plasticity. Furthermore, survival analysis and mIHC confirmed the

unfavorable role of the C4 subgroup. The tumor metastasis-related

signaling pathways including epithelial–mesenchymal transition (24)

and TGF-beta signaling (25) were proved to be highly enriched in

high abundance of C4 subgroup patients, supporting the pro-

metastasis role of C4 subgroup. In summary, our findings reveal

and define a class of tumor subpopulations that promote the

metastasis of ER+ breast cancer, providing new biomarkers for the

diagnosis and treatment of ER+ breast cancer.

The heterogeneity of tumor cell infiltration has been confirmed

to be associated with focal somatic mutations (13). We observed

that the high infiltration level of the C4 subgroup was associated

with the somatic mutations of PIK3CA and FOXA1. PIK3CA-

mutated ER+ metastatic breast cancer patients have been reported

to demonstrate a poor outcome and resistance to chemotherapy

(26). Meanwhile, FOXA1 mutations were confirmed to be

associated with a lower response to aromatase inhibitors (27).

These results reveal the source of infiltration heterogeneity in the

C4 subpopulation and potential targeted therapeutic strategies for

the C4 subpopulation. We next explore the novel therapy treatment

for the C4 subgroup. We found that patients with high abundance

of the C4 subgroup presented a lower proportion of immune

responses by in silico analysis, indicating that immunotherapy

may not be suitable for patients with a high infiltration of the C4

cluster. We utilized the CMAP database for the identification of

potential inhibitors to target the C4 subgroup, which provides a

theoretical basis for individual treatment for ER+ breast cancer.
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Non-invasive assessment of radiomics has also been applied to a

variety of tumors (28, 29)—for example, Wang et al. (13) used

single-cell RNA to confirm the favorable role of gamma-delta T cells

and developed a radiomic score to evaluate the infiltration level of

gamma-delta T cells and the application of radiomics. In this study,
Frontiers in Immunology 11
we constructed a radiomic model to estimate the abundance of the

MUCL1(+) CD24(+) subcluster. Both the training set (AUC =

0.839) and the validation set (AUC = 0.909) demonstrated a good

discriminatory ability in identifying the abundance of the C4

subgroup. Overall, we constructed a model for noninvasive
FIGURE 7

Non-invasive radiomic model construction. (a) Example indicating the segmentation of gross tumor volume on DCE-T1 MRI. (b) Parameter tuning
plot for the LASSO regression analysis. (c) Distribution of coefficients for variables in the LASSO regression is presented, with each curve representing
a radiomics feature filtered using Pearson’s correlation. (d, e) Pearson’s correlation was calculated in the training set (d) and the validation set (e)
between the z-score-normalized abundance of CD24(+) MUCL1(+) cells assessed by the transcriptome and the fitted value obtained from the linear
regression radiomics model. (f, g) ROC curve indicating the model’s ability to discriminate the abundance of CD24(+) MUCL1(+) cells in both the
training set (f) and the validation set (g).
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assessment of C4 subset abundance based on the imaging features of

the C4 subset, which has good efficacy and may serve as a potential

tool for future clinical translational applications.

It needs to be clarified that there are also deficiencies in our

research. While our multi-omics integration provides comprehensive

insights, cross-platform validation using alternative sequencing

technologies (e.g., single-nuclei RNA-seq, spatial proteomics) would

strengthen the findings. Additionally, in vivo and in vitro experiments

need to be conducted to further explore the molecular function of the

MUCL1(+) CD24(+) tumor cluster. Future work should incorporate

functional validation through mechanistic studies and expand clinical

correlation using independent cohorts. Although the current

radiomic analysis serves as a proof of concept, prospective

collection of multicenter MRI datasets will be essential for

clinical translation.
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