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Objective: Breast cancer remains the leading cause of cancer-associated death
for women globally. For the group of ER+ breast cancer patients, there are still
some problems of poor prognosis that need to be solved. This study aims to
identify the poor prognostic tumor subgroups for the prognostic stratification of
ER+ patients.

Methods: Through a comprehensive multi-omics strategy, we systematically
characterized the biological and clinical significance of MUCL1+CD24+ cells in
breast cancer, and we used multiplex immunohistochemistry to confirm the
poor role of MUCL1+CD24+ cells.

Results: Single-cell transcriptomics unraveled the cellular ontogeny and immune
microenvironment interactions of this subset, while bulk RNA sequencing
exposed significant pathway heterogeneity and differential immunotherapy
responses associated with varying cellular abundance levels. Genomic
landscape analysis pinpointed specific somatic mutations correlated with
MUCLL(+) CD24(+) cell infiltration patterns, findings that were subsequently
validated through multiplex immunohistochemistry to demonstrate strong
prognostic value. Crucially, we developed a clinically translatable radiomics
approach that successfully correlated specific MRI features with cellular
prevalence, establishing a foundation for noninvasive detection of this
aggressive cellular subpopulation.

Conclusions: This integrative approach, spanning molecular to imaging analyses,
provides novel insights into both the biological drivers and clinical implications of
MUCLL(+) CD24(+) cells in breast cancer progression.
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Introduction

Breast cancer remains the predominant cause of cancer-
associated mortality in the female population globally (1). The
remarkable molecular heterogeneity of this malignancy results in
significantly divergent clinical prognoses among affected individuals
(2). Estrogen receptor-positive (ER+) breast cancer represents nearly
70% of all breast malignancies (3). Although the continuous research
and development of endocrine therapy and CDK4/6 inhibitors have
enabled ER+ breast cancer patients to have a better prognosis, the
development of endocrine resistance remains a critical clinical
challenge, especially in advanced disease stages (4, 5). Current data
indicate that approximately 40%-50% of metastatic ER+ cases
acquire treatment resistance within 24 months, frequently resulting
in disease progression and diminished survival outcomes (6).
Therefore, it is of vital importance to explore the factors of poor
prognosis in the group of ER+ breast cancer patients, which is of great
significance for the formulation of treatment strategies and the
screening of people with poor prognosis.

The emergence of single-cell transcriptomic profiling has
revolutionized our understanding of tumor heterogeneity,
facilitating the discovery of rare cellular subpopulations that
contribute to treatment refractoriness (7). This technological
breakthrough enables the correlation of genomic alterations with
cell-specific transcriptional programs, offering novel opportunities
to decipher resistance mechanisms and discover actionable
vulnerabilities (8). Besides that, advanced imaging modalities such
as MRI, CT, and PET now play a pivotal role in predicting
therapeutic response, molecular subtyping, and prognostic
stratification in oncology (9). The integration of radiomic features
with multi-omics data offers a transformative approach for
discovering clinically relevant biomarkers and personalized
treatment strategies.

In this study, we identified a tumor subgroup characterized by
high CD24 and MUCLI expression, which was linked to poor
prognosis and invasive behavior. We also uncovered somatic
mutations associated with the infiltration of CD24(+) MUCLI(+)
cells, along with potential inhibitors for personalized treatment in ER"
breast cancer. Furthermore, a radiomic model effectively estimated the
infiltration levels of these cells. Overall, our findings offer a new
therapeutic target and a non-invasive strategy for imnmunotherapy and
individualized treatment in ER+ breast cancer patients.

Materials and methods
Data collection and quality control

A total of 14 single-cell RNA sequencing data including seven
ER+ breast cancer and seven paired lymph node metastatic tissues
were downloaded from GSE161529 (10). The Seurat (v4.3.3) (11)
package is used for single-cell sequencing quality control processes
including standardization, clustering, and dimensionality
reduction. Rigorous quality control was implemented, including
(1) the removal of low-quality cells based on mitochondrial gene
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content (<20%), unique molecular counts (>500 transcripts/cell),
and detected genes (>200 genes/cell). Doubletdfinder (v2.0.4) (12)
and harmony packages were utilized to remove the mixed cells and
batch effect. Bulk RNA expression profiles were also obtained from
TCGA database. Patients with complete clinical information and
expression profiles were included in the subsequent analysis.
Finally, 474 breast cancer samples with ER status (+), PR
status (+/-), and HER2 status (-) were included in the study. To
reduce the effect of gene length and depth of sequencing, the format
of the matrix was transformed into TPM.

Downstream analyses of scRNA-seq

A total of 40 cell clusters were identified after strict quality control
procedures. The cell types were further annotated based on public
research (13). Eight main cell types were annotated, and epithelial
cells were isolated for malignant cell identification. The CNV
correlation and score were calculated by infercnv (v1.14.2) (14)
package. The details could be found in a referenced study (15).
Subsequently, the same procedure as previously described was
performed on the cluster resolution of malignant cells. The epitools
(v0.5-10.1) package was used to investigate the tissue preference of
malignant cell subgroups. The top marker genes of each tumor
subgroup were analyzed by the “findallmarker” function. The
trajectory inference and cell developmental direction of malignant
cells were analyzed by using SCP (v0.4.7.9000) and vector packages.
Additionally, the dynamic lineages of tumor cells were reconstructed,
and gene clusters were further annotated based on biological process.

Estimation of cell abundance

Since single-cell data cannot directly reflect cell abundance, bulk
RNA data was used to infer cell abundance. The single-cell RNA
matrix was used as referenced matrix, while the TCGA-BRCA
matrix was used as observed matrix. CIBERSORTX (https://
cibersortx.stanford.edu/) was utilized to infer cell abundance. The
high and low abundance of the C4 subgroup was divided based on
the median value of the absolute score of C4. The statistics of
survival analysis was investigated by log-rank test.

Gene set enrichment analysis

The differential genes between high and low abundance of the C4
subgroup was evaluated by using the limma (v3.54.2) (16) package.
All significant genes were reordered and analyzed based on hallmark
gene sets. P-value <0.05 was considered statistically significant.

Genomic mutation analysis

The TCGA-BRCA somatic mutation data was downloaded by
using the tcgabiolinks (v2.26.0) (17) package. Maftools (v2.14.0)
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(18) package was used to integrate genomic profiles. The differential
mutations between the high- and low-C4 groups are identified by
the mafCompare function. Fisher’s exact test was used to detect
statistical significance. Co-occurrence and co-exclusion patterns
between genes were identified by the somatic interactions function.

TIDE and CMAP analysis

Tumor immune dysfunction and exclusion (TIDE) analysis was
conducted by using an online database (http://tide.dfciharvard.edu/).
Concretely, the expression matrix was scaled and uploaded to the
TIDE database. The TIDE score of each sample was obtained, and
chi-square test was used to detect the statistical differences in
immune responses between the high- and low-C4 subgroups. The
potential drugs for high-C4 patients were identified by using the
CMAP database (19). The details could be found in our
previous study.

Non-invasive radiomics construction

A total of 11 ER+ breast cancers with both molecular subtype
information and radiomic imaging profiles were included in the
study. Pyradiomics (v3.0.1) was used to extract the radiomics
features. Two experienced radiologists with over 10 years of
experience in breast oncology together performed fully the
manual segmentation of the tumors. All features underwent Z-
score normalization, and Pearson correlation was used to filter
candidate features correlated with C4 cluster infiltration (p < 0.05).
LASSO regression algorithm was performed to establish a linear
regression model to estimate the C4 cluster abundance. Pearson
correlation and ROC curve were used to calculate the association
between the abundance of C4 cluster and radiomic score and assess
the discriminative efficiency of the model.

Breast cancer specimens

A total of 30 ER+ breast cancer specimens from patients who
underwent surgery were collected at Tianjin Medical University
Cancer Institute and Hospital. Informed written consent was
obtained from the participants. The study was approved by the
Ethical Committee of Tianjin Medical University Cancer Institute
and Hospital and adhered to the ethical guidelines of the
Helsinki Declaration.

Multiplexed fluorescent IHC staining and
H&E staining

The consecutive ER+ breast cancer tissues were used to evaluate
the expression level of EpCAM, MUCLI, and CD24. In brief, 5-um
slides were deparaffinized and rehydrated through a graded series of
ethanol solutions prior to antigen retrieval in heated citric acid
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buffer (pH 6.0). Each slide was put through three sequential rounds
of staining, each including a protein block with blocking buffer
followed by primary antibody and corresponding secondary HRP-
conjugated antibody. Each HRP-conjugated antibody mediated the
covalent binding of a different fluorophore for signal amplification.
This reaction was followed by additional antigen retrieval in heated
citric acid buffer (pH 6.0) in microwave for 15 min to remove the
bound antibodies before the next step. After three sequential
reactions, the slides were counterstained with DAPI for 10 min
and mounted with fluorescence mounting medium. Anti-EPCAM
(GB12274, Servicebio), anti-MUCLI1 (BS-17247R, Bioss), and anti-
CD24 (BS-23867R, Bioss) were used. Images were acquired with a
Nikon Eclipse C1 microscope.

For histological examination, a paraffin-embedded ear tissue
was cut into 5-um sections with H&E staining (G1120, Solarbio)
and other staining protocols accordingly (G3632 and
G3670, Solarbio).

Statistical analysis

All bioinformatics analyses in this study were based on R studio
(v4.2.2) and python 3.7. All statistical methods can be found in the
corresponding methods sections.

Results

Annotation of cell types in ER+ breast
cancer single-cell data

To investigate different cell types in ER+ breast cancer, single-
cell transcriptomic analysis was performed on 14 ER+ breast cancer
samples from GSE161529, including seven primary ER+ breast
cancer tissues and seven paired lymph node metastatic tissues.
Rigorous quality control and doublet removal were implemented as
previously described. Following rigorous quality control and
normalization, a total of 63,369 high-confidence cells were
obtained, and 40 distinct cell clusters were identified (Figures 1A,
B). Dimensionality reduction using uniform manifold
approximation and projection and t-distributed stochastic
neighbor embedding demonstrated the clear segregation of the
annotated cell populations (Figures 1C, D). Then, cell type
annotation was performed by integrating marker gene expression
with reference datasets from online databases. We identified eight
major cell populations: B cells (N = 817), endothelial cells (N = 434),
epithelial cells (N = 41,860), fibroblasts (N = 2444), mast cells (N =
340), myeloid cells (N = 4433), plasma cells (N = 2,520), and T/NK
cells (N = 10,521) (Figure 1E). Standard marker genes were
employed for population annotation, including EPCAM
(epithelial), PECAM1 (endothelial), and other well-characterized
identifiers. In summary, eight main cell types in ER+ breast cancers
were identified for the subsequent research. Subsequently, we
performed DNA copy number variation analysis to recognize
highly confident malignant cells. As shown in Figures 2A-G,
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FIGURE 1

Annotation of cell types in ER+ breast cancer single-cell data. Reduced-dimension visualization of t-distributed stochastic neighbor embedding (a)

and uniform manifold approximation and projection (b) of cell clusters in single-cell RNA datasets, with each color representing a different cell type.
Reduced-dimension visualization of t-distributed stochastic neighbor embedding (c) and uniform manifold approximation and projection (d) of cell
types in single-cell RNA datasets, with each color representing a different cell type. (€) Heatmap showing the specific markers for cell annotation.

malignant cells presented obvious high CNV correlation coefficient ~ were successfully isolated, and 10 distinct tumor subgroups were
and CNV score compared to normal epithelial cells and myeloid  firstly identified for subsequent analyses.

cells, indicating that the set threshold successfully distinguishes

tumor cells from normal cells. The tumor cells were standardized

and clustered, and 10 tumor subgroups were identified. Tissue 1 he cell trajectory and heterogeneity in
preference analysis showed clusters 5-9 (C5-C9) to be more ~tumor microenvironment

likely enriched in primary ER+ breast cancer tissues, while

clusters 0-4 (C0-C4) were more inclined to be enriched in lymph Deciphering the intrinsic lineage dynamics of cell clusters is
node metastatic tissues (Figure 2H). Taken together, tumor cells  crucial to elucidate their multifaceted roles in tumor
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microenvironment (TME) remodeling. Thus, we analyzed the
landmark genes with the highest expression in 10 different cell
populations and presented them in the form of heat maps
(Figure 3A). Cell trajectory analysis indicated six potential cell
lineages that existed in these 10 clusters (Figure 3B), and each
trajectory was displayed separately with the pseudo-time
development (Figure 3C). Then, cell development analysis was
conducted for validation, showing that lineage 4 and lineage 7 were
the differentiation starting point of cell development, which is
consistent with the results of the pseudo-temporal analysis.

10.3389/fimmu.2025.1695689

Meanwhile, we presented the trends of cell differentiation and
development (Figure 3D). We note that C4 is the branching point
of all phylogenetic evolutionary trajectories, suggesting that this
subgroup has a high degree of phylogenetic plasticity. Dynamic cell
trajectory analysis was also performed to confirm the changes of
biological function and markers (Figure 3E). Collectively, our findings
delineate the cellular ontogeny of ER+ cells and their associated
transcriptional reprogramming during tumor progression. The
identified molecular signatures may serve as diagnostic biomarkers
for ER+ patients” subpopulations and novel therapeutic targets.
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FIGURE 2

Isolation of malignant cells from epithelial cells. (a—g) The copy number variation (CNV) correlation and score of each primary ER+ breast cancer
were visualized by scatter plot. (h) Tissue preference confirmed the enrichment tendency of each tumor subgroup.
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FIGURE 3

0

Characterization of cell trajectory of tumor cells. (a) Heatmap showing the overexpressed gene expression level of each tumor subgroup.
Pseudotime cell trajectory of tumor cells (b) and six potential cell lineages (c). (d) Cell developmental analysis confirmed the origin of cell states.
(e) Dynamic gene expression heatmap showing the gene expression tendency based on lineages 3 and 4. GO_BP, gene ontology biological process.

MUCL1(+) CD24(+) subcluster was
correlated with prognostic outcomes of ER
+ breast cancer patients

Survival analysis using the KM-plotter platform revealed

significant prognostic differences among breast cancer subclusters.
Patients in the C4 subgroup exhibiting high invasiveness
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demonstrated markedly reduced overall survival (OS), suggesting
aggressive clinical behavior (Figure 4A). Based on the analysis results
in the previous study (Figure 3A), the markers of the C4 subgroup
were identified as MUCL1, CD24, KRT7, S100A10, and VIM
(Supplementary Table S1). A multiplex immunohistochemistry
(mIHC) was performed on tumor specimens from ER+ breast
cancer patients and based on the expression levels of C4-specific

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1695689
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

markers (MUCLI and CD24); these cases were stratified into C4-high
invasive and C4-low invasive subgroups (Figure 4B). Subsequently,
we evaluated the differences in DFS between the two groups of
people, the results of which indicated that the population with a high
expression of MUCLI and CD24 had a worse prognosis (Figure 4C).
Besides that, the GSEA enrichment analysis results of the two groups
of people showed that high expressions of MUCL1 and CD24 were
positively associated with the EMT process (Figure 4D) as well as the
TGF-P signaling pathway (Figure 4E). These findings demonstrate
that the C4 subgroup, characterized by dual MUCLI(+) CD24(+)
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expression, correlates with aggressive tumor behavior and inferior
clinical outcomes.

The somatic mutations were associated
with the upregulation of MUCL1(+) CD24
(+) cells

Given the established role of somatic mutations in modulating
cellular infiltration patterns, we propose that tumor-derived genetic

High

Low

-~ Low-abundance (N = 21)

—L- High-abundance (N = 9)

5000 0
Rank in Ordered Dataset

FIGURE 4

DFS
0.0258
20 40 60 80

100
Months

CD24(+) MUCLL(+) cells were associated with unfavorable survival of ER+ breast cancer patients. (a) Kaplan—Meier curve showing the survival
probability of high and low abundance of C4 subgroup according to the median value of enrichment score. (b) Multiplex immunohistochemistry
indicating the number of CD24(+) MUCL1(+) cells in ER+ breast cancer tissues. (c) Disease-free survival outcome of high- and low- abundance of
CD24(+) MUCLL(+) cells. (d, e) Gene set enrichment analyses suggesting that the high abundance of CD24(+) MUCL1(+) cells was associated with

epithelial-mesenchymal transition and TGF-beta signaling pathways
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alterations may similarly regulate MUCL1(+) CD24(+) cell expression
within the tumor microenvironment. To identify the most important
somatic mutations related to the infiltration of MUCL1(+) CD24(+)
cells, we grouped the patients into high- and low-MUCL1(+) CD24(+)
groups as previously described. The SNV analysis showed that the
somatic mutations of PIK3CA (P < 0.001), TAF1 (P < 0.01), and
AKT1 (P < 0.05) were closely associated with the high-MUCL1(+)
CD24(+) group (Figure 5A). Notably, the MUCL1(+) CD24(+) high-
expression group exhibited significant genetic interaction patterns,
with strong co-occurrence and mutual exclusivity relationships among
key alterations (Figure 5B). In contrast, these patterns were markedly
attenuated in the low-expression cohort (Figure 5C). These results

a

Low (n = 214) v/s High (n = 224)

Odds ratio with 95% Cl
(1 = no effect, < 1 Low has more mutants)
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10.3389/fimmu.2025.1695689

reveal a subtle relationship between MUCLI(+) CD24(+) cells and
somatic mutations.

MUCL1(+) CD24(+) subcluster
demonstrated association with immune
response modulation

The previous study expounded that C4 subgroup cells may have
a prognostic predictive role in ER+ breast cancer. Subsequently, we
explored the performance of this type of subgroup in immune
response and breast cancer treatment. The immune escape ability of
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the ER+ breast cancer cell population was evaluated by using the
TIDE database (http://tide.dfci.harvard.edu/) (Figure 6A), and there
were significant differences in the immune response ability in the
groups with high and low infiltration of the C4 subpopulation, the
results of which indicated that a higher percentage of C4
subpopulation exhibited a lower immune response (Figure 6B).
Then, drugs with high sensitivity to the C4 subgroup were screened

TIDE score
°

-1

-2

Score

10.3389/fimmu.2025.1695689

out based on the scores. The top-ranked ones include 7b-cis, BMS-
345541, and THM-I-94 (Figure 6C). Meanwhile, the included drugs
and their potential mechanisms are listed in Figure 6D. These
findings revealed that the C4 subgroup is also involved in immune
response and drug sensitivity regulatory process. Further research is
conducive to providing new targets and treatment strategies for
clinical practice.
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Noninvasive MRI radiomics could be a
promising tool to evaluate the infiltration
of MUCL1(+) CD24(+) subcluster in ER+
breast cancer

Given the significant clinical associations of the MUCL1(+)
CD24(+) population, we systematically evaluated its therapeutic
potential applications. Our analysis included 61 ER+ breast cancer
patients from the TCGA cohort with paired bulk RNA-seq and
dynamic contrast-enhanced MRI (DCE-MRI) data. The tumor
regions were segmented using the radiomics module in 3D Slicer
software (Figure 7A). Pearson correlation analysis was performed to
further identify significant radiomic features associated with the
abundance of MUCLI(+) CD24(+) population (Supplementary
Table S2). Then, we employed the LASSO regression algorithm
based on 14 valuable features to develop a predictive model to
estimate MUCLI1(+) CD24(+) subpopulation abundances,
balancing the feature selection with regularization to optimize
model performance (Figures 7B, C, Supplementary Table S3). The
cohort was randomly divided into the training set (N = 43) and the
validation set (N = 18). Then, the analysis revealed that the
infiltration level of the C4 cluster and the radiomics score showed a
strong positive correlation in both the training set (Figure 7D) and
the validation set (Figure 7E). Besides that, the exploratory analysis
based on ROC curve also showed a potential association between
radiomic score and the infiltration of C4 cluster infiltration in both
the training set (Figure 7F) and the validation set (Figure 7G). In
summary, we established a clinically applicable radiomics model that
accurately predicts C4 cluster abundance, offering a non-invasive
approach to personalize therapy for ER+ breast cancer patients.

Discussion

This investigation delineates a distinct C4 cellular
subpopulation within ER+ breast cancer, identified via single-cell
transcriptomic profiling and defined by the co-expression of
MUCL1 and CD24. This phenotype demonstrated a significant
correlation with adverse clinical outcomes, prompting further
interrogation of its biological determinants. We also explored the
dynamic evolution of different clusters to reveal the characteristics
of each subtype. Additionally, we analyzed potential somatic
mutations linked to the infiltration of these clusters. Finally, a
radiomic model was established to estimate the abundance of
target C4 cluster. To our knowledge, this is the first study to
characterize the role of MUCL1(+) CD24 (+) cells in ER+ breast
cancer using multi-omics strategies, including spatial
transcriptomics and radiomics. Our research provides pioneering
insights into the pro-tumor effects and potential clinical
applications of MUCLI(+) CD24 (+) cells in ER+ breast cancer.

Single-cell RNA sequencing has opened up new avenues for the
development of tumor markers, and a large number of studies have
focused on the subpopulation analysis of the tumor
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microenvironment—for instance, Ma et al. (20) identified a distinct
luminal subgroup with a high expression level of HPN to diagnose
and stratify early-stage prostate cancer by tissue-based single-cell
RNA sequencing. Yang et al. (21) found a CEBPB+ tumor subcluster
that specifically drives the formation of M2 tumor-associated
macrophages to promote malignancy growth in glioblastoma.
Additionally, Guo et al. (22) discovered that a metastasis-associated
cell cluster overexpressed RAB13 in ovarian cancer by analyzing the
primary and pair lymph metastatic node tissues. These studies
demonstrate the great potential of single-cell sequencing in the
development of tumor biomarkers. It is worth noting that studies
analyzing subgroups of breast cancer have also been reported. Wang
et al. (15) identified a tumor subgroup that overexpressed NENF,
which is associated with distant metastasis of triple-negative breast
cancer. Two distinct molecular subtypes of breast cancer stem cells
have also been reported by analyzing single-cell RNA data (23).
However, few studies have focused on the tumor heterogeneity of ER
+ breast cancer. Our study reported a tumor cluster (C4 subgroup)
with double-positive status of CD24 and MUCL1 in ER+ breast
cancer, which was strongly associated with tumor metastasis. We
noted that the C4 subgroup is at the differentiation bifurcation point
between primary ER+ breast cancer and lymph node metastases.
More interestingly, cell preference analysis showed that the C4
subgroup was enriched in primary tumor tissue, which suggests
that the C4 subgroup may be the pre-differentiation state of lymph
node metastatic tumor cells, showing a high degree of lineage
plasticity. Furthermore, survival analysis and mIHC confirmed the
unfavorable role of the C4 subgroup. The tumor metastasis-related
signaling pathways including epithelial-mesenchymal transition (24)
and TGF-beta signaling (25) were proved to be highly enriched in
high abundance of C4 subgroup patients, supporting the pro-
metastasis role of C4 subgroup. In summary, our findings reveal
and define a class of tumor subpopulations that promote the
metastasis of ER+ breast cancer, providing new biomarkers for the
diagnosis and treatment of ER+ breast cancer.

The heterogeneity of tumor cell infiltration has been confirmed
to be associated with focal somatic mutations (13). We observed
that the high infiltration level of the C4 subgroup was associated
with the somatic mutations of PIK3CA and FOXAI. PIK3CA-
mutated ER+ metastatic breast cancer patients have been reported
to demonstrate a poor outcome and resistance to chemotherapy
(26). Meanwhile, FOXA1 mutations were confirmed to be
associated with a lower response to aromatase inhibitors (27).
These results reveal the source of infiltration heterogeneity in the
C4 subpopulation and potential targeted therapeutic strategies for
the C4 subpopulation. We next explore the novel therapy treatment
for the C4 subgroup. We found that patients with high abundance
of the C4 subgroup presented a lower proportion of immune
responses by in silico analysis, indicating that immunotherapy
may not be suitable for patients with a high infiltration of the C4
cluster. We utilized the CMAP database for the identification of
potential inhibitors to target the C4 subgroup, which provides a
theoretical basis for individual treatment for ER+ breast cancer.
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FIGURE 7

Non-invasive radiomic model construction. (a) Example indicating the segmentation of gross tumor volume on DCE-T1 MRI. (b) Parameter tuning
plot for the LASSO regression analysis. (c) Distribution of coefficients for variables in the LASSO regression is presented, with each curve representing
a radiomics feature filtered using Pearson’s correlation. (d, e) Pearson’s correlation was calculated in the training set (d) and the validation set (e)
between the z-score-normalized abundance of CD24(+) MUCLL(+) cells assessed by the transcriptome and the fitted value obtained from the linear
regression radiomics model. (f, g) ROC curve indicating the model's ability to discriminate the abundance of CD24(+) MUCL1(+) cells in both the

training set (f) and the validation set (g).

Non-invasive assessment of radiomics has also been applied to a
variety of tumors (28, 29)—for example, Wang et al. (13) used
single-cell RNA to confirm the favorable role of gamma-delta T cells
and developed a radiomic score to evaluate the infiltration level of
gamma-delta T cells and the application of radiomics. In this study,
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we constructed a radiomic model to estimate the abundance of the
MUCLI1(+) CD24(+) subcluster. Both the training set (AUC =
0.839) and the validation set (AUC = 0.909) demonstrated a good
discriminatory ability in identifying the abundance of the C4
subgroup. Overall, we constructed a model for noninvasive
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assessment of C4 subset abundance based on the imaging features of
the C4 subset, which has good efficacy and may serve as a potential
tool for future clinical translational applications.

It needs to be clarified that there are also deficiencies in our
research. While our multi-omics integration provides comprehensive
insights, cross-platform validation using alternative sequencing
technologies (e.g., single-nuclei RNA-seq, spatial proteomics) would
strengthen the findings. Additionally, in vivo and in vitro experiments
need to be conducted to further explore the molecular function of the
MUCLI1(+) CD24(+) tumor cluster. Future work should incorporate
functional validation through mechanistic studies and expand clinical
correlation using independent cohorts. Although the current
radiomic analysis serves as a proof of concept, prospective
collection of multicenter MRI datasets will be essential for
clinical translation.
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