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Epithelial ovarian cancer (EOC) remains a lethal epithelial malignancy. Immune-

checkpoint inhibitors have entered management for recurrent/metastatic disease;

yet durable benefit is confined to a subset, reflecting TGF-b–conditioned stromal

barriers and organised T-cell exclusion. In this review we summarise advances from

single-cell RNA and ATAC profiling and spatial transcriptomics that resolve fibroblast,

tumour and immune programmes linked to TGF-b signalling, and appraise

translational opportunities spanning selective pathway modulation, checkpoint

combinations and spatial biomarkers. We also discuss enduring challenges—

including site-specific heterogeneity across adnexal, omental and peritoneal

niches, limited assay standardisation and a scarcity of predictive metrics—that

temper implementation. By integrating TGF-b–informed readouts (e.g., INHBA+

cancer-associated fibroblast burden, periostin/fibronectin indices, MHC-I status

and CD8–tumour distances) with PD-1–based regimens and TGF-b-axis agents

(ALK5 inhibitors, Activin A neutralisation, NOX4-directed reprogramming), emerging

strategies aim to restore antigen presentation, improve lymphocyte access and

remodel tumour–stroma interfaces. Our synthesis provides an appraisal of the

evolving landscape of TGF-b–informed precision immuno-oncology in ovarian

cancer and outlines pragmatic standards and avenues for clinical translation. We

hope these insights will assist researchers and clinicians as they endeavour to

implement more effective, individualised regimens.
KEYWORDS

ovarian cancer, TGF-b signalling, T-cell exclusion, single-cell RNA/ATAC,
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1 Introduction

Epithelial ovarian cancer remains the most lethal gynecologic malignancy, with high-

grade serous ovarian carcinoma (HGSOC) accounting for the majority of deaths and

displaying pronounced genomic instability and tissue-site heterogeneity that complicate

immune control (1–3). Single-cell and spatially resolved studies demonstrate that immune
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1698088/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1698088/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1698088/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1698088/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1698088&domain=pdf&date_stamp=2025-10-17
mailto:moonly1981@163.com
mailto:xu13909092923@163.com
https://doi.org/10.3389/fimmu.2025.1698088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1698088
https://www.frontiersin.org/journals/immunology


He et al. 10.3389/fimmu.2025.1698088
activation and suppression can segregate across intraperitoneal

niches in HGSOC, with microenvironmental context shaping

recognition and escape (4–7). Immunotherapy with immune-

checkpoint inhibitors has produced limited and variable benefit

in unselected ovarian cancer populations, underscoring the need

to resolve mechanisms of immune failure at cellular and

spatial resolution.

Transforming growth factor-b1/b2/b3 from tumor cells, CAFs

and Tregs drive exclusion via TGFBR1/ALK5-SMAD2/3 plus non-

SMAD (p38/ERK/PI3K) arms, while CAF-derived Activin A

(INHBA) engages ACVR1B/ACVR2 to phenocopy these

suppressive effects and blunt PD-(L)1 responses (8–11).

Foundational work in urothelial and colorectal cancer showed

that TGF-b–dependent stromal activation confines effector T cells

to peritumoral territories and that dual blockade of TGF-b and

PD-(L)1 can restore intratumoral T-cell access (12–15). Consistent

with these principles, pan-cancer analyses link high TGF-b
activity to immune-excluded phenotypes and resistance to

checkpoint inhibition.

Evidence specific to ovarian cancer supports a TGF-b–
conditioned, stromal-dominated immune low-response state.

Integrated digital pathology and transcriptomics identified TGF-

b–driven loss of antigen presentation and fibroblast activation as

mediators of T-cell exclusion in ovarian tumors, with reduced

MHC-I on cancer cells and desmoplastic barriers that hinder

infiltration (16–18). Single-cell and spatial profiling of HGSOC

further resolve site-specific immune ecosystems, revealing that

tumors with copy-number–driven evolution can exhibit elevated

TGF-b signaling alongside naïve or memory-skewed T-cell

compartments and limited effector access. Spatial atlases also

document marked heterogeneity of tumor-infiltrating T cells and

their neighborhood relationships with stromal and malignant cells,

providing a structural substrate for immune exclusion (19–21).

Within the stromal compartment, immunomodulatory cancer-

associated fibroblast subsets, including INHBA+ CAFs

that enforce SMAD2-dependent PD-L1 expression and regulatory

T-cell differentiation, exemplify TGF-b–linked suppressive circuits

in advanced ovarian cancer. Preclinical work in HGSOC models

shows that concurrent targeting of TGF-b and PD-L1 can enhance

antitumor immunity, consistent with a causal role for TGF-b in

therapeutic nonresponse.

Single-cell RNA sequencing, single-cell chromatin and spatial

transcriptomic technologies now permit direct quantification of

TGF-b pathway activity, fibroblast and extracellular-matrix

programs, and ligand–receptor interactions that organize T-cell

exclusion in ovarian cancer (22–24). By integrating these

modalities, it is feasible to define reproducible immune low-

response phenotypes, map their stromal drivers, and derive

composite biomarkers and testable interventions. The purpose of

this review is to synthesize single-cell and spatial transcriptomic

evidence on TGF-b–driven T-cell exclusion in ovarian cancer,

delineate mechanistic links between signaling and stromal

remodeling, and outline diagnostic and therapeutic implications

for risk stratification and treatment design.
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2 Single-cell and spatial phenotype of
TGF-b–conditioned immune low-
response in ovarian cancer

Single-cell and spatial studies in high-grade serous ovarian

carcinoma (HGSOC) converge on a reproducible immune–

stromal state in which transforming growth factor-b (TGF-b)
signaling coincides with peritumoral confinement of effector

T cells, reduced antigen presentation, and desmoplastic

remodeling (25–30).

In HGSOC, multi-site single-cell and multiplex imaging

analyses show that anatomical location and mutational processes

stratify immune phenotypes (30–32). Tumors bearing fold-back

inversions exhibit elevated TGF-b pathway activity with immune-

excluded architectures populated by naïve/stem-like and memory-

skewed T-cell compartments, whereas homologous-recombination-

deficient tumors display more differentiated dysfunctional CD8+

states (33, , 12). These patterns are quantified by nearest-neighbor

distance (centroid-to-centroid mm after nuclei segmentation; k-d

tree), tumor–stroma interface length (contiguous boundary mm by

skeletonization), and CAF ‘corridor’ width (fibronectin/a-SMA–

positive bands via binary morphology). As shown in Figure 1, these

site and genotype-linked patterns are quantified by nearest-

neighbor distances between CD8+ T cells, PD-L1+ cancer cells,

and PD-L1+ macrophages, indicating reduced effector proximity in

TGF-b–high contexts.

Single-cell atlases further resolve T-cell heterogeneity across

ovarian and omental foci. Ovarian lesions often show ‘cold’ states

with Tregs and dysfunctional T cells, while omentum harbors

bystanders; canonical markers/niches include TCF1+ stem-like

CD8 (TCF7, SLAMF6) perivascular/TLS-adjacent, terminally

exhausted CD8 (PD-1, TOX, TIM-3) at margins, bystander CD8

(CD39-) in omentum, and Tregs (FOXP3, CTLA-4, TIGIT) in CAF-

rich rims (34–37). These features are consistent with a TGF-b–
conditioned, stromal-dominated immune low-response.

Fibroblast programs are central to this phenotype. A TGF-b–
driven cancer-associated fibroblast (CAF) subset identified by

scRNA-seq adversely associates with outcome and expresses TGF-b
pathway and EMT-linked effectors (38–40). Complementing this,

INHBA+ (Activin A–producing) CAFs enforce SMAD2-dependent

PD-L1 expression and promote regulatory T-cell differentiation,

providing a direct cellular mechanism for immunosuppression

within advanced ovarian tumors.

Operational markers used in this review to define the TGF-b–
conditioned immune low-response state are shown in Table 1.

Spatial proteogenomic profiling in ovarian cancer supports these

single-cell inferences: immune-excluded regions are enriched for

Tregs and fibronectin-rich stroma, whereas diffuse, tumor-proximal

immune niches exhibit higher PD-L1/IDO1 and activated

lymphocyte markers (41–43). These observations align with a

model in which TGF-b-conditioned fibroblast matrices and

checkpoint-ligand geography jointly restrict productive

cytotoxic engagement.
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These single-cell and spatial criteria delineate an ovarian cancer

ecosystem in which TGF-b–responsive fibroblast matrices, altered

antigen presentation, and checkpoint-dominated contact zones

converge to produce immune exclusion; this phenotype maps onto

the broader TGF-b barrier framework defined in other indications and

provides tractable readouts for risk stratification and therapeutic testing.
3 Mechanistic links between TGF-b
signaling, stromal remodeling, and
T-cell exclusion

Transforming growth factor-b orchestrates a fibroblast-centered

program that remodels the extracellular matrix and establishes
Frontiers in Immunology 03
spatial barriers to effector T-cell access. In multiple solid tumors,

stromal TGF-b activity correlates with immune-excluded

architectures, and experimental inhibition of TGF-b restores

intratumoral T-cell penetration when combined with PD-(L)1

blockade, indicating that TGF-b–dependent stromal activation is a

proximal cause rather than an epiphenomenon of exclusion (44–46).

Mechanistically, TGF-b/SMAD signaling in cancer-associated

fibroblasts (CAFs) induces contractile myofibroblastic states and

upregulates matrix constituents and modulators—collagens,

fibronectin, versican, thrombospondins, latent TGF-b–binding
proteins—together with crosslinking and alignment programs that

increase stiffness and reduce interstitial porosity, thereby

constraining lymphocyte trafficking (47–49). Ovarian tumor

stroma exemplifies these dynamics: TGF-b1–induced periostin in
TABLE 1 Operational features and readouts of a TGF-b–conditioned immune low-response state in ovarian cancer.

Phenotypic
component

Single-cell transcriptomic
indicators

Ligand–receptor/
chromatin indicators

Spatial readout Interpretive note

Fibroblast TGF-b program
(myofibroblastic/TGF-b–

driven CAFs; INHBA+ CAFs)

High COMP, THBS1, TGFBI, LTBP2,
SKIL; INHBA/INHBB; COL10A1/

COL11A1/MMP2/MMP14

TGFB1–TGFBR1/2; INHBA–
ACVR1B/ACVR2; SMAD2/3

target-gene activation; PD-L1 on
CAFs

Desmoplastic rim at
tumor–stroma borders;
fibronectin-rich corridors

Stromal barrier
formation; Treg

induction; checkpoint-
ligand provision

Tumor-intrinsic TGF-b
activity and antigen
presentation status

EMT and SMAD target signatures;
lower HLA-A/B/C, B2M in subsets

PD-L1 (CD274) upregulation;
diminished MHC-I processing

genes (e.g., TAP1/2)

Increased CD8+–tumor
cell distances; CD68+PD-

L1+ interfaces

Impaired CD8+
recognition and effector

engagement

T-cell compartment in
immune-low states

Naïve/meory-skewed CD8+/CD4+;
fewer tumor-specific exhausted CD8+
in selected sites; Treg enrichment

PD-1 (PDCD1) on T cells with
limited cognate antigen; ICOS/
ICOSL low in tolerized niches

Bystander-rich omental
foci; paucity of

intraepithelial CD8+;
sparse TLS

Limited priming and
trafficking into tumor

nests

Myeloid/DC context
Migratory LAMP3+ DC; reduced

cDC1; macrophage PD-L1

PD-1/PD-L1 ligation zones at
margins; TGFB1–TGFBR signaling

in stroma

Macrophage layers lining
tumor borders; stromal

“corridors”

Sustained checkpoint
signaling at interfaces;
restricted infiltration
E 1FIGUR

TGF-b–driven T-cell exclusion in the ovarian cancer microenvironment.
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activated fibroblasts promotes desmoplastic remodeling and

malignant cell motility, reinforcing matrix-rich interfaces at tumor

borders that are unfavorable to T-cell ingress (50–52). These

observations align with pan-cancer ECM signatures linked to

TGF-b and poor ICI outcomes; chemokine circuits (CXCL12–

CXCR4, CCL2–CCR2, TGF-b–induced CXCLs) cooperate with

aligned collagen/fibronectin to confine cells peritumorally.

In ovarian cancer, TGF-b shapes immunoregulation beyond its

effects on physical barriers. Integrated digital pathology and

transcriptomics show that TGF-b correlates with diminished tumor-

cell antigen presentation and fibroblast activation in T-cell–excluded

tumors, indicating concurrent defects in recognition and access (53–55).

Spatial proteogenomic profiling further demonstrates that fibronectin-

rich stromal territories with regulatory T-cell enrichment co-localize

with immune-excluded niches, whereas areas with diffuse tumor–

immune proximity display higher antigen-presentation markers and

checkpoint expression, consistent with segregation of suppressive

matrix from effective cytotoxic engagement (56–58). At the cellular

level, INHBA+ CAFs release bioactive Activin A via furin-mediated

prodomain cleavage; ACVR1B/ACVR2→SMAD2 signaling in CAFs

induces PD-L1 and Treg programs, sustaining exclusion even when T

cells reach the margin (59–61). Tumor-derived TGF-b1 promotes CAF

differentiation andmetastatic competence, supplying ligand to maintain

these stromal and immunosuppressive circuits. Taken together, these

data delineate a convergent mechanism whereby TGF-b–responsive
fibroblast programs generate an ECM-defined barrier, reduce antigen

visibility, and install local checkpoint ligation, yielding a T-cell–

excluded, immune low-response state.
4 Diagnostic trajectory and risk
stratification from single-cell and
spatial readouts

Diagnostic evaluation of immune low-response ovarian cancer

should progress from discovery-grade single-cell and spatial assays to

deployable, site-aware risk stratification that quantifies TGF-b–
conditioned stromal programs, antigen-presentation deficits, and

the geometry of tumor–immune contacts. In high-grade serous

ovarian carcinoma (HGSOC), spatial transcriptomics shows that

discrete malignant subclones occupy distinct neighborhoods and

engage defined stromal and immune partners, indicating that

clone-specific ligand–receptor circuits partly encode the degree and

pattern of lymphocyte access; these features are directly measurable in

tissue and link to outcome-relevant biology (62–65). Integrative

multi-omic mapping across 160 tumor sites further demonstrates

that mutational processes and anatomic location co-determine

immune states, with fold-back inversion–bearing tumors exhibiting

elevated TGF-b signaling, T-cell exclusion, and naïve/memory-

skewed T-cell compartments—an axis that plausibly marks a TGF-

b–high risk group (66–68). In parallel, spatial proteogenomic

profiling in ovarian cancer separates diffuse tumor–immune

interdigitation from focal immune niches; the former co-localizes

with higher PD-L1/IDO1 and other immunotherapy targets, while

focalized macrophage-rich niches (CD163high) associate with
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preliminarily worse outcomes, supporting the use of neighborhood

metrics rather than bulk density alone for risk definition (69–71).

These observations provide a rationale to define a composite “TGF-

b–conditioned exclusion” classifier that integrates four orthogonal

readouts: a stromal/CAF activity index, an antigen-presentation

index, a spatial interaction index, and a contextual genetic index.

For the stromal/CAF activity index, single-cell–derived markers of

TGF-b–responsive fibroblasts can be translated to practical surrogates.
INHBA+ cancer-associated fibroblasts drive SMAD2-dependent PD-

L1 expression and promote regulatory T-cell differentiation in

advanced ovarian cancer, nominating INHBA protein/RNA and

CAF-PD-L1 as tissue surrogates of TGF-b superfamily–linked

immune suppression (72–74). Periostin-rich matrices—induced

through integrin/NF-kB and TGF-b2 signaling—track with

macrophage recruitment and fibroblast activation in ovarian cancer

and can serve as desmoplastic sentinels measurable on archival

formalin-fixed tissue (75–78). For the antigen-presentation index,

HR-deficient contexts show enhanced immunosurveillance, whereas

HR-proficient tumors display compartmentalization; incorporate

MHC-I surrogates with HRD and note: MHC-I loss via B2M

truncation, HLA LOH, or IFN–JAK/STAT defects; readouts—IHC

(HLA-A/B/C; B2M 0–3+ rubric) and copy-number flags (79–81). The

spatial interaction index should quantify nearest-neighbor distances

and interface lengths between CD8+ T cells, PD-L1+ tumor/myeloid

cells, and CAF corridors, because diffuse tumor–immune mixing

versus focal or peritumoral restriction carries distinct therapeutic

implications in ovarian cancer (82–84). The contextual genetic

index should register fold-back inversions and other copy-number–

driven processes that associate with high TGF-b activity and immune

exclusion, as these events stratify immunologic phenotypes across

intraperitoneal sites.

Assay implementation can follow a tiered path compatible with

routine specimens. Discovery-level single-cell and spatial

transcriptomic platforms define cell states, ligands, and receptor

topologies; these can be down-translated to validated multiplex

protein imaging on formalin-fixed sections. High-dimensional

imaging methods such as multiplexed ion-beam imaging by time-

of-flight (MIBI-TOF) have demonstrated reproducible, quantitative

annotation of clinically relevant cell states in archival tissues and

provide a route to standardize spatial scoring rules across centers (85–

87). For institutions without high-plex capacity, constrained

surrogate panels can approximate the composite score by

combining INHBA/a-SMA/fibronectin/periostin with PD-L1,

HLA-I components, and pan-T-cell markers, quantified with pre-

specified adjacency metrics. Spatial risk assignments should be site-

aware, because adnexal, omental, and peritoneal foci exhibit different

immune architectures under the same patient-level genotype, and

because subclones within a lesion can preferentially associate with

fibroblasts or CXCL9+ macrophages. Where available, radiogenomic

bridges that correlate spatial transcriptomic phenotypes with

computed tomography features can facilitate non-invasive

stratification and longitudinal monitoring.

In terms of clinical use, the composite classifier should separate at

least two actionable risk states. A TGF-b–dominant, CAF-rich,

immune-excluded state—scored by high INHBA/periostin/
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fibronectin, low MHC-I, long CD8+–tumor distances, macrophage/

CAF border interfaces, and FBI-like genomic context—would be

predicted to benefit from strategies that decompress or reprogram

stroma and restore access, including consideration of TGF-b pathway
targeting layered onto PD-(L)1 where feasible. The biological basis

rests on studies in other solid tumors in which stromal TGF-b
blockade restored intratumoral T-cell access and synergized with

PD-(L)1 inhibition, supporting the face validity of this state as a

barrier phenotype (88–90). A comparatively inflamed state—

characterized by diffuse tumor–immune contact, TLS/B-cell

aggregates, and intact antigen presentation—could be triaged

toward checkpoint-based regimens or trials emphasizing antigen-

presentation and costimulation, with ovarian data showing that TLS

and diffuse tumor–immune interactions track with favorable immune

targets and improved prognostic signals (26, 91, 92). Prospective

validation should predefine analytic thresholds, ensure inter-assay

concordance between discovery and surrogate panels, and embed

multi-site sampling to avoid misclassification by local ecology;

however, the current body of single-cell and spatial evidence

already delineates measurable features that can be operationalized

to forecast T-cell access, checkpoint-ligand geography, and TGF-b–
linked stromal risk in ovarian cancer.
5 Therapeutic strategies and future
directions

Therapeutic development for a TGF-b–conditioned, immune-

excluded state in ovarian cancer should prioritize combinations that

restore intratumoral CD8+ T-cell access while minimizing pathway-

wide toxicities. Convergent preclinical work demonstrates that stromal

TGF-b activity enforces peritumoral confinement of effector T cells and

that simultaneous inhibition of TGF-b and PD-(L)1 converts exclusion
into productive antitumor immunity; these data provide a mechanistic

basis for layered regimens in TGF-b–high ovarian tumors identified by

single-cell and spatial criteria (93–95). However, the pleiotropic roles of

TGF-b mandate selective approaches. Strategies that confine pathway

blockade to dominant immunoregulatory sources or nodes are

attractive—for example, antibody targeting of GARP: TGF-b1
complexes to restrict neutralization to regulatory T-cell–derived

ligand, or context-adapted ALK5 inhibition administered in

intermittent schedules to mitigate toxicity—both supported by

translational and early clinical literature.

Ovarian-specific stromal targets emerging from single-cell and

spatial profiling nominate tractable entry points. INHBA+ (Activin

A–producing) cancer-associated fibroblasts upregulate PD-L1 via

SMAD2-dependent signaling and drive regulatory T-cell

differentiation; neutralization of Activin A attenuates disease and

remodels the immune–stromal compartment in ovarian models,

indicating a rational partner for PD-(L)1 or costimulatory strategies

in INHBA-high states (96–98). Periostin-rich matrices induced

through integrin/NF-kB and TGF-b2 signaling associate with

macrophage recruitment, fibroblast activation, and metastatic

competence in epithelial ovarian cancer, supporting periostin or

upstream integrin blockade as stroma-decompressing adjuncts in
Frontiers in Immunology 05
exclusion phenotypes. Because CAF-driven mechanics and

chemokine circuits are central to immune geography, pharmacologic

reprogramming rather than indiscriminate depletion is preferred;

inhibition of NOX4, a TGF-b–linked driver of myofibroblastic states,

overcomes CAF-mediated CD8+ T-cell exclusion and potentiates

checkpoint efficacy across models, justifying evaluation in ovarian

desmoplastic contexts (99–101). Beyond ligand- or matrix-focused

interventions, clinically advanced TGF-b receptor I (ALK5)

inhibitors offer near-term feasibility for combination regimens.

Vactosertib has shown signals of activity in combination with

pembrolizumab in microsatellite-stable colorectal cancer and

favorable safety in hematologic malignancy when paired with an

immunomodulatory backbone, motivating disease-adapted trials in

ovarian cancer cohorts molecularly enriched for TGF-b–
conditioned exclusion.

Implementation should be explicitly biomarker-driven and site-

aware. As outlined by spatial and single-cell evidence, risk assignment

can integrate a stromal/CAF activity index (e.g., INHBA, periostin,

fibronectin), an antigen-presentation index, and quantitative

interaction metrics (nearest-neighbor distances and interface lengths

among CD8+ T cells, PD-L1+ tumor/myeloid populations, and CAF

corridors). Pharmacodynamic endpoints: ≥20–30% shortening of

CD8+–tumor distances, ≥30% reduction of continuous macrophage/

CAF–tumor interfaces, and ≥1-grade HLA-I upshift with emergence of

tumor–immune interdigitation; biopsy at baseline and ~2–4 weeks on-

treatment. Standardized multiplex tissue imaging permits these

readouts on archival formalin-fixed sections; MIBI-TOF has

demonstrated reproducible, quantitative annotation of clinically

relevant cell states and can anchor cross-center harmonization of

spatial metrics (102–105). Given the heterogeneity of adnexal,

omental, and peritoneal ecosystems, protocols should mandate

multi-site sampling and predefine adjudication rules when spatial

phenotypes diverge within a patient. In inflamed tumors with B-/T-

cell aggregates, preserve/induce TLS: emergence and maintenance

require CXCL13 and LTa/b; dose stromal modulation intermittently

and tissue-sparing to avoid TLS disruption, pairing with DC/

costimulatory support.

Future studies should prospectively test a tiered combination

schema aligned to spatially measured biology. In a TGF-b–dominant,

CAF-rich exclusion state, a backbone of PD-(L)1 with a TGF-b–axis
agent selected to the dominant source (e.g., Activin A neutralization

in INHBA-high CAF contexts or ALK5 inhibition with intermittent

dosing) can be layered with CAF reprogrammers such as NOX4

inhibitors; in comparatively inflamed, TLS-rich states, emphasis can

shift toward antigen-presentation and costimulation with stromal

restraint. Trial designs should incorporate adaptive stopping rules

tied to on-treatment engagement of the intended axis and include

safety guardrails informed by the historical toxicity profile of TGF-b
inhibitors (cutaneous events, gastrointestinal symptoms, and rare

cardiotoxicity), with dosing schedules and patient selection optimized

to minimize non-target immunologic perturbation. These principles

convert single-cell and spatial readouts into actionable therapeutic

logic: deconstrain access when T cells are present but excluded,

restore recognition when antigen visibility is limited, and preserve

organized immune niches when they emerge under therapy.
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