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From mechanisms to therapies:
the multifaceted roles of
guanylate-binding protein 2 in
Immunity, cancer, and beyond

Wengqi Cui?, Tianlu Wang? and Juan Feng™

‘Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China,
2Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China

Guanylate-binding protein 2 (GBP2) is an interferon-inducible GTPase that plays
a critical role in innate immunity by defending against viral, bacterial, and parasitic
infections through mechanisms such as furin inhibition and inflammasome
activation. Beyond infectious disease, GBP2 demonstrates a context-
dependent dual role in cancer—acting as either a tumor suppressor or an
oncogene by modulating key signaling pathways including JAK-STAT, Wnt/3-
catenin, and PI3K/AKT/mTOR. Its dysregulation is also increasingly implicated in
autoimmune, neurological, and metabolic disorders, underscoring its promising
utility as a diagnostic biomarker and therapeutic target. This review systematically
synthesizes current knowledge on GBP2's structural features, biological
functions, and functional duality. We further explore the paradoxical nature of
its context-dependent roles and propose a unifying hypothesis to explain its dual
functions, while outlining translational strategies to leverage GBP2's potential in
biomarker development and targeted therapies.
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1 Introduction

Guanylate-binding proteins (GBPs) belong to the dynamin superfamily of GTPases, a
group that also includes the very large inducible GTPases, Mx proteins, and other immune-
related GTPases (1). In mice, the 11 GBP (GBP1-11) genes are distributed across two
chromosomal clusters, whereas humans possess seven GBP genes (GBP1-7) located within
a single cluster on chromosome 1. This gene family has ancient evolutionary origins and
mediates diverse physiological functions, including immune regulation and host defense
against pathogens (2). Among the various GBP family members, GBP2 has gained
widespread attention due to its distinctive immunological roles. Structurally, GBP2 has a
molecular weight of 65-67 kDa and belongs to the interferon (IFN)-inducible guanylate-
binding protein family within the dynamin superfamily of large GTP hydrolases (3). In
humans, the GBP2 gene is located on chromosome 1, while in mice, it is found on
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chromosome 3 (4). Within cells, GBP2 is widely distributed, present
in the nucleus, cytoplasm, and perinuclear membrane, where it
performs various functions (5). Functionally, GBP2 can be induced
by IFN and inflammatory cytokines and is known to influence
several signaling pathways, such as phosphatidylinositol 3-kinase
(PI3K)/Ak strain transforming (AKT)/mammalian target of
rapamycin (mTOR) and wingless-type MMTYV integration site
family (Wnt)/B-catenin (6, 7). It was initially recognized for its
essential role in cell-autonomous immunity against diverse
intracellular pathogens, including bacteria, viruses, and parasites
(1, 8). Additionally, GBP2 is involved in inflammatory activation
during inflammasome assembly and pyroptosis (9, 10). Beyond
infectious contexts, dysregulation of GBP2 has been increasingly
linked to carcinogenesis. Numerous studies have highlighted
GBP2’s dual role in cancer biology, with some defining it as a
tumor suppressor across various cancer types (11, 12), while others
characterize it as an oncogene (13, 14). We investigate the
paradoxical nature of its context-dependent functions and
propose a unified hypothesis to elucidate its mechanistic duality.
The mechanism of GBP2 involving carcinogenesis includes
regulating development and metastasis, immune surveillance and
immunotherapy, chemoresistance, immunity against infections,
apoptosis, and treatment (9, 15). Moreover, GBP2 contributes to
a range of systemic disorders, such as rheumatoid, neurological, and
metabolic diseases, as well as hematological conditions and
transplant-related pathologies (16, 17). Although earlier research
predominantly focused on GBPI, recent investigations have
increasingly uncovered unique functions of GBP2, substantially
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expanding our understanding of its biological and pathological
significance. In this review, we provide a comprehensive overview
of GBP2, covering its structural features, enzymatic properties,
associated signaling pathways, and multifunctional roles, thereby
establishing a scientific and theoretical foundation for future
research on GBP2.

2 GBP2: structures, biological and
enzymatic activities and regulation

2.1 Structure of GBP2

GBP2 is a 65 kDa IFN-inducible GTPase that belongs to the
dynamin superfamily. Structurally, it comprises three principal
domains: an N-terminal globular large GTPase domain (LG) and
an elongated purely o-helical region, the latter subdivided into the
middle domain (MD) and the GTPase effector domain (GED)
(Figure 1) (5, 18). The N—terminal LG domain adopts a globular
conformation and contains five canonical motifs—G1 (P-loop), G2
(switch I), G3 (switch II), G4 ((N/T)KxD), and G5 (guanine cap)—
which together facilitate GTP binding, Mg** coordination, and
hydrolysis (5, 19). Notably, K51A substitutions in the LG domain
have been associated with loss of GBP2 GTPase activity (20). A
flexible hinge region, formed by 0.6 and o7 helices and also referred
to as the intermediate region, connects the LG domain to the
elongated o—helical MD. This hinge is critical for GBP2’s
immune functions; mutations of hinge residues, either singly

Caax

Structure of GBP2. (A) Crystal structure depicting the architecture of GBP2 (PDB:7e58); (B) A schematic diagram of the GBP2 structure.

Frontiers in Immunology

02

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1708319
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Cui et al.

(L307A and P308A) or in combination (L307A/P308A and D306A/
L307A/P308A), nearly abolish GBP2’s ability to impair infectivity
(21). The MD consists of five oi—helices and its interface is essential
for furin inhibition, a function important for antiviral activity (21,
22). The GED of GBP2 contains two helices and contacts the LG
domain through electrostatic interactions. Importantly, the C
—terminus of the GED in GBP2—like that of GBP1 and GBP5—
features a CaaX motif that undergoes geranylgeranylation, a key
post—translational modification (23, 24). Upon geranylgeranylation,
nucleotide binding and hydrolysis regulate the release of the “aaX”
tail from the C—terminal o—helical domain. After removal of “aaX”,
the carboxyl group at the end of the “C” residue is methylated,
enhancing the protein’s capacity to associate with endomembrane
organelles (25). GBP2, along with GBP5, is modified by
geranylgeranyltransferase I, whereas GBP1 is suggested to be
modified by farnesyltransferase (24). Finally, C586S substitutions
in the CaaX domain of GBP2 have been shown to prevent its
isoprenylation (26).

2.2 Biological and enzymatic activities of
GBP2

GBP2 undergoes conformational changes and/or
oligomerization upon guanosine triphosphate (GTP) binding and

Closed

Open
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hydrolysis, processes that are likely crucial for its biological
functions (21). Structurally, GBP2 adopts a closed monomeric
conformation stabilized by salt bridges within the LG domain and
between the LG and GED domains (18). In the presence of
substrate, GBP2 dimerizes—a step essential for GTP hydrolysis
(27). This dimerization is facilitated by an 18-residue hydrophobic
helix within the intermediate region, while tetramerization involves
the R-II region (residues 482-556) of the helical domain (28).
Notably, heterodimers of GBP2 exhibit extended half-lives
compared to homodimers (18). Although GBP2 shares high
sequence identity with GBPI, the two proteins display significant
functional differences. GBP2 primarily hydrolyzes GTP to
guanosine diphosphate (GDP), whereas GBP1 can further process
GTP to guanosine monophosphate (GMP). This divergence stems
from structural variations in their LG and intermediate domains.
The isolated GED of GBP2 hydrolyzes GTP to GDP but remains
monomeric; however, when the intermediate region is present,
substrate-induced dimerization enables subsequent hydrolysis to
GMP. This occurs because, in the free protein, the helix is likely
buried within the GTP-binding domain, and substrate binding may
expose this helix to promote dimerization (28, 29). Additionally, the
two enzymes show distinct feedback inhibition profiles: GDP
potently inhibits GBP2 but not GBP1, while GMP strongly
inhibits GBP1 but not GBP2 (29). Unlike GBPI, the tetrameric
form of GBP2 plays no role in GMP formation (28) (Figure 2).

Dimerization

FIGURE 2

GTP hydrolytic activity and oligomerization process of GBP2. In the closed state, the monomeric structure is stabilized by salt bridges between the
LG and GED domains. Upon GTP binding to the LG domain of the open-conformation GBP2, an induced conformational change exposes a
hydrophobic helix within the intermediate hinge region, priming the protein for dimerization. Following dimerization, GTP is hydrolyzed to GDP and
inorganic phosphate (Pi), and the resulting GDP exerts potent feedback inhibition on GBP2.
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2.3 Regulation of GBP2 and related signal
pathway

The transcription of the GBP2 gene is dependent on promoter
binding sites for Signal transducer and transcription activator 1
(STAT1) dimers and interferon regulatory factor (IRF) family
transcription factors (30). STAT1 contributes to GBP2 gene
activation through two distinct mechanisms: first, by inducing IRF1
mRNA expression, and second, by directly facilitating GBP2
promoter activation through the recruitment of CREB-binding
protein and other histone acetyltransferases, thereby establishing a
permissive chromatin environment for RNA polymerase II. Histone
deacetylase 1 is also recruited to the GBP2 promoter upon IFN-y
stimulation and is involved in the deacetylation of specific
transcriptional activators required for their full activity. Moreover,
STAT]1 is essential for the association of histone deacetylase 1 with
the GBP2 promoter chromatin, which is important for GBP2
expression (31, 32). IRF1, a transcriptional factor regulated by the
IFN-STAT signaling pathway, controls the expression levels of GBP2,
with its association to the GBP2 promoter occurring after that of
STAT]I. IRF1 binding takes place independently of STAT1 binding or

10.3389/fimmu.2025.1708319

histone hyperacetylation and may assist in recruiting RNA
polymerase II-containing transcriptional complexes (33, 34).
Additionally, p53 can upregulate GBP2 expression by stabilizing
IRF-1 and promoting the formation of an IRF-1-p53 complex (35).
Another IRF family member, IRF7, also regulates GBP2; however,
unlike IRF1, its promoter activation depends on the S/T kinase
TANK-binding kinase 1 and/or inhibitor of IxB kinase-related
IKKe (36). Furthermore, the nuclear factor kB (NF-xB) family
transcription factor cRel is rapidly recruited to the GBP2 promoter
following IFN stimulation and significantly contributes to its
transcriptional activation (Figure 3) (37).

3 The role of GBP2 in defense against
bacterial, parasitic, and viral
pathogens

GBP2 plays a major role in cell-autonomous innate immunity
against bacterial, parasitic, and viral infections (5). The mechanisms
of GBP2 in defensing against bacterial, parasitic, and viral
pathogens were summarized in Figure 4.

< IFN-y
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FIGURE 3

) Promotor]—[

Regulation of GBP2 and related signal pathway. Upon binding of IFN to its receptor, the JAK/STAT signaling pathway is activated, leading to
dimerization and nuclear translocation of STAT1. Within the nucleus, STAT1 facilitates the transcriptional activation of GBP2 through the recruitment
of co-regulators including histone deacetylase 1 (HDAC1), CREB-binding protein, and cRel, ultimately promoting IRF1-mediated transcription and
subsequent translation of GBP2. Additionally, in the presence of TANK-binding kinase 1(TBK1) and/or IKKe, IRF7 is activated and further enhances

GBP2 expression.
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The role of GBP2 in defense against bacterial, parasitic, and viral pathogens. (A) During antiviral responses, GBP2 targets viral infectivity by inhibiting
host proteases furin and PCSK8, and directly restricts bacterial replication and infectivity; (B) In antibacterial immunity, GBP2 is recruited to
pathogen-containing vacuoles (PVs) via Galectin-3/8 to exert antimicrobial effects. It also disrupts bacterial membrane integrity, releasing LPS to
activate inflammasomes, and inhibits actin polymerization to suppress bacterial dissemination; (C) GBP2 modulates susceptibility to M. tuberculosis
Bacille Calmette—Guérin (BCG) and restricts chlamydial infection by regulating inclusion bodies; (D) In response to Toxoplasma gondii, GBP2
controls recruitment to parasitophorous vacuoles, promotes activation of Irga6 and inducible nitric oxide synthase(iNOS), and contributes to
antiparasitic defense. Conversely, T. gondii secretes the effector rhoptry effector protein 54 (ROP54) to counteract GBP2 recruitment to

parasitophorous vacuoles.

3.1 The role of GBP2 in anti-viral immunity

GBP2 exerts broad antiviral activity by targeting multiple stages
of the viral life cycle. It suppresses the replication of diverse viruses
—including HIV, avian influenza A, murine leukemia virus, Zika
virus, measles virus, and Marburg virus—by inhibiting the host
protease furin and attenuating its proteolytic activity, thereby
impeding the cleavage and maturation of viral envelope
glycoproteins (1, 2, 38). Notably, the inhibition of furin by GBP2
may have implications beyond viral infection, as several bacterial
toxins, such as anthrax toxin protective antigen and diphtheria
toxin, also depend on furin-mediated activation (39). Furin itself is
involved in multiple cellular processes, including the proteolytic
activation of cytokines, collagens, hormones, and growth factors;
GBP2 can also inhibit furin-mediated cleavage of substrates such as
glypican-3, a proteoglycan that regulates cell growth and
proliferation, and matrix metalloproteinase-14. Beyond furin,
GBP2 reduces the infectivity of viral particles bearing the PCSK8-
dependent glycoprotein of Lassa virus (38). The N-terminal GTPase
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activity of GBP2 is critical for its antiviral function. For instance,
GBP2 suppresses ectromelia virus replication in a dose-dependent
manner, an effect abolished by the GTP-binding-deficient mutant
K51A (25). Similarly, in murine macrophages, GBP2 mediates IFN-
Y-triggered anti-murine norovirus activity, whereas the R48A and
K51A mutants attenuate this effect, indicating a potential
requirement for GTPase activity. Murine norovirus nonstructural
protein 7, however, can co-localize with GBP2 in the cytoplasm and
antagonize its anti-viral function (20). GBP2 also contributes to
host defense against other viruses. It interferes with SARS-CoV-2
spike cleavage and significantly inhibits infection by early-lineage
strains such as Wuhan-Hu-1 and VIC (40). In addition, GBP2
inhibits the replication of vesicular stomatitis virus and
encephalomyocarditis virus (41). Notably, GBP2 expression is
associated with dengue disease severity. During dengue infection,
endothelial cells upregulate GBP2 as an initial protective response,
which mitigates viral impact via reduced oxidative stress. However,
in severe cases, GBP2 levels decline during the defervescence phase,
likely due to heightened oxidative stress, and this decrease correlates

frontiersin.org
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with increased plasma leakage—a hallmark of severe dengue. Thus,
GBP2 plasma levels, alongside clinical symptoms, may serve as a
biomarker for dengue severity (42). Furthermore, GBP2 expression
can be modulated by viral elements integrated into the host genome.
For example, HIV-1 infection activates a cryptic transcription start
site within the long terminal repeat 12C repeat upstream of the
GBP2 gene, leading to a unique transcript variant and enhancing
cytokine-responsive expression of this antiviral gene (43).

3.2 The role of GBP2 in antibacterial
immunity

GBP2 plays a significant role in cell-autonomous immunity
against bacterial infections. Many invasive bacteria establish
pathogen-containing vacuoles as intracellular niches for
replication, and GBP2 contributes to immunity by facilitating
pathogen-containing vacuol recognition and mediating the
transport of host defense proteins to these compartments. The
disintegration of such vacuoles attracts Galectin-3, -8, and -9,
though to date the functional consequences of this recruitment
have only been characterized for Galectin-8 (44). GBP2 identifies
bacterial secretion systems as “patterns of pathogenesis” associated
with pathogen-containing vacuols, and its delivery varies depending
on the bacterial species and galectin involved. For instance, GBP2
delivery to Legionella-containing vacuoles requires the bacterial
Dot/Icm system, whereas its delivery to Yersinia vacuoles depends
on hypersecretion of translocon proteins. Galectin-3 assists GBP2
localization to pathogen-containing vacuoles by forming a complex
with it, and Galectin-8 also promotes this process, albeit less
efficiently (45). The C-terminal CAAX motif of GBP2 enhances
its recruitment to Francisella novicida compared to GBP1, likely
owing to GBP2’s longer lipid anchor, which increases membrane
stability in bacteria containing long-chain lipid A (46). GBP2 also
targets cytosolic F. novicida and promotes bacteriolysis, indicating
that beyond defending against vacuolar pathogens, GBPs facilitate
ligand presentation by directly attacking cytosolic bacteria (47).
Additionally, infection with Gram-negative bacteria such as
Salmonella, Citrobacter, Chlamydia, and Escherichia in innate
immune cells activates the caspase-11 inflammasome, a process
that primarily requires GBP2 (48). GBP2 has been shown to
promote caspase-11 and caspase-1 inflammasome activation in
response to Gram-negative bacteria and intracellular
lipopolysaccharide (LPS) (49). In infection with Moraxella
catarrhalis, GBP2 acts as the dominant GBP driving
inflammasome activation. It is recruited to cytosolic bacteria,
exhibits dose-dependent bactericidal activity, and disrupts
bacterial membranes to release LPS, thereby facilitating NOD-like
receptor protein 3 (NLRP3) inflammasome activation (50).
Similarly, GBP2 contributes to Brucella abortus DNA-mediated
inflammasome activation, although full host protection depends
on cooperation among multiple GBPs (51, 52). Beyond direct
bactericidal effects, GBP2 restricts bacterial dissemination by
modulating actin dynamics. For example, the cytosolic bacterium
Burkholderia thailandensis exploits host actin to induce cell fusion,
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spreading to form multinucleated giant cells that support its
replication. Accordingly, GBP2 deficiency led to significantly
increased susceptibility to B. thailandensis in both macrophages
and mice. Recruitment of GBP2 to bacteria limited the actin tail
formation required for bacterial motility and cell fusion. Its
association with non-motile bacteria suggests that GBP2 directly
—or via actin regulators—restricts bacteria-mediated actin
polymerization. Mechanistically, this inhibition required both
GTPase activity and the CAAX membrane localization domain
(49). Pseudomonas aeruginosa frequently causes chronic airway
infections in cystic fibrosis patients, most isolates of which have
defective type III secretion systems (T3SS). GBP2 can detect T3SS-
mutant Pseudomonas and contribute to bacterial killing by
activating caspase-11 and regulating noncanonical NLRP3
inflammasome activation and IL-1f release (53). Notably, some
pathogens have evolved countermeasures against GBP2: the Shigella
flexneri eftector IpaH9.8 induces ubiquitination and proteasomal
degradation of GBP2, thereby disrupting GBP-mediated immunity
(54). Moreover, bacteriophages—natural predators of bacteria—
have been used to treat bacterial infections. In the murine
macrophage cell line RAW 264.7, Bacteriophage vB_SauM_JS25
significantly upregulated GBP2, suggesting that phage infection can
induce GBP2 expression, potentially enhancing host innate
immunity to promote bacterial and viral clearance (55).

3.3 GBP2 in mycobacterial and chlamydial
infections

In tuberculosis, GBP2 is consistently downregulated and has
been identified as a hub gene with diagnostic potential. Its
expression is significantly reduced in tuberculosis patients,
showing promise for treatment monitoring (56-58). Conversely,
in pleural tuberculosis, GBP2 expression is elevated in pleural fluid
and demonstrates over 80% accuracy in discriminating tuberculosis
from other causes of pleural effusion (59). Genetic studies have
linked compound heterozygous mutations in GBP2 to increased
susceptibility to Mycobacterium bovis Bacille Calmette-Guérin
infection, as these mutations affect both protein stability and
mRNA splicing (60, 61). Additionally, GBP2 may influence host
responses to Mycobacterium leprae. Reversal reaction—a major
cause of tissue injury and disability in leprosy—results from rapid
cell-mediated immune responses against M. leprae. The
upregulation of GBP2 mRNA in both the peripheral blood
transcriptome and lesion transcriptome of reversal reaction
patients suggests that GBP2, along with other GBP family
members, contributes to the host antimicrobial response against
mycobacteria (62).

GBP2 also confers resistance to Chlamydia trachomatis in IFN-
y-stimulated human macrophages by promoting the fusion of
chlamydial inclusions with autolysosomes. Knockdown of GBP2
abrogates IFN-y-mediated inhibition of bacterial growth (63).
Notably, GBP2 efficiently decorates C. trachomatis inclusions, but
is absent from C. muridarum inclusions in both murine embryonic
fibroblasts and macrophages at various time points post-infection
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(64). Moreover, GBP2 was found to be upregulated when
reinfection was compared to primary infection for Chlamydia
pneumoniae (65).

3.4 The role of GBP2 in antiparasitic
immunity

GBP2 functions as a crucial immune effector molecule that
confers resistance against parasites. It has been shown to interact
with both the parasitophorous vacuole membrane and the parasite
itself following vacuole permeabilization (8). A common human
intracellular pathogen in this context is Toxoplasma gondii (T.
gondii), with approximately 30% of people harboring asymptomatic
persistent infection (66). GBP2 plays a specific and non-redundant
role in controlling T. gondii, and its deficiency in mice increases
susceptibility to infection. The loss of GBP2 alone is sufficient to
confer such susceptibility, underscoring its essential function (67).
GBP2 modulates recruitment to the parasitophorous vacuoles of T.
gondii and contributes to parasite growth restriction (66). It
localizes specifically to these vacuoles, thereby hindering parasite
replication and dissemination. The C-terminal domain of GBP2 is
necessary and sufficient for its vacuolar recruitment (67).
Additionally, GTP binding, multimerization, and GTPase activity
are critical for efficient recruitment; both the binding mutant
D182N and the GTPase-defective mutant K51A exhibit nearly
abolished localization (68). The function of GBP2 further involves
coordinating other immune effectors. It positively regulates the
recruitment of Irga6 to the parasitophorous vacuoles of T. gondii,
although this process can be inhibited by direct and specific
interactions of RabGDIo. with GBP2 via the lipid-binding pocket
(69). Furthermore, GBP2-positive parasitophorous vacuoles are
enriched with inducible nitric oxide synthase, which is essential
for controlling parasite burden (8). GBP2 also co-localizes with
GBP1 in T. gondii—infected cells, suggesting that the two proteins
may act together at the parasitophorous vacuoles (70). Notably, T.
gondii has evolved countermeasures: the rhoptry effector protein 54
promotes infection by modulating GBP2 loading onto
parasitophorous vacuoles (71). Conversely, evidence also points to
species—specific roles for GBP2, as it was reported to be dispensable
for IFN-gamma-induced toxoplasmosis resistance in human
foreskin fibroblasts (72). The functions and potential mechanisms
across various pathogens are summarized in Table 1.

4 GBP2 in inflammation and immune
regulation

Innate immunity is the first line of host defense against
infection. Beyond its direct antimicrobial roles against viral,
bacterial, mycobacterial, and parasitic pathogens, GBP2 also
exerts important regulatory functions within the innate

immune system.
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4.1 Regulation of immune cell function and
polarization

GBP2 influences the activation and phenotypic polarization of
multiple immune cell types. In macrophages, silencing GBP2
prevents polarization into pro-inflammatory M1 phenotypes and
reduces the production of pro-inflammatory cytokines such as
tumor necrosis factor-o (TNF-o0) and C-C motif chemokine
ligand 2, while showing no effect on M2 macrophage markers or
anti-inflammatory cytokines. Moreover, GBP2 promotes M1
macrophage polarization through activation of the neurogenic
locus notch homolog protein 1 (Notchl) signaling pathway (73).
In T lymphocytes, GBP2 modulates differentiation and function.
When naive CD4" T cells encounter microbial peptide:MHCII
complexes on dendritic cells, their differentiation into various T
helper subsets is influenced by T cell receptor affinity. GBP2 is
induced as a T cell receptor -responsive protein: under low T cell
receptor affinity and signaling, it promotes T follicular helper
differentiation by restraining aerobic glycolysis. Alternatively,
GBP2 may repress Thl differentiation, with high T cell receptor
affinity enabling T cells to overcome this inhibition (74). In CD8" T-
cell responses, antigen recognition in epithelial target cells
upregulates IFN-regulated genes including GBP2 (75).
Furthermore, in murine microsatellite-stable colorectal cancer
models, deletion of GBP2 impaired CD8" T-cell migration and
reduced IFN-y-induced antigen presentation and C-X-C motif
chemokine ligand10/11 expression (Figure 5) (76). GBP2 also
regulates inflammatory signaling pathways. It suppresses TNF-o.-
induced expression of matrix metalloproteinase-9 by inhibiting NF-
KB transcriptional activity and Racl activation. Mechanistically,
GBP2 interferes with p65 binding to kB consensus sites and the
metalloproteinase-9 promoter, and dampens Rac activation—a
pathway that, when constitutively active, can restore NF-xB
signaling even in the presence of GBP2 (77).

4.2 GBP2 in inflammasome activation and
pyroptosis

The inflammasome is an intracellular signaling complex that,
upon recognition of pathogens or physiological abnormalities,
drives caspase-1 activation, pyroptosis, and the release of pro-
inflammatory cytokines IL-1 and IL-18 (10). Pyroptosis is a lytic
and inflammatory form of programmed cell death triggered by
cytosolic sensing of pathogens or danger signals. It is commonly
initiated when intracellular LPS activates human caspase-4 or
mouse caspase-11, leading to gasdermin-D cleavage and pore
formation (78). GBP2 contributes to this process by facilitating
inflammasome assembly and activation. It promotes the release of
LPS from bacterial outer membrane vesicles, enabling LPS to
interact with caspase-11 (79). Studies indicate that GBP2, along
with other guanylate-binding proteins, coordinates caspase-4
recruitment and activation: GBP1 initiates platform assembly,
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TABLE 1 Mechanisms of GBP2-mediated host defense against pathogens.

Pathogen name Mechanism References
Viruses
HIV, Avian influenza A, Murine leukemia, Inhibits the virus-dependency factor furin, impeding the cleavage and maturation of envelope (1,2, 38)
Zika, Measles, Marburg virus glycoproteins. T
Lassa virus Reduces the infectivity of viral particles bearing the PCSK8-dependent glycoprotein. (38)
Ectromelia virus Suppresses replication in a dose-dependent manner requiring GTPase activity (abrogated by K51A 25)
mutant).
Murine norovirus Mediates IFN-triggered antiviral activity, rec!uiring GTPase activity.(attenuated by R48A/K51A 20)
mutants). Antagonized by viral NS7 protein.
SARS-CoV-2 (Wuhan-Hu-1, VIC) Interferes with viral spike protein cleavage. (40)
Vesicular st titis virus,
esicurar stomati fs, v1r‘us Inhibits viral replication. (41)
Encephalomyocarditis virus
Dengue virus Associated with an initial protective response (reducing oxidative stress). (42)
Bacteria
Legionella pneumophila Delivery to pathogen-containing vacuoles is dependent on the bacterial Dot/Icm secretion system. (45)
Yersinia species Delivery to pathogen-containing vacuoles requires hypersecretion of Yersinia translocon proteins. (45)
Francisella novicida Recruitment enhanced by the C-terminal CAA.X m'otif. Targets cytosolic bacteria to promote (46, 47)
bacteriolysis.
Gram-negative bacteria (e.g., Salmonella, Promotes caspase-11 and caspase-1 inflammasome activation in response to intracellular bacteria and (48, 49)
Citrobacter, Escherichia, Chlamydia) LPS. ’
Moraxella catarrhalis Recruited to cytosolic bacteria, exhibi.ts- dt?se-dependent bactericid.al activity and disrupt.s bacterial 0)
membranes to release LPS, facilitating caspase-11-NLRP3 inflammasome activation.
Brucella abortus Contributes to DNA-mediated inflammasome activation. (51, 52)
Burkholderia thailandensis Recruited to bacteria to restrict the for@ation of actin .ta.ils, limiting intracelh.ﬂar motility and cell-to- (9)
cell spread. Requires GTPase activity and CAAX domain.
Pseudomonas aeruginosa (T3SS mutant) Detects and contributes to killing of bacteria with defective Type 3 Secretion Systems (T3SS). (53)
Shigella flexneri Pathogen countermeasure: The bacterial eﬁfect(?r IpaH9.8 induces ubiquitination and proteasomal 1)
degradation of GBP2.
Mycobacteria
Mycobacterium tuberculosis Unclear (expression is downregulated during infection). (56-58)
Mycobacterium bovis Bacille Calmette—
4 Guérin Unclear (genetic mutations in GBP2 linked to increased susceptibility). (60-62)
Mycobacterium leprae Unclear (upregulated during reversal reaction, suggesting a role in host response). (62)
Chlamydia
Chlamydia trachomatis Promotes the fusion of chlamydial inclusions with autolysosomes in IFN-y-stimulated macrophages. (63)
Chlamydia muridarum Unclear. (64)
Chlamydia pneumoniae Unclear. (65)
Parasites
. Recruits to the parasitophorous vacuole (PV). Hinders parasite replication. Coordinates recruitment of
Toxoplasma gondii (8, 66-69)

other immune effectors

GBP2 and GBP4 facilitate caspase-4 recruitment, and GBP3  mediated and polymicrobial septic shock in vivo. Direct cytosolic
promotes its activation (80). Additionally, GBP2 enhances  sensing of LPS by caspase-11 triggers inflammasome activation,
caspase-4 activation by binding LPS and promoting its  which canlead to lethal sepsis in mice; thus, inhibiting this pathway
aggregation (81). GBP2-dependent caspase-11 inflammasome  is critical for preventing septic shock. The regulation of caspase-11
activation has been suggested as essential for preventing LPS-  activation by GBP2 is itself modulated by GABA type A receptor-
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FIGURE 5

GBP2 modulates innate and adaptive immune responses by regulating macrophage polarization and T cell function. (A) GBP2 promotes macrophage
polarization toward the pro-inflammatory M1 phenotype through activation of the Notchl signaling pathway and stimulates the production of pro-
inflammatory cytokines, including TNF-o and C-C motif chemokine ligand 2 (CCL2); (B) In naive CD4* T cells, low T cell receptor (TCR) affinity and
signaling induce GBP2 expression, which promotes T follicular helper (Tfh) cell differentiation while suppressing T helper 1 (Th1) differentiation; (C)
GBP2 enhances CD8" T cell migration. Antigen recognition triggers GBP2 upregulation, which further facilitates IFN-y-induced antigen presentation.

associated protein autophagy proteins, which negatively regulate
GBP2-dependent inflammasome activation to protect against
sepsis. Depletion of the GABA type A receptor-associated protein
subfamily in macrophages enhances IL-1 production and
pyroptosis in response to LPS transfection, outer membrane
vesicle treatment, or Gram-negative bacterial infection (48).
Notably, although GBP2 deficiency significantly reduces
pyroptosis, IL-1B/IL-18 secretion, and caspase release in
macrophages, its loss does not impair caspase-11 activation as
severely as deficiency of the entire GBP cluster, indicating partial
functional redundancy among GBP family members (15, 82).
Beyond its role in caspase-4/11 activation, GBP2 also modulates
absent in melanoma 2 (AIM2) inflammasome signaling (9). The
AIM2 inflammasome, which is critical for host defense against
cytosolic DNA viruses and bacteria, recognizes double-stranded
DNA and induces caspase-1-dependent pyroptosis along with IL-
1B and IL-18 release (47). GBP2 promotes Francisella novicida-
mediated AIM2 inflammasome activation but is dispensable for
AIM2 activation triggered by transfected DNA (47). Furthermore,
GBP2 can promote NLRP3 inflammasome activation in an
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isoprenylation-dependent manner, potentially through direct
interaction with the PYD domain of NLRP3 (26). Although
bacterial outer membrane vesicles carrying flagellin can activate
the NOD-like receptor family, CARD domain-containing 4
inflammasome, GBP2 is not required for NOD-like receptor
family, CARD domain-containing 4 activation induced by
Salmonella typhimurium-derived vesicles (79). Finally, recent
evidence shows that GBP2 can drive pyroptosis independently of
GBP1, underscoring its non-redundant functions in specific
contexts (Figure 6) (81).

5 GBP2 in cancer

GBP2 is expressed at variable levels across diverse human
malignancies and exhibits context-dependent roles in tumor
progression. Its expression correlates with clinical outcomes in a
cancer-type-specific manner. Notably, low GBP2 expression is
associated with poor prognosis and increased metastasis in
colorectal cancer, while elevated GBP2 levels are linked to worse
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FIGURE 6

GBP2 in inflammasome activation and pyroptosis: A Central Coordinator and Effector. GBP2 facilitates the extraction of lipopolysaccharide (LPS)
from bacterial outer membrane vesicles, promoting caspase-4/11 recruitment and activation via LPS binding and aggregation. This caspase-11
inflammasome activation is negatively regulated by GABARAP-family autophagy proteins. Moreover, GBP2 is essential for AIM2 inflammasome
activation upon cytosolic bacterial infection. Additionally, GBP2 enhances NLRP3 inflammasome activation through direct binding to its N-terminal

PYD domain.

survival in patients with glioma, glioblastoma, clear cell renal cell
carcinoma, pancreatic adenocarcinoma, bladder cancer, and
cutaneous melanoma (6, 13, 14, 83-87). Due to its strong
prognostic value, GBP2 has been incorporated into multi-gene
prognostic models for several cancers, including bladder
urothelial carcinoma, breast cancer, pancreatic carcinoma, ovarian
cancer, primary central nervous system lymphoma, and cutaneous
melanoma (88-95). These models demonstrate significant efficacy
in predicting patient overall survival.

5.1 Dual roles of GBP2 in tumor
development, metastasis, and invasion

GBP2 plays context-dependent roles in tumor progression, with
evidence supporting both promotive and inhibitory functions
across different cancer types. In glioblastoma multiforme, GBP2
overexpression significantly promotes cell migration and invasion
in vitro, whereas its silencing produces the opposite effect. This pro-
invasive activity is mediated through fibronectin, which is markedly
induced by GBP2 at both mRNA and protein levels. Inhibition of
the STAT3 pathway prevents GBP2-promoted fibronectin
induction and cell invasion (13). Similarly, in clear cell renal cell
carcinoma, GBP2 overexpression enhances phosphorylation of
STAT2 and STATS3, triggering janus kinase(JAK)-STAT signaling
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and promoting cell migration and invasion (96). In glioma, GBP2
knockdown impairs proliferation and migration. Mechanistically,
GBP2 directly interacts with kinesin family member 22 (KIF22) and
regulates glioma progression through KIF22/epidermal growth
factor receptor signaling in vitro and in vivo (97). Furthermore,
GBP2 expression shows significant association with the mitogen-
activated protein kinase and Wnt signaling pathways, both known
to promote tumor occurrence and malignancy in various cancers
(98). GBP2 also influences fibroblast proliferation dynamics. In
NIH3T3 fibroblasts, GBP2 expression induces faster growth rates,
with the highest-expressing clones showing approximately 50%
reduction in doubling time. These GBP2-expressing fibroblasts
exhibit increased growth rate, partial loss of contact inhibition,
and enhanced ability to grow in reduced serum conditions—effects
potentially associated with its regulation of Rho family GTPases.
Notably, an GBP2 mutant (S52N) with reduced GTP-binding
capacity fails to produce these phenotypes when expressed at
levels comparable to wild-type protein (99). Additionally, GBP2 is
associated with the proliferative and neoplastic phenotype of
esophageal squamous cells. Although not a conventional
transcriptional target of p53, GBP2 may influence cellular
capacity to maintain sustained proliferation and survival (35).
Conversely, several studies link GBP2 to reduced metastatic
potential. In osteosarcoma, GBP2 downregulation enhances
migration and invasion (100), while low GBP2 expression
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correlates with poor prognosis and metastasis. GBP2 also modulates
STAT family signaling through phosphorylation events, promoting
STAT1 phosphorylation by competing with SH2-containing
protein tyrosine phosphatase 1 for STAT1 binding (76). In skin
cutaneous melanoma, GBP2 dampens development and metastasis
by inhibiting Wnt/B-catenin signaling, suggesting its utility as both
a prognostic biomarker and anti-metastatic target (6). Besides,
dynamin-related protein 1-dependent mitochondrial fission has a
key role in breast cancer cell invasion (101). In breast cancer, GBP2
blocks dynamin-related protein 1 translocation from the cytosol to
mitochondria, thereby attenuating dynamin-related protein 1-
dependent mitochondrial fission and cancer cell invasion (12).
GBP2 further suppresses migration and invadosome formation by
modulating Rho GTPase activity. In mouse mammary carcinoma
67NR cells, GBP2 promotes cellular projections and filopodia
formation, indicating cell division cycle 42 activation, while also
upregulating RhoA activity. GBP2 knockdown results in a rounded
cell morphology with lamellipodia, consistent with Racl activation
(102). Additionally, GBP2 hinders AKT activation during cell
spreading on fibronectin and suppresses Rac activation essential
for this process. Both IFN-y and GBP2 inhibit platelet-derived
growth factor-initiated cell spreading, accompanied by suppressed
Rac activation (103). The full-length GBP2 requires GTP binding
and potentially dimerization to effectively inhibit cell spreading, but
these properties alone are insufficient—isoprenylation is also
essential. While GBP2 typically undergoes modification with the
C20 geranylgeranyl isoprenoid, addition of the C15 farnesyl moiety
also inhibits cell spreading (104). Moreover, GBP2 forms a complex
with PI3K pl10 subunit, which is crucial for inhibiting cell
spreading, as PI3K activation during spreading is curtailed by
GBP2 (103).

5.2 The roles of GBP2 in apoptosis of
tumor

Dysregulated apoptosis is a hallmark of cancer development.
The B cell lymphoma gene 2 (BCL-2) protein family acts as a pivotal
regulator of apoptosis, maintaining the delicate balance between cell
survival and death. This family includes both antiapoptotic and
proapoptotic members. Upon receiving death signals, proapoptotic
proteins such as BCL-2 antagonist/killer 1 (BAK), BCL-2 associated
X, and/or BCL-2-related ovarian killer undergo oligomerization,
leading to mitochondrial outer membrane permeabilization (105).
This process results in the release of apoptotic molecules including
cytochrome c, which subsequently triggers caspase activation. GBP2
contributes to tumor regulation by modulating apoptotic pathways.
It interacts with myeloid cell leukemia 1—a key antiapoptotic
protein in the BCL-2 family—via its BH3 domain. This
interaction competitively inhibits myeloid cell leukemia 1’s pro-
survival function in chronic myeloid leukemia cells, thereby
liberating BAK from myeloid cell leukemia 1 binding. In addition,
GBP2 significantly upregulates BAK expression by suppressing the
PI3K/AKT pathway (4). Correspondingly, knockdown of GBP2 was
shown to significantly increase proliferation and reduce apoptosis
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in acute myeloid leukemia cells. Furthermore, miR-221 promotes
acute myeloid leukemia cell proliferation partly through targeting
GBP2 and regulating PI3K/AKT pathway activation (106).
Pyroptosis, a form of inflammatory programmed cell death, also
plays a role in cancer cell death and the tumor immune
microenvironment through host-tumor crosstalk. As previously
discussed, GBP2 is involved in the regulation of pyroptosis (107),
highlighting its multifaceted role in cell death mechanisms relevant
to cancer.

5.3 The roles of GBP2 in immune
environment of tumor

GBP2 has been associated with immune surveillance,
immunotherapy response, immune regulation, and defense
against viral infections in the tumor microenvironment. Immune
checkpoint therapy represents a predominant strategy for many
advanced cancers, though its efficacy depends on the presence of
sufficient T cells. By blocking the programmed cell death 1 (PD-1)/
programmed cell death ligand 1 (PD-L1) axis to hinder immune
evasion, CD8" T cells can effectively drive tumor eradication (108).
Currently, the role of GBP2 in immunotherapy remains
controversial. One perspective supports its beneficial role,
proposing GBP2 as a combination target with checkpoint
blockade due to its influence on anti-PD-1 response, regulation of
PD-L1 expression, and effects on CD8" T cells. Increasing GBP2
expression enhances anti-PD-1 response and inhibits colorectal
cancer growth (76). It was identified as a hub gene linked to
CD8" T cells in an immune-related gene score predicting
lymphoma subtypes and treatment response (109), and correlates
with T cell-related genes in breast cancer defense (110). Conversely,
other evidence suggests GBP2 may be detrimental to
immunotherapy outcomes. Studies indicate that GBP2
significantly correlates with increased expression of multiple
immune checkpoints (including PD-1 and PD-L1) and with
CD8" T cell distribution in the renal cell carcinoma tumor
microenvironment, potentially promoting cancer progression (14,
111). A signature combining GBP2 predicts metastasis and immune
infiltration in prostate cancer (112). Moreover, in clear cell renal cell
carcinoma, high GBP2 expression is associated with greater
infiltration of CD3", CD8", and CD68" immune cells, along with
elevated expression of immune checkpoint markers PD-1 and
cytotoxic T lymphocyte antigen 4, as validated by Opal multiplex
immunohistochemistry (96). In gastric cancer, elevated GBP2
expression is linked to poor prognosis, immune modulators,
infiltrating immune cells, biomarkers, and immunotherapy
response (83, 113). However, one study in esophageal cancer
found no association between inflammatory infiltrate and GBP2
expression (35). Regarding immune surveillance, most
characteristic immune checkpoints are significantly more
expressed in high-GBP2 groups compared to low-GBP2 groups
(84). GBP2 may also influence cancer progression through immune
regulation against viral infections. Given that many malignancies—
such as liver cancer with HBV, nasopharyngeal cancer with EBV,
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and cervical cancer with HPV —are associated with viral infections,
and considering that various viruses induce IFN production upon
host invasion, GBP2 likely plays a role in host defense. Whether the
pathology of cancers with high GBP2 expression involves viral
infection merits further investigation (84). Gastric cancer, one of the
most common and lethal cancers worldwide, is primarily caused by
Helicobacter pylori infection. GBP2 was among the highly
upregulated genes in H. felis-infected mice, potentially promoting
cancer progression by enhancing angiogenesis, proliferation,
migration, metastasis, invasion, and tumorigenicity (114). The
paradoxical regulatory effects of GBP2 in the immune
microenvironment may be explained by the fact that high GBP2
expression could represent both immune activation and a
compensatory immunosuppressive state, such as through
upregulation of checkpoint molecules.

5.4 The roles of GBP2 in therapy of tumor

GBP2 has emerged as a significant regulator of chemoresistance and
a potential therapeutic target in cancer treatment, addressing the major
challenge of chemoresistance in achieving effective anticancer outcomes.
Recent evidence indicates that GBP2 expression modulates sensitivity to
paclitaxel. In triple-negative breast cancer cells, upregulation of GBP2
was found to enhance paclitaxel sensitivity, promote autophagy, and
inhibit cell proliferation. This increased drug sensitivity was attenuated
upon administration of autophagy inhibitors, suggesting the
mechanistic involvement of autophagic processes. Further
investigation revealed that GBP2 facilitates autophagy through
suppression of the PI3K/AKT/mTOR signaling pathway and via
physical interaction with autophagy-related protein 2 (115). Notably,
paclitaxel itself can induce GBP2 expression, and GBP2 knockout in
chronic myeloid leukemia cells significantly attenuates paclitaxel
-induced apoptosis (4). In paclitaxel -resistant colorectal cancer cell
lines, both mRNA and protein levels of GBP2 were substantially
downregulated compared to their non-resistant counterparts. Ectopic
expression of GBP2 in these resistant cells restored paclitaxel sensitivity,
resulting in suppressed proliferation, reduced invasion, and increased
apoptosis. Mechanistically, GBP2 potentiates the cytotoxic effects of
paclitaxel in both sensitive and resistant colorectal cancer models by
inhibiting Wnt signaling (11). Beyond paclitaxel-response, GBP2 has
also been identified as a potential target of quercetin in melanoma. In
murine melanoma B16-F1 cells, quercetin treatment upregulates GBP2
expression, which correlates favorably with prognostic outcomes.
Functional studies suggest that GBP2 may restrain melanoma
progression by modulating mitochondrial fission and inhibiting
invasive behaviors (116). Additionally, GBP2 expression is modulated
by endocrine agents: it was significantly upregulated by estradiol and
downregulated by tamoxifen in breast cancer models, implicating a role
in hormone-therapy response (117). In bladder cancer, intravesical
Bacillus Calmette-Guérin immunotherapy has shown efficacy against
high-grade non-muscle-invasive disease. GBP2 appears to be specifically
involved in the Bacille Calmette-Guérin-responsive gene program,
despite exhibiting minimal basal expression in normal urothelium
(Figure 7) (118).
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5.5 Context-dependent dual roles of GBP2
in cancer

A substantial body of literature indicates that GBP2 can exhibit
both pro-tumorigenic and anti-tumorigenic functions in cancer.
The mechanistic basis for this context-dependent duality may be
attributed to several factors. First, the proper function of GBP2
relies on precise molecular regulation—including GTP binding,
dimerization, and isoprenylation. Point mutations (e.g., S52N)
that impair these processes abrogate its activity, suggesting that
cell-type-specific differences in its post-translational modifications
or protein-interaction networks may lead to divergent phenotypic
outcomes. Second, GBP2 may act as a signaling node whose
downstream effects are determined by the specific oncogenic
networks predominant in a given cellular context. Much like a
multifunctional tool, it can be exploited to “construct” pro-
tumorigenic programs in some cancers, while in others it
contributes to “destructive” anti-tumorigenic mechanisms.

6 The role of GBP2 in human diseases
beyond infection and cancer

6.1 The role of GBP2 in rheumatoid
diseases

GBP2 has been implicated in several rheumatoid diseases,
including rheumatoid arthritis, lupus erythematosus, lupus nephritis,
and primary Sjogren’s syndrome (119-122). In discoid lupus
erythematosus, GBP2 ranks among the top ten differentially
expressed genes, indicating its potential involvement across multiple
stages of the immune response (122). Regarding lupus nephritis, GBP2
expression is significantly upregulated in renal tissues compared to
healthy controls. As an integral component of the IFN signaling
pathway, GBP2 likely contributes to disease pathogenesis and
emerges as a potential biomarker for this condition (120). In primary
Sjogren’s syndrome, GBP2 serves as a salivary biomarker that not only
distinguishes patients from healthy controls but also differentiates
primary Sjogren’s syndrome from systemic lupus erythematosus
(121). Furthermore, in rheumatoid arthritis models, GBP2
demonstrates differential expression in both collagen-induced
arthritis and collagen-induced arthritis combined with organic dust
exposure—particularly within specific lung cell populations—
correlating with rheumatoid arthritis progression and associated
pulmonary complications (119).

6.2 The role of GBP2 in metabolic
disorders

GBP2 has been implicated in the pathogenesis of various
metabolic disorders, including nonalcoholic fatty liver disease and
diabetic complications (16, 123). In the context of nonalcoholic
fatty liver disease, GBP2 expression is significantly elevated
compared to normal hepatic tissues and contributes to hepatic
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The dual roles of GBP2 in innate immunity and cancer. GBP2 exhibits context-dependent dual roles in tumorigenesis, either promoting or

suppressing cancer progression across different cancer types. On one hand, GBP2 acts as a tumor-promoting factor through multiple mechanisms:
it significantly upregulates fibronectin expression, which is essential for GBP2-driven cancer cell invasiveness. Additionally, GBP2 enhances the
phosphorylation of STAT3 and STAT2, thereby activating the JAK-STAT signaling pathway to facilitate cell migration and invasion. Furthermore, GBP2
directly interacts with KIF22 on microtubules, impeding the trafficking of epidermal growth factor receptor signaling from endosomes to lysosomes
for degradation. This leads to sustained epidermal growth factor receptor signaling and promotes tumor progression. On the other hand, GBP2 also
demonstrates tumor-suppressive functions: it promotes STAT1 phosphorylation by competing with the phosphatase SH2-containing protein tyrosine
phosphatase 1 for STAT1 binding, resulting in reduced tumor proliferative capacity. Moreover, GBP2 inhibits the Wnt/B-catenin signaling pathway,

thereby dampening tumor development and metastasis. It also blocks dynamin-related protein 1 translocation from the cytosol to mitochondria,
attenuating dynamin-related protein 1-dependent mitochondrial fission and consequently reducing cancer cell invasion. In certain contexts, GBP2

activates CDC42, leading to decreased invasiveness.

lipid accumulation through the PPARYy-CD36 axis. Targeting
GBP2, along with related signaling molecules such as C-Maf-
inducing protein, may thus offer novel therapeutic strategies for
the prevention and treatment of this condition (16). Regarding
diabetic nephropathy, GBP2 promotes M1 macrophage
polarization by activating the Notchl signaling pathway.
Inhibition of GBP2 suppresses Notchl activation, indicating that
GBP2 facilitates canonical Notch signaling—either directly by
promoting nuclear translocation of the Notchl intracellular
domain, or indirectly through modulating its acetylation (73).
Furthermore, GBP2 exhibits altered expression in the diabetic
retina, where it may regulate inflammatory responses via
pyroptosis (9, 123). Additionally, GBP2 has been identified as a
component of a biomarker panel with potential utility in
pharmacotherapeutic research for diabetic retinopathy (124).
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6.3 The role of GBP2 in neurological
disorders

GBP2 has been implicated in the pathogenesis of multiple
neurological diseases. In Parkinson’s disease, GBP2—along with
C3 and Serpingl—is significantly upregulated in the substantia
nigra of rats injected with preformed fibrils, identifying it as a
marker of reactive astrocytes (125). In Alzheimer’s disease, GBP2
expression in astrocytes is associated with amyloid plaques; it is
markedly increased in astrocytes treated with fibrillar amyloid [3-
protein 42, and immunolabeling in TgF344-AD rat brains shows
enhanced GBP2 expression surrounding amyloid plaques compared
to wild-type controls (126). Following traumatic brain injury, GBP2
expression is regulated by the JAK2/STATI signaling pathway.
GBP2 interacts with phosphorylated STAT1, and administration
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of the JAK2 inhibitor AG490 disrupts this interaction and promotes
functional recovery after injury (127). Similarly, after subarachnoid
hemorrhage, GBP2 protein levels rise significantly, peaking at 24
hours, and may contribute to pathogenesis by inhibiting the PI3K/
AKT pathway (17). In migraine without aura, a rare
nonsynonymous mutation in GBP2 (A907G) was identified in
patients and absent in controls, suggesting a potential role in
vasomotor dysfunction and migraine pathogenesis (128). GBP2 is
also included in a five-gene signature predictive of relapse-free
survival in multiple sclerosis (129), and has been found to be
differentially expressed in human T-lymphotropic virus 1-
associated myelopathy/tropical spastic paraparesis (130).
Moreover, maternal infection—a known risk factor for
schizophrenia—may dysregulate GBP2 through epigenetic
mechanisms, potentially linking its antiviral functions to
neurodevelopmental pathology (131).

6.4 The role of GBP2 in hematological
diseases

GBP2 has been implicated in several hematological disorders,
where it influences disease progression and demonstrates diagnostic
utility. Elevated GBP2 expression is significantly associated with
reduced survival in patients with myelodysplastic syndromes,
underscoring its prognostic relevance (132). In the context of
molecular diagnostics, GBP2 is specifically upregulated in
JAK2V617F-positive myelofibrosis. It forms part of a four-gene
signature that yields high area under the receiver operating
characteristic curve values, effectively distinguishing JAK2V617F"
myelofibrosis from other myeloproliferative neoplasms such as
polycythemia vera and essential thrombocythemia (90).
Furthermore, GBP2 contributes functionally to erythropoiesis. It
is downregulated during normal erythroid differentiation and
regulates both proliferation and erythroid maturation in TF-1
cells. The microRNA miR-433 negatively modulates
hematopoietic proliferation and erythropoiesis by directly
targeting GBP2, indicating a post—transcriptional regulatory
mechanism in these processes (133).

6.5 The role of GBP2 in other diseases

In transplantation medicine, GBP2 contributes to maintaining
homeostasis in the peri-implant epithelium, which serves as a
critical barrier against inflammatory initiation at implantation
sites. Expression levels of GBP2 in the peri-implant epithelium
are approximately 8.9-fold higher than in the junctional epithelium,
with immunohistochemical analysis confirming moderate staining
in peri-implant tissues (134). Additionally, GBP2 has emerged as a
promising peripheral blood biomarker for acute cellular rejection.
In patients experiencing acute cellular rejection, GBP2 expression is
significantly elevated compared to those with hepatitis C or without
severe liver dysfunction following transplantation. Using a cut-oft
value of 20 (GBP2/GAPDH ratio), receiver operating characteristic
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curve analysis demonstrated 63% sensitivity and 85% specificity for
detecting acute cellular rejection. The correlation between GBP2
mRNA levels in peripheral leukocytes and liver grafts, along with its
consistent upregulation in allogeneic transplantation models,
supports its diagnostic utility—particularly in cases accompanied
by severe liver dysfunction (34, 135). In ocular diseases, GBP2
participates in retinal pathophysiology. Its expression is
downregulated in both oxygen-induced retinopathy mouse
models and hypoxic ARPE-19 cells. Functionally, GBP2 inhibits
angiogenesis via the AKT/mTOR/VEGFA signaling axis, suggesting
its potential as a therapeutic target for pathological retinal
angiogenesis. Knockdown of GBP2 activated the AKT/mTOR
pathway in vitro, whereas overexpression produced inhibitory
effects (7). Under chronic hypoxic conditions, GBP2 levels were
elevated in the vitreous and accompanied by increased retinal
mRNA expression, indicating its potential as an early marker of
photoreceptor response to hypoxia (136). Furthermore, GBP2 has
been identified as a key regulator in coronary artery disease, where it
orchestrates relevant biological processes (137). M The protein also
appears to play a significant role in acute respiratory distress
syndrome, showing promise as both a diagnostic indicator and
therapeutic target (138). The regulatory role of GBP2 in non-
infectious human diseases are summarized in Table 2.

7 Therapeutic implications of GBP2:
diagnostic biomarker, differential
diagnostic utility, and therapeutic
target

Accumulating evidence underscores the significant potential of
GBP2 as a diagnostic biomarker, a tool for differential diagnosis,
and a promising therapeutic target across various human diseases.
In tuberculosis, GBP2 is consistently downregulated and has been
identified as a hub gene with considerable diagnostic value; its
significantly reduced expression in tuberculosis patients supports its
utility for treatment monitoring (56). Additionally, during dengue
infection, plasma GBP2 levels emerge as a potential biomarker for
disease severity, correlating with key clinical manifestations (42).
Beyond infectious diseases, GBP2 exhibits distinctive expression
patterns that aid in differential diagnosis. For example, it serves as a
salivary biomarker that not only identifies patients with primary
Sjégren’s syndrome but also differentiates this condition from
systemic lupus erythematosus (121).

Therapeutically, GBP2 plays a context-dependent role in
modulating cancer treatment response. It enhances sensitivity to
anti-PD-1 immunotherapy and suppresses tumor growth in
colorectal cancer (76). In triple-negative breast cancer, GBP2
increases paclitaxel sensitivity by promoting autophagy through
suppression of the PI3K/AKT/mTOR pathway and physical
interaction with autophagy-related protein 2 (115). Similarly, in
paclitaxel -resistant colorectal cancer models, restoring GBP2
expression re-sensitizes cells to paclitaxel via inhibition of Wnt
signaling, leading to suppressed proliferation and invasion, along
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TABLE 2 Summary of GBP2 dysregulation, mechanisms, and functional roles in non-infectious human diseases.

GBP2
Disease expression Mechanism Main function References
change
Cancer
P, tes fib; tin inducti ia STAT3
Glioblastoma 1 romotes fibronectin induction via Promotes tumor cell migration and invasion (13)
pathway
Clear Cell Renal Cell ' Enhances phosphorylation of STAT2/ Promotes cell migration and invasion; Associated (14, 96)
Carcinoma STATS3, triggering JAK-STAT signaling with immune infiltration and poor prognosis ’
Interacts with KIF22 t te KIF22/
Glioma 1 n eracts wi o regulate R K Promotes cell proliferation and migration 97)
epidermal growth factor receptor signaling
Esophageal S‘quamous i Undlear Associated with proliferative and neoplastic 35)
Cell Carcinoma phenotype
S tastasis; Act: tential t
Cutaneous Melanoma | Inhibits Wnt/B-catenin signaling Uppresses metastasis; Acts as a potential tumor (6)
suppressor
Breast Cancer (TNBC, ! Inhibits PI3K/AKT/mTOR pathway; Increases paclitaxel sensitivity; Enhances (115)
paclitaxel -Resistance) Interacts with autophagy-related protein 2 autophagy; Suppresses cell growth
Collorectal Ca‘ncer ! Suppresses Wt signaling Ixilcreaées paclit.axel ?ensitivity; Decreases - an
(paclitaxel -Resistant) proliferation and invasion; Increases apoptosis
Osteosarcoma 1 Unclear Suppresses cell migration and invasion (100)
Rheumatological Diseases
Lupus Nephritis ' Unclear; Part of interferon signaling Potential contributo'r to pathogenesis; Potential (120)
pathway biomarker
Primary Sjogren’s 1(Saliva) Undlear Salivary biomarker fc‘)r diagnosis and differentiation (121)
Syndrome from systemic lupus erythematosus
Discoid Lt
1seoid Lupus Unclear Unclear Involved in immune response stages (122)
Erythematosus
Rh toid Arthriti
X cumatol r' r1. 1 1 Unclear Correlates with disease and lung complications (119)
(with lung complication)
Metabolic Disorders
Non-alcoholic Fatt:
on'a <0 ?1c ay ) Acts via the PPARY-CD36 axis Promotes hepatic lipid accumulation (16)
Liver Disease
Diabetic Nephropathy 1 Activates Notchl signaling pathway Promotes M1 macrophage polarization (73)
Unclear; M: late infl ti
Diabetic Retinopathy ) niclear; Vidy reguiate in 'amma o Potential component of a biomarker panel (9, 123, 124)
through pyroptosis
Neurological Disorders
Parkinson’s Disease 1 Unclear Marker of reactive astrocytes (125)
Alzheimer’s Disease 1 (Astrocytes) Unclear Associated with amyloid plaques (126)
Traumatic Brain Injury ' Interacts with p-STAT1 (JAK2/STAT1 Contributes to pathogenesis; Inhibition promotes (127)
pathway) recovery
Subarachnoid
Hbarachnol T Inhibits PI3K/AKT pathway Contributes to pathogenesis (17)
Hemorrhage
Potential role i tor dysfuncti d
Migraine without Aura Mutation (A907G) Unclear otential role 1n vasomo or. ystunction an (128)
pathogenesis
Multiple Sclerosi
uitipre 5¢ er0§1s 1 Unclear Predictive biomarker for relapse-free survival (129)
(relapse-free survival)
Hematological Diseases
Myelodysplastic ' Undlear Prognostic marker (as}sociated with shorter (132)
Syndromes survival)
(Continued)
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TABLE 2 Continued

GBP2

Disease expression Mechanism Main function References
change

Hematological Diseases

AK2V617F"
II\/Iyelo fibrosis 1 Unclear Diagnostic biomarker (part of a gene signature) (90)
Eryth iesis (TF-1
oA YOIZ:llles §1s ( l Regulated by miR-433 Regulates proliferation and erythroid maturation (133)
Acute Myeloid Leukemia l Regulation of PI3K/AKT pathway Suppresses cell proliferation and reduces apoptosis (106)
Transplantation
Acute Cellular Rejection 1(Blood) Unclear Potential peripheral blood biomarker for diagnosis (34, 135)
Peri-implant Epithelium 1 Unclear Maintains homeostasis (134)
Ocular Diseases
Pathological Retinal
atho o.glca Refma l Inhibits AKT/mTOR/VEGFA signaling Inhibits pathological retinal angiogenesis (7)
Angiogenesis
Potential earl ker of phot t
Chronic Retinal Hypoxia 1(Vitreous) Unclear otential early marker of p ,0 oreceptor response (136)
to hypoxia
Cardiovascular & Respiratory
Coronary Artery Disease 1 Unclear Orchestrates relevant biological processes (137)
A Respi
Dics':rt:ss ;;Tz?ﬂ?; 1 Unclear Potential diagnostic and therapeutic target (138)

with increased apoptosis (11). Collectively, these findings position  and immunosuppressive checkpoint expression could potentially be
GBP2 as a multifaceted player in clinical medicine—functioning as  resolved by single-cell analyses to determine which specific cell
a diagnostic indicator, a discriminator among complex diseases, and ~ types (e.g., tumor cells, T cells, macrophages) express GBP2 in
a modulator of treatment response—with mechanistic involvement  different contexts (76, 96). Furthermore, species differences between
across JAK-STAT, Wnt, and PI3K/AKT/mTOR signaling pathways. ~ human and murine GBP systems are often overlooked. For

example, the human GBP family has seven members, while mice

have eleven, leading to potential functional redundancy or

8 Limitations of current evidence and divergence that complicates the extrapolation of findings from
know[edge gaps mouse models to human diseases (1).

While this review synthesizes the expanding roles of GBP2 . .
across diseases, a critical appraisal reveals significant limitations in 9 Conclusion and perspectives
the current evidence base and highlights crucial knowledge gaps
that future research must address. A primary concern is the heavy Recent advances have unveiled the multifaceted roles of GBP2
reliance on in vitro models and preclinical studies, which form the  in human diseases—including cancer, neurological, metabolic, and
bulk of the mechanistic evidence (13, 49, 97). While these models ~ autoimmune disorders—highlighting its promising potential as a
are invaluable for hypothesis generation, they often lack the therapeutic target. Functioning both within and beyond the
complexity of the human tumor microenvironment or tissue-  guanylate-binding protein family, GBP2 mediates cell-
specific physiology, raising questions about the translational =~ autonomous innate immunity against viral, bacterial, and
relevance of these findings. The scarcity of genetically engineered parasitic infections through mechanisms such as furin inhibition,
mouse models that specifically manipulate GBP2 expression in a  inflammasome activation, and targeted protein trafficking. In
spatiotemporal manner limits our understanding of its systemic and ~ cancer, it exhibits context-dependent duality, modulating key
cell-autonomous functions in vivo. Additionally, substantial — pathways—including JAK-STAT, Wnt/B-catenin, and immune
methodological limitations also exist. Many studies utilize bulk  signaling—to influence tumor progression, metastasis, and
transcriptomic data to correlate GBP2 expression with clinical ~ therapy response.
outcomes (83, 84). This approach fails to account for cellular To resolve the paradox of its opposing functions, we propose a
heterogeneity within tumors. The seemingly contradictory  unifying hypothesis in which GBP2’s biological output is shaped by the
association of high GBP2 with both favorable immune activation ~ molecular milieu—including cell-type-specific interaction partners and
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upstream signaling cues—together with its post—translational
modification status. In growth factor—enriched, pro—tumorigenic
niches (e.g., under platelet-derived growth factor stimulation), GBP2
is co—opted to potentiate oncogenic pathways such as JAK-STAT,
thereby fostering invasive behavior. Conversely, in homeostatic or
defense—primed contexts, GBP2 exerts tumor—suppressive effects by
harnessing its GTPase activity and membrane localization properties to
disrupt core motility machinery, including cytoskeletal remodeling and
mitochondrial fission.

Future research on GBP2 should prioritize elucidating the
molecular determinants underlying its context—dependent roles in
cancer and other diseases. Key areas include delineating how cell
—type—specific interactors, signaling environments, and post
—translational modifications—such as GTP binding, dimerization,
and isoprenylation—dictate its functional outcomes. In—depth
mechanistic studies are also warranted to explore GBP2’s
regulation of critical pathways, including JAK-STAT, Wnt/
B—catenin, PI3K/AKT/mTOR, and Rho GTPase cascades across
different pathological contexts. Substantial knowledge gaps remain
in understanding GBP2’s immunomodulatory roles. While its
contributions to inflammasome activation and T—cell polarization
have been established, the detailed molecular cascades and
functional consequences for the overall immune landscape in
tumors or autoimmune diseases are not fully delineated. Finally,
the development of GBP2-targeted agents—such as small
—molecule modulators and biologicals—represents a promising
translational direction. Efforts to validate GBP2 as a diagnostic or
prognostic biomarker in infections, cancers, and autoimmune
diseases should also be strengthened through multi-center
clinical studies.

In summary, the role of GBP2 in human diseases appears to
have been significantly underestimated, underscoring the need for
expanded investigation into its molecular functions and
therapeutic applicability.
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Glossary
GBPs
GBP2
PI3K
AKT
mTOR
‘Wnt
JAK
LG
MD
GED
IFN
GTP
GDP

GMP

Guanylate-binding proteins
Guanylate-Binding Protein 2
Phosphatidylinositol 3-kinase
Ak strain transforming
Mammalian target of rapamycin
Wingless-type MMTYV integration site family
Janus kinase

Large GTPase domain

Middle domain

GTPase effector domain
Interferon

Guanosine triphosphate
Guanosine diphosphate

Guanosine monophosphate
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STAT1
IRF
NEF-xB
LPS
NLRP3
T3SS
TNF-ou
Notchl
AIM2
KIF22
BAK
PD-1

PD-L1

10.3389/fimmu.2025.1708319

Signal transducer and transcription activator 1
Interferon regulatory factor

Nuclear factor kb

Lipopolysaccharide

NOD-like receptor protein 3

Type III secretion systems

Tumor necrosis factor-ov

Neurogenic locus notch homolog protein 1
Absent in melanoma 2

Kinesin family member 22

BCL-2 antagonist/killer 1

Programmed cell death 1

Programmed cell death ligand 1
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