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Né-methyladenosine (m®A) is the most abundant internal RNA modification,
orchestrated by writers, erasers, and readers. METTL14, a key component of
the m®A methyltransferase complex, acts as a structural scaffold that ensures
substrate recognition and modification precision. Beyond this canonical role,
METTL14 regulates multiple biological processes, including chromatin
remodeling, transcriptional activity, and senescence-associated signaling.
Recent studies highlight its pivotal function in tumor immunity: METTL14
shapes T cell differentiation, CD8" T cell activation, and the activity of
macrophages and NK cells, thereby remodeling the tumor immune
microenvironment. Moreover, METTL14 directly modulates immune
checkpoint pathways by regulating PD-1 and PD-L1 expression, linking
epitranscriptomic control with immune escape and therapeutic resistance.
Aberrant METTL14 expression correlates with tumor progression and immune
evasion, underscoring its potential as a predictive biomarker and therapeutic
target. Targeting METTL14, alone or in combination with immune checkpoint
inhibitors, may provide novel strategies to enhance immunotherapy efficacy.
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1 Introduction

Ns—methyladenosine (mC®A) is one of the most prevalent internal modifications in
eukaryotic mRNA and long non-coding RNA, dynamically regulated by “writers”, “erasers”
and “readers” (1).” As a reversible post-transcriptional modification, m°A governs multiple
aspects of RNA metabolism, including splicing, nuclear export, stability, and translational
efficiency, thereby exerting profound effects on cell fate determination and environmental
adaptation (2-4). In the immune system, m®A modification has been shown to regulate
both innate and adaptive immune responses (5, 6). For instance, it modulates dendritic cell
(DC) antigen presentation and macrophage polarization by influencing interferon
signaling and cytokine expression downstream of pattern recognition receptors. At the
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same time, m°®A controls the expression of transcription factors and
signaling molecules critical for CD4" T cell lineage commitment,
CD8" T cell activation and exhaustion, and the maintenance of
regulatory T cell (Treg) suppressive functions, ultimately shaping
the strength and durability of immune responses (7). Collectively,
these findings underscore m®A modification as a pivotal layer
connecting genomic information with immune plasticity, playing
a central role in sculpting the tumor immune microenvironment.

Within the m®A writer complex, METTL14 serves as an
indispensable core component. The complex primarily consists of a
METTL3-METTL14 heterodimer, with auxiliary cofactors such as
WTAP ensuring its nuclear localization (8). Although METTL14
itself possesses minimal catalytic activity, it provides critical RNA
substrate recognition and structural stabilization, thereby dictating
the site selectivity and substrate specificity of m®A deposition (9). In
immune cells, the functions of METTL14 exhibit strong cell type- and
context-dependent features. In Tregs, METTL14-mediated m°A
modification is essential for sustaining immunosuppressive function
and homeostasis (10). Conversely, in CD8" T cells, METTL14 regulates
the expression of genes associated with effector function, cytokine
production, and exhaustion, thereby influencing antigen-specific
immune responses and therapeutic efficacy. These findings position
METTLI14 not only as a structural scaffold within the m°®A machinery
but also as a critical regulatory node governing immune cell fate
and functionality.

In recent years, the advent of immune checkpoint inhibitors
(ICIs) has revolutionized cancer therapy and markedly improved
clinical outcomes across multiple malignancies (11). However,
therapeutic responses remain highly heterogeneous, and only a
subset of patients achieve durable benefit. The complexity and
heterogeneity of the tumor immune microenvironment are
recognized as major contributors to this variability (11). Against
this backdrop, METTL14 and its mediated m°A modification have
emerged as critical factors linking epigenetic regulation with tumor
immunity. On one hand, METTL14 expression is closely associated
with immune cell infiltration, immune-related gene expression, and
patient prognosis, highlighting its potential as a predictive and
prognostic biomarker (12). On the other hand, targeting METTL14
or modulating its downstream pathways may enhance the efficacy
of ICIs and provide novel strategies to overcome therapeutic
resistance (13). Notably, existing literature and reviews have
largely focused on the role of METTLI4 in tumorigenesis and
cancer progression, while its contribution to tumor immune
regulation remains relatively underexplored. Therefore, this
review aims to systematically summarize the molecular
mechanisms and biological functions of METTLI14 in tumor
immunity, and to further discuss its potential value and
translational prospects in immunotherapy.

2 Biological functions and regulatory
mechanisms of METTL14

To provide a foundation for understanding METTL14 impact
on tumor immunity, this section will summarize its diverse
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biological functions and the multilayered regulatory mechanisms
that govern its expression and activity, highlighting how these
features position METTL14 as a central hub in cellular
homeostasis and disease progression. METTL14 functions not
only as a structural scaffold that maintains the stability and
specificity of the m®A writer complex but also exerts a spectrum
of m®A-independent roles (14). By regulating the senescence-
associated secretory phenotype (SASP), chromatin states, and
transcriptional activity, METTLI4 critically influences cell fate
decisions and homeostasis (15). Moreover, its expression and
activity are subject to multilayered regulation, including
epigenetic modifications, transcription factors, non-coding RNAs,
and post-translational modifications, endowing METTL14 with
remarkable dynamic plasticity across diverse physiological and
pathological contexts. These molecular and network-level
regulatory mechanisms not only underscore the multidimensional
functionality of METTL14 but also establish its importance in
tumorigenesis, immune modulation, and therapeutic resistance.
Consequently, an in-depth exploration of its pathological roles
and potential value in immunotherapy holds significant
theoretical and translational relevance. In summary, METTL14
versatile functions and finely tuned regulatory mechanisms
provide a mechanistic basis for its central role in immune
regulation and tumor biology, setting the stage for a detailed
examination of its specific molecular functions.

2.1 Role of METTL14 within the m®A writer
complex

This section focuses on METTL14 role as a structural scaffold and
substrate recognition factor within the m®A methyltransferase
complex, emphasizing how these features underpin its influence on
RNA metabolism and downstream immune modulation.
N6—methyladenosine (m°A) is the most abundant internal
modification in eukaryotic mRNAs and various non-coding RNAs,
dynamically regulated by “writers”, “erasers” and “readers”. Among
them, the m°A methyltransferase complex (MTC) constitutes the
central catalytic unit, composed of both catalytic and auxiliary
subunits (1). As an essential component, METTL14 acts in concert
with METTL3, WTAP, and other cofactors. Structurally, METTL14
forms a stable heterodimer with METTL3. While METTL3 harbors
canonical catalytic activity that transfers a methyl group from S-
adenosylmethionine (SAM) to adenosine, METTL14 lacks
independent enzymatic activity due to evolutionary alterations in
key catalytic residues within its methyltransferase domain (8)
(Figure 1). Instead, METTL14 provides an extended RNA-binding
interface and stabilizes METTL3 conformation, thereby enhancing
substrate recognition efficiency and modification specificity.
Functionally, METTL14 ensures the precision of m°A deposition.
Its ability to recognize consensus motifs (RRACH) facilitates the
enrichment of m°A at intron-exon junctions, the 3’ untranslated
region (3'UTR), and regions near stop codons. This distribution
pattern directly influences downstream RNA splicing, nuclear export,
stability, and translation (16). Furthermore, through cooperation
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FIGURE 1

Functions and upstream regulatory mechanisms of METTL14. Epigenetic factors (HDAC, H3K36me3), post-translational modifications (PRMT1, atRA),
transcription factors (XBP1s, SPI1, ETS1, YY1), and non-coding RNAs (miR-3165, circMETTL14) regulate the METTL3-METTL14 methyltransferase
complex, leading to m®A RNA modification. m®A-modified RNAs are recognized by reader proteins, including YTHDFs/elF3, IGF2BPs, HNRNPs,
YTHDF2/3, YTHDC1/2, and YTHDC2, which regulate RNA translation, stability, processing, degradation, splicing, and nuclear—cytoplasmic transport.
These events collectively reshape the tumor immune microenvironment. METTL14 non-m®A-dependent functions, including regulation of SASP,
chromatin architecture, and transcriptional initiation, which contribute to its multifaceted influence on cell fate and disease.

with cofactors such as WTAP, VIRMA, and RBM15/15B, METTL14
participates in guiding the localization of m°®A marks to specific RNA
regions, reinforcing the spatial specificity of the modification (16). In
summary, METTL14 functions not as a catalytic core but as a
structural scaffold and substrate recognition factor, stabilizing the
MTC and coordinating auxiliary subunits to ensure high efficiency
and specificity of m°A deposition. These structural and functional
attributes provide the molecular basis for its pivotal role in immune
regulation and disease progression. Overall, METTL14 structural and
functional contributions to the m®A writer complex ensure precise
RNA modification, providing the molecular foundation for its
regulatory impact on gene expression, immune function, and
disease progression.

2.2 m®A-independent functions of
METTL14

Beyond its canonical role in m°®A deposition, this section
highlights METTL14 non-m°A-dependent functions, including
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regulation of SASP, chromatin architecture, and transcriptional
initiation, which contribute to its multifaceted influence on cell
fate and disease (Figure 1). Although METTL14 is best known as a
key component of the m®A writer complex, recent studies have
uncovered a range of biological functions independent of m°A
modification, highlighting its multifunctionality. First, METTL14
regulates the senescence-associated secretory phenotype (SASP) in
an mGA—independent manner, under conditions of without
detectable changes in total m®A abundance (15). It upregulates
the expression of SASP-related genes such as IL-6 and CXCLS,
thereby promoting the secretion of cytokines by senescent cells (15).
These secreted factors act in a paracrine manner to induce
reprogramming or senescence in neighboring cells. For example,
during the reprogramming of somatic cells into induced pluripotent
stem cells (iPSCs), METTL14-driven SASP factor secretion by
unsuccessfully reprogrammed cells enhances the reprogramming
efficiency of adjacent cells (17). Second, METTLI14 participates in
chromatin regulation and transcriptional control, these chromatin
regulatory effects were observed in cells expressing catalytically
inactive METTL3, where global m°A levels remained unchanged.
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It binds to heterochromatic regions and recruits the histone
demethylase KDM6B by recognizing the H3K27me3 mark,
thereby reducing H3K27me3 levels and altering transcriptional
activity. This function is critical for maintaining pluripotency and
regulating differentiation in mouse embryonic stem cells (ESCs),
independent of its role in m°A modification (17). Together, these
findings reveal that METTL14 possesses non-m°A-dependent roles
in regulating SASP gene expression, remodeling chromatin
architecture, and facilitating transcriptional initiation. These
discoveries not only broaden our understanding of METTLI14
biological versatility but also highlight its roles in cell fate
determination, senescence, and disease development. Together,
these findings illustrate METTL14 m®A-independent versatility,
reinforcing its significance in cell senescence, differentiation, and
pathological processes relevant to tumor immunity.

2.3 Upstream regulatory mechanisms of
METTL14 expression

This section will examine the hierarchical and interconnected
upstream mechanisms that regulate METTL14 expression and
activity, demonstrating how epigenetic, transcriptional, post-
transcriptional, and post-translational layers collectively fine-tune
METTLI14 function in physiological and pathological contexts
(Figure 1). The expression and activity of METTLI14 are finely
tuned not only by its role within the m°A methyltransferase
complex but also by multilayered upstream mechanisms, which
ensure precise regulation across physiological and pathological
contexts. These mechanisms encompass chromatin modifications,
transcription factor regulation, non-coding RNA mediation, and
post-translational modifications, collectively determining
METTL14 transcription, translation, and protein stability. At the
chromatin level, epigenetic modifications directly influence the
accessibility and transcriptional activity of the METTLI14 gene. In
ocular melanoma, histone deacetylase inhibitors (HDACi)
markedly increase global m°A levels by restoring histone
acetylation at the METTLI4 promoter, reactivating its
transcription (18). Upregulated METTLI4 subsequently enhances
FAT4 expression through an m®A-YTHDF1-dependent pathway,
exerting tumor-suppressive effects (18). In pulmonary arterial
hypertension (PAH), SETD2-mediated H3K36me3 modification
upregulates METTLI4 expression, leading to enhanced m°A
deposition. Overexpressed METTL14 promotes pulmonary artery
smooth muscle cell (PASMC) proliferation and exacerbates disease
phenotypes in hypoxia-induced mouse models (19). Transcription
factors also exert critical control. In breast cancer cells, endoplasmic
reticulum (ER) stress induces XBPls-dependent transcriptional
activation of METTL3/METTL14, thereby elevating cellular m®A
levels. In hematopoiesis, METTLI4 is highly expressed in
hematopoietic stem/progenitor cells (HSPCs) and certain acute
myeloid leukemia (AML) subtypes (t(11q23), t(15;17), t(8;21)),
but its expression declines during myeloid differentiation.
Importantly, SPI1 negatively regulates METTLI4, forming a
SPI1-METTL14-MYB/MYC axis essential for normal
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hematopoiesis and leukemogenesis (20). In neuroblastoma,
METTLI4 expression is significantly elevated in high-risk patients
and correlates with poor prognosis, with ETS1 and YY1 identified as
upstream regulators (21). Non-coding RNAs further refine
METTLI4 regulation. MicroRNAs, IncRNAs, and circRNAs
modulate its expression either by directly targeting METTL14
mRNA or functioning as molecular sponges. For instance, miR-
3165 suppresses METTLI14 expression in bladder cancer, promoting
tumor progression via the miR-3165-METTLI14-USP38 axis (22).
In vascular endothelial inflammation underlying atherosclerosis,
circMETTL14(11)S is highly expressed upon TNF-o stimulation
and positively regulates METTLI4, exacerbating inflammatory
responses in human umbilical vein endothelial cells (HUVECs)
(23). Post-translational modifications (PTMs) also play a pivotal
role. Phosphorylation, ubiquitination, and acetylation directly affect
METTLI4 stability, subcellular localization, and interactions within
the MTC. For example, PRMT1-mediated arginine methylation
(R255me) enhances METTL14 binding to WTAP and RNA
substrates, stabilizing MTC function, maintaining global m°A
levels, and promoting endodermal differentiation in embryonic
stem cells (24). During ER stress, accumulated unfolded/
misfolded proteins induce METTL14 expression. METTL14 then
promotes CHOP mRNA degradation via m°A modification at its 3’
UTR, thereby suppressing pro-apoptotic gene expression and
facilitating cell adaptation to stress (25). Mechanistically, the
unfolded protein response (UPR) competes with the HRDI-
ERAD pathway to prevent METTL14 ubiquitination and
degradation, stabilizing its protein levels (25). In palatogenesis,
environmental teratogen all-trans retinoic acid (atRA) induces
aberrant upregulation of METTLI4, elevating m®A levels in
palatal mesenchymal cells (26). This disrupts proliferation and
cell cycle gene expression, promoting cleft palate formation,
which can be partially alleviated by siRNA-mediated METTL14
knockdown or inhibition of the m°A methyltransferase complex
with SAH. Collectively, the upstream regulation of METTL14 is
hierarchical and interconnected. These multilayered regulatory
mechanisms not only maintain METTL14 homeostasis under
normal conditions but also enable its dynamic responses to
inflammation, immune signaling, and tumor microenvironmental
changes. Understanding these regulatory pathways will provide
crucial insights into the central role of METTL14 in tumor
immune modulation and lay the foundation for developing
METTL14-targeted therapeutic strategies. Collectively, these
multilayered regulatory mechanisms ensure METTL14
homeostasis and dynamic responsiveness to cellular stress,
inflammation, and tumor microenvironmental cues, highlighting
their critical importance for METTL14-mediated immune
modulation and providing a rationale for therapeutic targeting.

3 The role of METTL14 in the TME

With the rapid advancement of cancer immunotherapy, the
TME has been increasingly recognized as a central determinant of
therapeutic efficacy and resistance (27). As a core component of the

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1709742
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Li et al.

10.3389/fimmu.2025.1709742

TABLE 1 Key targets, regulatory mechanisms, and functional effects of METTL14 in different tumors or immune cells.

Cancer type/ = Upstream Direct target(s)/ Functional effect
Effects yp P et m°A reader
Immune cell = regulator Pathway (Promote t/Suppress |)
Tumor CRC Ebi3 mRNA stabilization 1 EBI3 — CD8" T-cell dysfunction — 30)
promoting (T cells/TAMs) (Jm°A) immune evasion
T IFN-y-Stat1-Irfl signali CD8" T-cell
umor CRC - Stat1/Irfl degradation YTHDF2 4 IEN-y-Statl-Irfl signaling — e (12)
suppressing activity | — PD-1 blockade resistance 1
Tumor' NSCLC - circZNF548 §uppressi0n - | | CD8* ‘T—cell cytotoxicity T tumor (52)
promoting exosomal miR-7108-3p progression
Tumor ‘ NSCLC ~ PDCDI 1‘11RNA B | PD-1 expression — CD8" T-cell activation 1 53)
suppressing degradation (tumor growth |)
Tumor METTL14 low — CD4"/CD8" infiltration | —
X Breast cancer - - - X (54)
promoting poor prognosis T
Tumor T FoxP3 expression; mTOR Maintains iTreg differentiation & suppressive G2)
regs - -
promoting 8 pathway inhibition function 1
Tumor Maintains Treg suppressive activity 1;
w
. Tregs - Sema4D degradation YTHDEF2 METTL14 loss 1 Sema4D — timmune (10)
promoting -
activation
Tumor' cRCC ~ cclLs B METTL1'4 low — Treg abundance 1 (immune 55)
promoting suppression 1)
T
mor. CRC - Ebi3 stabilization (Jm°A) - 1 EBI3 — CD8" T-cell dysfunction 1 (30)
promoting
Tumor CESC Glycolysis-lactate-PD-1 Lactate 1 PD-1 in TAMs — phagocytosis |, (56)
promoting axis immune suppression T
Tumor O - . .
. ESCC ZC3H13 CXCLS8 stabilization - TAM M2 polarization 1, infiltration 1 (36)
promoting
Tumor M1 exosomal miR- circFUT8/miR-552-3p/
HCC - Drives HCC i 57
promoting 628-5p (IMETTL14) | CHMP4B rives HCC progression 1 (57)
T Prfl, Gzmb (effect,
umor i NK cells - rfl, Gzmb (effector - Maintains NK maturation & cytotoxicity 1 (58)
suppressing genes)
Tumor ‘ INKT cells ~ C‘15h s-uppressmn (TCR B Promotés iNKT development & cytokine (39)
suppressing signaling) production 1
Brcell 1L-7 signaling; key TFs for = YTHDF2 (for IL. Promotes pro-B proliferation & large-to-small
development | B-cell development - & i g’ Y . R p. K P 8 (40)
. pre-B transition 7 proliferation) pre-B transition 1
promoting

-not mentioned; tindicates promotion/activation; |indicates suppression/inhibition.

m°A methyltransferase complex, METTL14 not only promotes
tumor initiation and progression through post-transcriptional
regulation of cancer cells, but also profoundly influences the
differentiation, functional maintenance, and intercellular
communication of immune cells. Accumulating evidence
indicates that METTL14 exerts multi-level immune regulatory
effects in the TME by modulating T cells, regulatory T cells
(Tregs), tumor-associated macrophages (TAMs), and natural
killer (NK) cells, thereby reshaping the immune landscape and
regulating antitumor immunity. Together, these observations
underscore METTL14 as a central hub linking epitranscriptomic
regulation to tumor immune modulation, which is the core
argument of this review. These findings not only deepen our
understanding of tumor immune evasion mechanisms but also
suggest that METTL14 may represent a promising target for
improving immunotherapy sensitivity and overcoming immune
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resistance. As summarized in Table 1, METTL14 exhibits distinct
targets, regulatory mechanisms, and functional effects across
different tumors and immune cells.

3.1 Regulation of T-cell infiltration and
function

T cells are the central executors of antitumor immunity, and
their infiltration and cytotoxic activity are tightly regulated within
the TME (28). This section illustrates how METTL14 directly
modulates T-cell infiltration and cytotoxic function, highlighting
its pivotal role as a mediator between m°A epitranscriptomic
modification and adaptive antitumor immunity. Studies using
CD4-Cre conditional knockout mice demonstrated that T cell-
specific loss of Mettl14 leads to spontaneous colitis characterized by
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FIGURE 2
METTL14-mediated regulation of CD8" T cell function in different cancers.

Upregulation of METTL14 enhances m®A modification of target transcripts

such as Ebi3, HSD17B6, Statl/Irfl, and circZNF548, thereby modulating CD8" T cell dysfunction, infiltration, activation, or killing capacity, ultimately
influencing cancer progression in NSCLC and CRC. Conversely, reduced METTL14 expression leads to upregulation of PDCDI, suppressing CD8" T cell
activation and promoting BRCA progression. Tumor — immune cells indicate Tumor cell-initiated regulation of immune cells; Immune cells — tumor

indicate Immune cell-intrinsic regulation of tumor cells.

increased inflammatory infiltration, elevated colon weight/length
ratio, and enhanced Th1/Th17 cytokine expression (29).
Mechanistically, Mettl14 deficiency causes dysfunction of
regulatory T cells (Tregs), marked by reduced RORYt expression
and impaired iTreg differentiation, ultimately failing to suppress
inflammatory responses (29). Rescue experiments confirmed that
adoptive transfer of wild-type Tregs ameliorates colitis, while
antibiotic treatment mitigates disease progression, highlighting
the role of gut microbiota. In the tumor context, METTLI4 plays
a crucial role in TAMs. In T-cell-specific METTL14 knockout mice,
alterations in CD8" T-cell cytotoxicity were observed, indicating
that METTLI14 acts primarily within T cells to modulate antitumor
immunity. Macrophage-specific deletion of METTL14 reduces m°A
modification, thereby stabilizing Ebi3 mRNA and increasing EBI3
protein expression. Elevated EBI3 drives CD8" T cells toward
dysfunction, diminishing their cytotoxicity and fostering tumor
immune evasion. Blocking EBI3 restores CD8" T-cell activity and
enhances antitumor immunity (30) (Figure 2). Consistently, clinical
colorectal cancer samples show a negative correlation between
METTLI4 expression/m°A levels and T-cell dysfunction. In lung
cancer, METTL14 stabilizes HSD17B6 mRNA through m°A
modification, suppressing CD8" T-cell infiltration and activation,
ultimately facilitating tumor progression and impairing PD-1
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blockade efficacy (Figure 2) (13). Similarly, in pMMR-MSI-L
colorectal cancer, METTL14 promotes YTHDF2-dependent
degradation of Statl/Irfl mRNA, dampening IFN-y-Statl-Irfl
signaling and limiting CD8" T-cell activity, which restricts PD-1
immunotherapy response (Figure 2). Additional evidence shows that
circZNF548, downregulated in NSCLC and associated with favorable
prognosis, enhances CD8" T-cell cytotoxicity via exosomal miR-
7108-3p, while METTL14 reduces circZNF548 levels through m°A
modification, thereby promoting tumor progression (Figure 2) (12).
Interestingly, METTL14-mediated m°A-dependent degradation of
PDCDI mRNA reduces PD-1 expression, maintaining CD8" T-cell
activation and restraining tumor growth (12) (Figure 2). Conversely,
METTLI14 loss elevates PD-1 levels, impairs T-cell function, and
induces immunotherapy resistance. In breast cancer, METTL14 is
frequently downregulated, correlating with ER-/PR-/triple-negative
subtypes, poor prognosis, and advanced progression. Importantly,
low METTLI14 levels are positively associated with reduced
infiltration of CD4" and CD8" T cells as well as neutrophils,
underscoring its pivotal role in modulating TME and antitumor
immunity. In summary, these findings demonstrate that METTL14
regulation of T-cell activity is a key mechanism by which
epitranscriptomic modifications influence antitumor immunity,
supporting its role as a critical node in the TME.
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METTL14-mediated regulation of immunosuppressive cells and B cell development. METTL14 promotes tumor progression by regulating immune
suppressive mechanisms: (i) Sema4D and circFUT8/miR-628-5 axis drive Treg cell activation and M2 macrophage polarization in CRC and HCC;

(i) CXCL8 induces M2 macrophage polarization in ESCC; (iii)Prf1/Gzmb/Mtorcl-SAM axis regulate NK cells function. (iiii) METTL14/IL7 axis regulate B
cells development. Tumor — immune cells indicate Tumor cell-initiated regulation of immune cells; Immune cells — tumor indicate Immune

cell-intrinsic regulation of tumor cells.

3.2 Regulatory T cells (Tregs)

Tregs are indispensable for immune tolerance and play a dual
role in suppressing antitumor immunity within the TME (31). Here,
we show that METTL14 is essential for Treg differentiation and
suppressive function, connecting its epitranscriptomic activity to the
modulation of immune tolerance and tumor immune escape. In vitro
studies revealed that METTL14 expression is markedly upregulated
in induced Tregs (iTregs). Silencing METTL14 with siRNA reduced
FoxP3 expression, impaired differentiation, and elevated pro-
inflammatory cytokines such as IFN-y and IL-17a. Functional
assays confirmed that Mettl14 loss compromises iTreg suppressive
capacity both in vivo (colitis mouse models) and in vitro (CFSE
inhibition assays). Mechanistically, Mettl14 deficiency activates the
mTOR pathway (elevated p-mTOR and p-p70S6K), disrupting iTreg
stability and immunosuppressive function (32). Further studies
demonstrated that Mettl14-mediated m°A modification is essential
for Treg expansion and immunosuppressive cytokine production
(IL-10, TGF-B). Treg-specific knockout of Mettl14 disrupts their
suppressive capacity, leading to graft rejection, largely via SOCS
pathway regulation (33). Moreover, Mettl14-YTHDF2-dependent
degradation of Sema4D mRNA maintains Treg function, whereas
METTLI14 loss upregulates Sema4D (Figure 3), impairing
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immunosuppressive activity. Pharmacological inhibition of Sema4D
restores Treg functionality and prolongs graft survival (10). Clinically,
Sema4D expression negatively correlates with renal graft survival,
supporting its role as a therapeutic target. In clear cell renal cell
carcinoma (ccRCC), METTLI4 expression is inversely correlated
with Treg abundance and positively associated with CCL5 levels,
suggesting a METTL14/CCL5/Tregs axis that shapes the tumor
immune landscape (34). Collectively, these findings underscore
METTL14 as a central regulator of Treg-mediated immune
suppression, reinforcing its function as a molecular link between
RNA methylation and immune modulation in the TME.

3.3 Recruitment and function of
tumor-associated macrophages

Macrophages are highly plastic immune cells that critically
influence tumor progression, and METTL14 has emerged as a
regulator of TAM recruitment and function. This section
highlights METTL14 role in orchestrating TAM behavior,
providing evidence that its m®A-mediated regulation contributes
to immune suppression and tumor progression, further connecting
epitranscriptomic modifications to tumor immunity. TAM-specific
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loss of METTL14 reduces global m®A levels, stabilizing Ebi3 mRNA
and increasing immunosuppressive EBI3 expression. This drives
CD8" T-cell dysfunction and weakens antitumor responses,
whereas EBI3 blockade restores cytotoxic T-cell activity (30).
Clinically, METTLI4 expression inversely correlates with CD8"
T-cell dysfunction in colorectal cancer. In cervical cancer,
METTLI14 is overexpressed and enhances tumor glycolysis,
producing lactate that upregulates PD-1 expression in TAMs (30).
This suppresses phagocytosis and promotes an immunosuppressive
TME. Functional and in vivo studies confirm the glycolysis-lactate—
PD-1 axis as a critical mechanism by which METTL14 drives TAM-
mediated tumor progression, identifying it as a potential
therapeutic target. In hepatocellular carcinoma (HCC), M1
macrophage-derived exosomes deliver miR-628-5p to suppress
METTL14, reducing circFUT8 methylation and nuclear export
(35). METTL14 otherwise promotes circFUT8/miR-552-3p/
CHMP4B signaling, driving HCC progression (Figure 3),
highlighting an interplay between macrophage exosomal miRNA
and METTLI14-mediated circRNA regulation (35). In esophageal
squamous cell carcinoma (ESCC), ZC3H13 modulates METTL14/
METTL3 nuclear transport and stabilizes CXCL8 mRNA, driving
M2 polarization and infiltration, thereby facilitating immune
evasion (36). Taken together, these studies confirm that
METTL14 modulates TAM recruitment, polarization, and
immunosuppressive activity, illustrating another pathway by
which epitranscriptomic regulation impacts antitumor
immune responses.

3.4 NK cell function

Natural killer (NK) cells are innate lymphocytes essential for
early antitumor responses (37). In this section, we demonstrate that
METTLI14-mediated m°A modification is crucial for NK and iNKT
cell stability, maturation, and cytotoxic function, showing how
epitranscriptomic regulation influences innate antitumor
immunity. Short-term activation rapidly elevates m°A levels in
NK cells, whereas this modification is suppressed within the TME
(38). Single knockout of METTL3 or METTLI14 has minimal effect,
but double knockout profoundly impairs NK-cell homeostasis,
maturation, and cytotoxic function, underscoring their
cooperative role. Mechanistically, m°A directly modifies effector
genes such as Prfl and Gzmb, regulating their expression, while the
mTORCI-SAM axis drives rapid NK activation via m®A-dependent
mechanisms (Figure 3). Similarly, m®A modification is
indispensable for invariant NKT (iNKT) cell development (39). In
T cell-specific METTLI14-deficient mice, increased apoptosis of
double-positive thymocytes reduces Vol4-Jal8 rearrangement
(Figure 3), resulting in decreased thymic and peripheral iNKT
numbers (39). Residual iNKT cells exhibit increased apoptosis,
impaired maturation, and weakened responses to IL-2/IL-15 and
TCR stimulation. Knockdown of METTLI4 in mature iNKT cells
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upregulates Cish, suppresses TCR signaling, and reduces cytokine
production. Overall, METTL14 ensures effective innate immune
surveillance through m°®A-dependent mechanisms, reinforcing its
central role as a molecular hub linking epitranscriptomic
modification with tumor immunity.

3.5 B cell development

RNA Né—methyladenosine (m6A) methylation, catalyzed by the
METTL14 methyltransferase complex, plays a critical regulatory
role in numerous biological processes (1). Studies have shown that
deletion of Mettli4 significantly reduces mRNA m6A methylation
levels in developing B cells and severely impairs B-cell development
in mice (40). Loss of Mettl14 weakens interleukin-7 (IL-7)-induced
pro-B cell proliferation and blocks the transition from large pre-B
cells to small pre-B cells, while also causing abnormal expression of
B-cell development-related genes (Figure 3). IL-7-induced pro-B
cell proliferation depends on the cytoplasmic m6A reader YTHDEF2,
which suppresses a subset of transcripts, whereas the block in large-
to-small pre-B cell transition is independent of either YTHDFI or
YTHDEF2 and instead results from the failure to properly upregulate
key transcription factors (40). Overall, this study highlights the
essential regulatory roles of RNA m6A methylation and its reader
proteins in early B-cell development.

4 METTL14 and immunotherapy

To provide a clear framework for the following sections, this
part will highlight how METTL14, as a core component of the m®A
“writer” complex, regulates immune checkpoint molecules and the
tumor immune microenvironment, thus serving as a central node
linking epitranscriptomic regulation to antitumor immunity. In
recent years, the clinical application of tumor immunotherapies,
particularly immune checkpoint inhibitors (ICIs), has significantly
improved the prognosis of certain cancer patients. However, their
efficacy remains limited by immune evasion and resistance
mechanisms. RNA N6—methyladenosine (m®A) modification, as a
key layer of epitranscriptional regulation, has increasingly been
recognized as a critical determinant of tumor immune
microenvironment remodeling and immunotherapy response. As
a core component of the m°A “writer” complex, METTL14 not only
regulates the expression of immune checkpoint molecules such as
PD-1 and PD-LI to modulate T cell function and immune escape,
but also interacts with multiple non-canonical signaling pathways,
thereby profoundly influencing tumor sensitivity to
immunotherapy. In summary, the mechanistic and therapeutic
significance of METTL14 positions it as a pivotal link between
epitranscriptomic regulation and tumor immune responses,
setting the stage for a deeper discussion of its role in
immunotherapy efficacy.
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4.1 Regulation of immune checkpoint
inhibitor efficacy

This section will focus on how METTL14 modulates PD-1/PD-L1
and related molecules to regulate T cell function and tumor immune
evasion, emphasizing its critical role in immunotherapy efficacy.
Evidence has shown that METTL14 promotes m°A-dependent
degradation of PDCDI mRNA, thereby downregulating PD-1
expression, sustaining CD8" T cell activation, and suppressing
tumor progression. Conversely, METTLI4 deficiency results in
elevated PD-1 levels, impaired T cell function, and resistance to
immunotherapy. This highlights the METTLI14-PD-1 axis as a
critical regulatory pathway and suggests that targeting METTLI4 in
combination with PD-1 blockade may hold translational value. In
glioblastoma (GBM), METTL14 is highly expressed and enhances
PD-L1 stability by promoting its m°A modification. Knockdown of
METTL14 significantly suppresses GBM proliferation, migration, and
immune evasion while slowing tumor growth in murine models (41)
(Figure 3). Mechanistically, METTL14-mediated mP®A modification
stabilizes PD-L1 mRNA in an IGF2BP2-dependent manner. Rescue
experiments confirmed that PD-L1 overexpression reverses the
inhibitory effect of METTL14 knockdown, underscoring PD-L1 as
a key downstream effector (41). Thus, METTL14 drives GBM
progression and immune escape by stabilizing PD-L1 via an
IGF2BP2-dependent mechanism. In cholangiocarcinoma (CCA), an
m®A-METTL14-Siah2-PD-L1 axis has been identified. METTL14
promotes m°A deposition on the 3'UTR of Siah2 mRNA, enhancing
its YTHDF2-dependent degradation and ultimately upregulating
Siah2 expression (42). Siah2 directly interacts with PD-LI,
regulating its stability through Ké3-linked ubiquitination.
Knockdown of Siah2 maintains PD-L1 expression in tumor cells,
markedly impairing T cell proliferation and cytotoxicity (42)
(Figure 3). Clinical analysis confirmed the presence of this axis in
CCA tissues and demonstrated that patients with low Siah2
expression were more responsive to PD-1 blockade. Collectively,
these findings reveal a novel mechanism whereby METTLI14
regulates PD-L1 stability via Siah2, providing new therapeutic
insight for CCA immunotherapy. In hepatocellular carcinoma
(HCC), METTL14 plays a key role in immune escape. In
orthotopic Hepal-6 models, lipopolysaccharide (LPS) stimulation
significantly upregulated PD-1 and PD-L1 expression. Mechanistic
studies showed that LPS enhanced METTLI14 expression, which in
turn stabilized the IncRNA MIR155HG through m°A modification in
an ELAVL1 (HuR)-dependent manner. MIRI55HG acted as a
competing endogenous RNA (ceRNA) regulating the miR-223/
STATI axis, thereby further increasing PD-LI1 expression. This
LPS-METTLI14-MIRI55HG-PD-L1 axis was validated in HepG2
xenografts and was particularly prominent in HCC with cirrhosis,
suggesting a novel m°A-dependent IncRNA regulatory pathway
contributing to HCC immune escape (43). In non-small cell lung
cancer (NSCLC), KCTDI0 expression is significantly downregulated
in tumor tissues. Functional assays revealed that KCTDI0
overexpression effectively suppressed tumor progression both in
vitro and in vivo. Mechanistically, KCTDI0 interacted with [3-
catenin via its BTB domain, promoting [B-catenin K48-linked

Frontiers in Immunology

10.3389/fimmu.2025.1709742

ubiquitination and degradation, thereby suppressing downstream
PD-L1 expression (44). Importantly, combined KCTDIO0
overexpression and PD-1 blockade exhibited a pronounced
synergistic effect in suppressing lung cancer progression and brain
metastasis. Notably, METTL14 directly enhanced the stability of
KCTD10 mRNA via m°A modification within its coding sequence
in a YTHDF2-dependent manner (44). Taken together, KCTDI0
suppresses lung cancer progression and immune escape via the f-
catenin/PD-L1 axis, and its expression is tightly regulated by
METTL14-dependent m®A modification, highlighting its potential
as a therapeutic target. Taken together, these findings underscore
METTLI14 as a master regulator of immune checkpoint signaling and
tumor immune escape, providing a mechanistic rationale for
targeting METTL14 to enhance immunotherapy responses.

4.2 Potential of METTL14 inhibitors in
combination immunotherapy

This section will explore the therapeutic potential of targeting
METTL14 with inhibitors, emphasizing how modulating METTL14
activity can synergize with immune checkpoint blockade and
overcome resistance, further demonstrating METTL14 role as a
key link between epitranscriptomic regulation and antitumor
immunity. With the rapid development of RNA epigenetic
therapeutics, the METTL14-centered m°A methyltransferase
complex has emerged as a novel druggable target. Preclinical
studies have demonstrated that pharmacological inhibition of
METTL14 reduces global m°A levels, destabilizes oncogenic
transcripts, and suppresses malignant tumor progression. More
importantly, because METTL14-mediated m°A modification
enhances PD-L1 expression and promotes an immunosuppressive
microenvironment, inhibition of METTL14 may not only directly
impair tumor proliferation but also downregulate PD-L1 expression
to improve T cell-mediated antitumor immunity. Therefore,
combining METTL14 inhibitors with PD-1/PD-L1 ICIs offers
synergistic therapeutic potential and may help overcome
resistance to monotherapy in subsets of patients. Interestingly,
viral infection studies provide additional mechanistic insights.
During early HSV-1 infection, the immediate-early protein ICPO
interacts with METTL14 and targets it for ubiquitination at K156
and K162, leading to proteasomal degradation and reduced cellular
mCA levels (45). Normally, METTL14 stabilizes ISG15 mRNA via
IGF2BP3, contributing to antiviral defense. By degrading
METTL14, HSV-1 suppresses this pathway to facilitate immune
evasion (45). Remarkably, METTL14 inhibition enhances the
efficacy of oncolytic HSV-1 (oHSV-1) in glioma, suggesting that
the METTL14-ISGI5 axis is both a viral immune checkpoint and a
therapeutic target to potentiate oHSV-1 antitumor activity. In
endometrial carcinoma, PRMT3 regulates METTL14 through
arginine methylation. Pharmacological inhibition of PRMT3 (e.g.,
SGC707) relieves this repression, enhances METTL14 expression
and m°A-YTHDF2-dependent modification, destabilizes GPX4
mRNA, and induces lipid peroxidation and ferroptosis (46).
Functionally, PRMT3 inhibition sensitizes endometrial cancer
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METTL14 inhibitors synergize with PD-1/PD-L1 antibodies to remodel the tumor immune microenvironment and suppress cancer progression.

cells to PD-1 blockade, cisplatin, and radiotherapy, highlighting
PRMT3 as a novel therapeutic target that indirectly modulates
METTLI4 activity to enhance ferroptosis and immunotherapy
efficacy. Moreover, combined inhibition of METTL3/METTL14
with paclitaxel (PTX) demonstrated potent synergistic antitumor
effects in breast cancer cells and xenograft models. Mechanistic
studies revealed that METTL14 stabilizes E2F1 mRNA through an
mGA—IGFZBPZ—dependent mechanism, contributing to resistance
against CDK4/6 inhibitors (CDK4/61) (47). A novel small-molecule
inhibitor, WKYMVM, effectively reversed CDK4/6i resistance and
significantly enhanced therapeutic efficacy when delivered via
liposomal formulations. As shown in Figure 4, the combination of
METTLI14 inhibitors with PD-1/PD-L1 antibodies synergistically
remodels the tumor immune microenvironment, enhancing
antitumor immunity and effectively suppressing cancer
progression. This highlights the potential of targeting METTL14
as a strategy to improve immunotherapeutic efficacy (Figure 4).
Overall, these studies highlight METTL14-centered therapeutic
strategies as a promising avenue to overcome immunotherapy
resistance and potentiate antitumor immunity, reinforcing
METTL14 central position at the intersection of epitranscriptomic
regulation and immune modulation.

5 Clinical significance and
perspectives

With growing evidence of the immunoregulatory role of m°A
modification, the multifaceted functions of METTL14 within the
tumor immune microenvironment (TME) are being progressively
unraveled, underscoring its translational value. As a core
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component of the m®A writer complex, METTL14 expression and
activity are tightly associated with immune cell function and may
critically determine patient responsiveness to immunotherapy,
thereby holding great promise in precision oncology (48, 49).
First, METTLI14 may serve as a predictive biomarker for
immunotherapy. Multiple studies demonstrate that m°A
modification levels are closely linked to the efficacy of PD-1/PD-
L1 blockade and other ICIs. METTL14 expression may influence
immune cell infiltration, antigen presentation, and cytotoxic
lymphocyte activity. Thus, assessing METTLI14 status could
provide a valuable indicator for predicting therapeutic response
and prognosis. Second, targeting METTLI14 or its downstream
signaling pathways offers novel therapeutic opportunities. Direct
modulation via small-molecule inhibitors, RNA interference, or
genome editing—or indirect targeting of pathways such as T cell
activation and dendritic cell function—could enhance
immunotherapy sensitivity and improve clinical outcomes.
Importantly, METTL14 exhibits
“double-edged sword” characteristics: while it may potentiate

“context-dependent” and
antitumor immunity in some settings, it could promote immune
suppression in others. This duality poses significant challenges for
clinical translation and highlights the need for context-specific
therapeutic strategies.

Future directions warrant particular attention. (i) The role of
METTLI14 in phase separation may regulate RNA-protein
condensate assembly, influencing transcriptional and translational
efficiency in immune cells. Recent studies suggest that liquid-liquid
phase separation (LLPS) serves as a key mechanism for the spatial
and temporal organization of biomolecules, including RNA,
proteins, and chromatin-associated factors. In the context of
immunity, LLPS can facilitate the formation of membrane-less
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condensates such as immunological synapses, transcriptional hubs,
or stress granules, thereby concentrating signaling molecules and
enhancing the efficiency of immune responses (50). For instance,
phase-separated condensates may regulate T-cell receptor (TCR)
signaling by clustering key kinases and adaptor proteins, promoting
rapid phosphorylation cascades and downstream cytokine
production. Similarly, LLPS can modulate the localization and
activity of RNA-binding proteins or m°®A readers/writers like
METTLI14, affecting mRNA stability and translation of immune-
related genes (51). Collectively, these observations indicate that
phase separation provides an additional layer of epitranscriptomic
and signaling regulation, enabling precise control of innate and
adaptive immune functions within the tumor microenvironment.
(ii) Its involvement in chromatin modification and 3D genome
architecture suggests functions beyond canonical RNA methylation,
potentially linking METTL14 to super-enhancer-mediated
regulation of immune gene activity. The three-dimensional
organization of the genome is increasingly recognized as a critical
determinant of gene expression and cellular identity, including in
immune cells. Chromatin looping, topologically associating
domains (TADs), and enhancer-promoter contacts can
dynamically regulate immune gene accessibility and
transcriptional programs. For example, spatial proximity between
interferon-stimulated gene clusters and super-enhancers can
potentiate rapid antiviral or antitumor responses. Similarly, the
3D genome may influence T-cell differentiation or regulatory T-cell
function by modulating long-range interactions that control
cytokine or transcription factor loci, such as FoxP3 or Statl.
Moreover, epitranscriptomic modifiers, including METTL14 (51),
may interact with specific chromatin regions to coordinate m®A
deposition with 3D chromatin architecture, thereby linking RNA
modification to gene regulatory landscapes in immune cells. These
insights highlight 3D genomics as a forward-looking mechanism for
fine-tuning immune responses and shaping tumor-immune
interactions. (iii) Preclinical and clinical studies combining
METTL14 knockdown or inhibition with ICIs or other
immunotherapies could yield synergistic effects, paving the way
for innovative combination strategies. In conclusion, research on
METTLI14 in tumor immunity remains in rapid evolution. As both
a biomarker and therapeutic target, METTL14 presents exciting
opportunities alongside complex challenges. Future mechanistic
studies and large-scale clinical validation will be essential to
bridge the gap from bench to bedside and to realize the full
potential of METTL14 in cancer immunotherapy.

6 Limitations and context-dependent
roles of METTL14 in tumor immunity

Despite extensive evidence highlighting the pivotal role of
METTL14 in regulating tumor progression and immune cell
function, several limitations must be acknowledged to provide a
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balanced perspective. First, the functions of METTL14 are highly
context-dependent, varying across tumor types, immune cell
subsets, and microenvironmental conditions. For instance,
METTL14 may promote CD8" T-cell dysfunction in colorectal
cancer through stabilization of Ebi3 mRNA, yet enhance T-cell
activation in other contexts by facilitating PDCD1 mRNA
degradation (30). Similarly, its regulatory effects on Tregs, TAMs,
and NK cells are influenced by local cytokine milieu, metabolic
conditions, or epigenetic landscapes. These differences may arise
from heterogeneous expression of m°A readers (e.g, YTHDEF2,
IGF2BP2), co-factors, and signaling intermediates, as well as the
interplay between mC®A-dependent and -independent functions
such as chromatin remodeling or transcriptional regulation.
Second, experimental limitations exist in many studies. Most
mechanistic insights are derived from murine models or in vitro
systems, which may not fully recapitulate the human tumor
microenvironment. Additionally, global manipulation of
METTLI14 (e.g., knockout or knockdown) may obscure cell-type-
specific effects, making it challenging to delineate precise molecular
mechanisms. Contextual variables such as tumor stage, mutational
burden, and microbiome composition may further modulate
METTLI14 functions, yet remain underexplored in current research.
Third, these context-dependent roles pose significant challenges
for clinical translation. The dual and sometimes opposing functions
of METTLI14 across tumors and immune cell types complicate its
application as a universal biomarker or therapeutic target. Systemic
targeting of METTL14 could inadvertently disrupt immune
homeostasis or impair anti-tumor immunity in specific contexts.
Therefore, patient stratification based on tumor type, immune cell
composition, and METTL14 expression patterns, along with the
development of cell-type-specific delivery systems, will be critical
for safe and effective therapeutic interventions. Moreover, the
integration of emerging concepts such as phase separation and
3D genome architecture may provide additional layers of regulatory
insight, potentially guiding more precise manipulation of
METTL14 in the tumor immune microenvironment. Collectively,
while METTL14 represents a promising target in cancer
immunotherapy, future studies should carefully consider its
context-dependent functions, mechanistic complexity, and
translational constraints to fully realize its therapeutic potential.
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