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The advent of Industry 4.0 and the emerging Industry 5.0 have fundamentally
transformed manufacturing systems, introducing unprecedented levels of
complexity in production scheduling. This complexity is further amplified
by the integration of cyber-physical systems, Internet of Things, Artificial
Intelligence, and human-centric approaches, necessitating more
sophisticated optimization methods. This paper aims to provide a more
comprehensive perspective on the application of metaheuristic algorithms
in shop scheduling problems within the context of Industry 4.0 and Industry
5.0. Through a systematic review of recent literature (2015–2024), we analyze
and categorize various metaheuristic approaches, including Evolutionary
Algorithms (EAs), swarm intelligence, and hybrid methods, that have been
applied to address complex scheduling challenges in smart manufacturing
environments. We specifically examine how these algorithms handle multiple
competing objectives such as makespan minimization, energy efficiency,
production costs, and human-machine collaboration, which are crucial in
modern industrial settings. Our survey reveals several key findings: 1) hybrid
metaheuristics demonstrate superior performance in handling multi-
objective optimization compared to standalone algorithms; 2) bio-inspired
algorithms show promising results in addressing complex scheduling and
multi-objective manufacturing environments; 3) tri-objective and higher-
order multi-objective optimization problems warrant further in-depth
exploration; and 4) there is an emerging trend towards incorporating
human factors and sustainability objectives in scheduling optimization,
aligned with Industry 5.0 principles. Additionally, we identify research gaps
and propose future research directions, particularly in areas such as real-time
scheduling adaptation, human-centric optimization, and sustainability-aware
scheduling algorithms. This comprehensive review provides insights for
researchers and practitioners in the field of industrial scheduling, offering a
structured understanding of current methodologies and future challenges in
the evolution from Industry 4.0 to 5.0.
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1 Introduction

The manufacturing industry is undergoing a profound
transformation, characterized by rapidly expanding production
scales and intensifying global competition. Traditional
manufacturing approaches, heavily dependent on manual labor, are
becoming increasingly inadequate in meeting the demands of modern
industrial production. In response to these challenges, the emergence
of cutting-edge technologies, including the Internet of Things (IoT),
Artificial Intelligence (AI), and advanced automation systems, has
provided unprecedented opportunities for manufacturing
transformation (Mourtzis, 2020a; Mourtzis, 2022). These
technological innovations have not only revolutionized production
processes through enhanced automation and intelligence but have also
optimized resource allocation, reduced operational costs, and
significantly improved both efficiency and quality of products.

Shop scheduling represents a fundamental challenge in
manufacturing systems and has been extensively studied in the
literature. The core objective of scheduling is to optimally
allocate limited production resources (e.g., machines, workers,
materials) to various tasks while satisfying multiple constraints
and objectives. While traditional scheduling approaches, based on
human expertise and simplified mathematical models, have served
well historically, they prove inadequate in addressing the complexity
and dynamism of contemporary manufacturing environments
characterized by volatile demand patterns and high uncertainty.
Consequently, the integration of advanced information technologies
and intelligent algorithms for scheduling optimization has emerged
as a critical research focus.

In the evolution of industrial paradigms, Industry 4.0 emphasizes
the comprehensive integration of information and communication
technologies with cyberspace virtual systems, encompassing IoT,
Cyber-Physical Systems, smart factories, and cloud computing, to
enhance manufacturing automation and intelligence (Mourtzis,
2020b; Jain et al., 2022). Within the Industry 4.0 framework, shop
scheduling faces both new opportunities and challenges (Ferreira
et al., 2023). Data-driven scheduling optimization, intelligent decision
support, and flexible productionmodels have transformed production
processes into more efficient and controllable systems. The vast
amount of production data collected through IoT infrastructure
enables the development of more accurate scheduling models.
Furthermore, the integration of big data analytics and machine
learning algorithms facilitates data-driven optimization, while
smart factories and autonomous decision-making systems enable
real-time production adjustments and anomaly detection,
significantly enhancing system adaptability and efficiency.

With the continued advancement of Industry 4.0, it has become
increasingly evident that, while technological progress has
significantly enhanced productivity, achieving more
comprehensive and sustainable industrial development requires
greater consideration of human factors, environmental
sustainability, and system resilience. Consequently, Industry
5.0 has emerged as an extension of Industry 4.0, adopting a more
holistic approach that emphasizes human-centricity, sustainability,
and resilience. This shift represents not merely a technological
upgrade but a profound reevaluation and transformation of
industrial production paradigms, aiming to establish a more
harmonious, green, and flexible industrial ecosystem.

In this context, shop scheduling must evolve beyond technical
optimization to incorporate human factors and social responsibility
(Destouet et al., 2023). The human-centric manufacturing paradigm
prioritizes worker wellbeing and satisfaction through smart wearable
devices and health monitoring systems. Sustainable production
practices focus on minimizing resource consumption and
environmental impact through green manufacturing and circular
economy principles. Additionally, resilient production systems are
designed to withstand disruptions through flexible production
networks and robust supply chain architectures. These emerging
requirements have significantly increased the complexity of
scheduling problems, necessitating the consideration of multiple
objectives which often competing.

Metaheuristic algorithms have emerged as powerful tools for
addressing these complex multi-objective scheduling challenges.
These algorithms demonstrate remarkable effectiveness in
handling large-scale problems with multiple competing objectives,
offering flexible and efficient solutions that can adapt to varying
production scenarios. Their success in solving complex and dynamic
shop scheduling problems, coupled with their ability to balance
multiple objectives across different production scales, has led to their
increased adoption in manufacturing applications. Moreover, the
integration of metaheuristics with Industry 4.0 and 5.0 technologies
has opened new avenues for scheduling optimization, enabling more
sophisticated approaches to improving production efficiency and
quality. Compared to previous studies, this paper aims to provide a
more comprehensive perspective on the application of metaheuristic
algorithms in shop scheduling problems within the context of
Industry 4.0 and Industry 5.0, making the following contributions:

(1) This paper focuses on the application of metaheuristic
algorithms in multi-objective scheduling problems from
2015 to 2024, systematically evaluating the advantages and
disadvantages of single algorithms and hybrid algorithms
found in the existing literature.

(2) By conducting an in-depth analysis of the number of
objectives across various studies, this paper explores
scheduling goals in the context of Industry 5.0 and
Industry 4.0, distilling the current scale of research
objectives and the trends for future research goals.

(3) This paper provides an overview of the research progress on
metaheuristic algorithms combined with Reinforcement
Learning (RL) methods in scheduling problems, assesses
the advantages of these combined approaches, and suggests
potential directions for future research.

(4) Addressing the classification of scheduling problems, this
paper summarizes and examines the current trends in
scheduling issues from the perspectives of flow-shop and
job-shop scheduling problems.

This comprehensive survey examines the application of
metaheuristic algorithms in multi-objective shop scheduling
within the Industry 4.0 and 5.0 frameworks. The paper is
structured as follows: Section 2 provides an overview of multi-
objective optimization concepts and methodologies. Section 3
presents a systematic classification of scheduling objectives in
modern manufacturing environments. Sections 4, 5 analyze the
application of metaheuristics in flow-shop and job-shop
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scheduling problems, respectively, including their variants. Section 6
explores the integration of metaheuristics with RL and other
advanced techniques. Finally, Section 7 summarizes key findings
and identifies promising directions for future research.

2 Multi-objective optimization

In contemporary manufacturing processes, multiple objectives
often conflict with each other, such as product quality versus
production cost, or production efficiency versus energy
consumption. The complexity of modern manufacturing systems,
particularly in the context of Industry 4.0 and 5.0, necessitates
simultaneous optimization of multiple objectives, making multi-
objective optimization a crucial research focus.

2.1 The essence of multi-objective
optimization

Multi-objective optimization problems are characterized by the
presence of multiple, often conflicting objectives where the
optimization of one objective typically results in the degradation
of others. This inherent trade-off necessitates finding solutions that
achieve an acceptable balance among all objectives. The
mathematical formulation of a Multi-objective Optimization
Problem (MOP) can be expressed as follows:

Definition 1. MOP (Coello, 2007) (Equation 1):

min F x( ) � f1 x( ), . . . , fm x( )( )T, x ∈ Ω (1)
where x � (x1, x2, . . . , xn)T represents the decision variable vector
in n-dimensional space, Ω denotes the feasible solution space, and
m represents the number of objective functions. F(x) maps the
decision space to the objective space through m
objective functions.

Definition 2. Pareto Dominance Relationship:
For two solutions x and y of MOP, x dominates y (denoted as

x ≺ y) if and only if ∀i ∈ 1, 2, . . . , m, fi(x)≤fi(y) and
∃j ∈ 1, 2, . . . , m, s.t.fj(y)<fj(y). Conversely, if y dominates x
(denoted as x ≻ y). In this context, x is termed a non-dominated
solution and y a dominated solution relative to x. The collection of
all non-dominated solutions forms the Non-dominated Set.

Definition 3. Pareto Optimal Solution (POS):
A solution x of the MOP is Pareto optimal if ∃y ∈ Ω, s.t. y < x.

Such solutions represent the best possible trade-offs among the
multiple objectives.

In the context of Multi-objective Evolutionary Algorithms
(MOEA), the goal is to identify a set of Pareto optimal solutions,
formally defined as (Equation 2):

POS � x ∈ Ω|ey ∈ Ω, y < x{ } (2)

Definition 4. Pareto-optimal Front (POF) (Equation 3):

POF � F x( )|x ∈ POS{ } (3)

Depending on the evolutionary mechanism, MOEA can be
divided into three categories: decomposition-based MOEA,
dominance relationship-based MOEA, and indicator-based MOEA.

2.1.1 Decomposition based multi-objective
evolutionary algorithm

The core idea of the decomposition-basedMOEA algorithm is to
decompose a multi-objective problem into a set of single-objective
optimization problems, and approximate the solution set of the
multi-objective problem by solving the subproblems simultaneously.
Among them, the commonly used decomposition methods include
the following three: weighted sum approach, Tchebycheff approach
and penalty-based boundary intersection approach.

The weighted sum approach was proposed by Hillermeier
(2001) and it is a commonly used linear multi-objective
aggregation method. The aggregation function of this method
can be expressed as (Equation 4):

mingws x|λ( ) � ∑m
i�1

λifi x( ) (4)

where x ∈ Ω is the decision vector, and λ � (λ1, λ2, . . . , λm)T is the
weight vector satisfying λi P 0, i � 1, . . . , m and ∑m

i�1λi � 1.
As shown in Figure 1, take two objective values as an example,

when the real Pareto front is convex, purple is the weight vector, the
green solid line perpendicular to the purple weight vector is the
contour line. Connecting the objective point and the origin in the
objective space constitutes a vector, and the purpose of the
aggregation function is to multiply this vector with the pair of
weight vectors point by point. When the weight vector is unchanged,
minimizing/maximizing the length value is optimizing the vector.

Tchebycheff approach is a nonlinear multi-objective aggregation
method, proposed by the aggregation function is defined as
(Equation 5):

FIGURE 1
Weighted sum aggregation approach contours.
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minimize gte x|λ, z*( ) � max λ|fi x( ) − zpi |{ }, x ∈ Ω (5)

The Tchebycheff approach continuously forces individuals to
approach a predetermined ideal point when transforming a multi-
objective problem into a single-objective optimization by means of
an aggregation function, which ultimately results in a Pareto
optimal solution under the constraints. As shown in Figure 2,
by definition the contour of each function in this method is a
straight line parallel to that function, respectively; moreover,
the intersection of two objective contours lies in the direction
of the weight vector. In order to solve the problem that the
solutions obtained by the standard Tchebycheff approach are
not homogeneous, Qi et al. (2014) proposed the conversion of
the reference vector into λ* � ( 1

λ1∑m

i�1
1
λc
, . . . ,

1
λm∑m

i�1
1
λc
), which yields

uniformly distributed solutions.
The penalty-based boundary intersection approach was

proposed by Zhang and Li (2007) which combines the
Tchebycheff method and the penalty mechanism, which allows
the solution to deviate from the direction of the weight vector,
but a penalty will be imposed on the deviated solution. During the
process of multi-objective optimization, the convergence and
distribution of the solution can be controlled by adjusting the
penalty parameter, so that the solution evolves directly along the
direction of the weight vector, which is defined as follows:

gpbi x|λ, z*( ) � d1 + θd2

d1 � ‖ F x( ) − z*( )Tλ‖
‖λ‖

d2 � ‖F x( ) − z* + d1
λ

‖λ‖( )‖
(6)

Equation 6 give the calculation of the method. Where θ is a
custom parameter and θ > 0, which is used to control the magnitude
of the weights d1 and d2. In general d1 and d2 control the
convergence and distributivity of the solution, respectively, and
the larger θ is, the method focuses on d1. In other words, it
tends to be distributed. Zhang and Li (2007) based on the idea of
decomposition, they combine mathematical planning methods and

Evolutionary Algorithms (EAs), convert a multi-objective
optimization problem into a set of single-objective optimization
problems, and seek the global optimal solution through the co-
evolution of multiple sub-problems.

2.1.2 Pareto dominance based multi-objective
evolutionary algorithm

Schaffer extended the simple Genetic Algorithm (GA) and
proposed the Vector Evaluation Genetic Algorithm (Schaffer,
1985) (VEGA) in 1985, but the method cannot make trade-offs
according to the attributes of each sub-objective, and it can only find
the extreme points on the optimality boundary. In addition, the non-
dominated solutions produced by VEGA are not necessarily globally
non-dominated individuals. Fonseca and Fleming made use of the
idea of sorting and proposed a kind of Multi-Objective Genetic
Algorithm (MOGA) (Fonseca and Fleming, 1993), which determine
the classification order of individuals based on the dominance
relationship between them. Subsequently, Goldberg et al. (1993)
proposed a dominance relationship-based MOEA method, which
mainly uses a Pareto-based fitness allocation strategy to find all non-
dominated individuals in an evolving population.

Currently, there is a great number of MOEA problems that use
dominance relationship methods. The Non-dominated Sorting
Genetic Algorithm (NSGA) proposed by Srinivas and Deb (1994)
uses Goldberg’s idea directly. This algorithm is an improvement of
the selection of the next-generation of sub-populations method
based on GA, which stratifies each individual according to their
dominance and non-dominance relationship before screening,
which in turn makes the algorithm get the satisfactory results as
possible on multiple objectives. Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) proposed by Deb et al. (2002), they uses fast
non-dominated sorting on the basis of NSGA, which reduces the
complexity of the algorithm and improves the running speed of the
algorithm. Subsequently Jain and Deb (2014) proposed Non-
dominated Sorting Genetic Algorithm-III (NSGA-III), which uses
reference point based non-dominated sorting based on NSGA-II,
this approach helps to identify the non-dominated solutions better
in high dimensional objective space, NSGA-III is more suitable for
the case where the number of objectives to be optimized is large.
Zhang et al. (2014) employed a Pareto dominance-based strategy,
proposed a hybrid sampling approach that combines VEGA with a
fitness function grounded in novel Pareto dominance relationships,
to balance the distribution and convergence of solutions. In
addition, Gen et al. (2008) provided a comprehensive analysis of
the advantages and applications of the GA. Figure 3 illustrates the
development of MOEA based on dominance relationships.

In the MOEA based on dominance relationship, the
evolutionary population is divided into several layers according
to the dominance relationship. The first layer is the set of non-
dominated individuals of the evolutionary population, the second
layer is the set of non-dominated individuals after removing the first
layer of individuals in the evolutionary population, the third layer is
the set of non-dominated individuals after removing the first and
second layer of individuals in the evolutionary population, and so
on. When making the selection, the first layer of the non-dominated
set is considered first, and individuals are selected from the first layer
according to a certain strategy, and then individuals are considered
to be selected sequentially in the other layers until the size

FIGURE 2
Tchebycheff approach contours.
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requirement of the new evolutionary population is met. Figure 4
illustrates this process in detail.

2.1.3 Indicator based multi-objective
evolutionary algorithm

Indicator based MOEA refers to the use of performance
evaluation indictor in optimization algorithms to guide the
search selection process of solutions. Based on the decision-
making approach, MOEA can be classified into three categories:
pre-decision techniques, interactive decision techniques and post-
decision techniques.

Pre-decision techniques are those in which the decisionmaker has
specified the preferences and objective weights of the problem before
the optimization process begin. These preferences and weights are
fixed during the optimization process and the algorithm searches
based on these fixed preferences and weights. The advantage of pre-
decision techniques is their simplicity and clarity, but the disadvantage
is that some potential high-quality solutions may be ignored. The
common pre-decision techniques are weighted sum method, ε

constraint method and objective planning method.

Interactive decision-making techniques are those in which the
decision maker interacts with the algorithm during the optimization
process, adjusting preferences and objective weights step by
step. This technique allows the decision maker to dynamically
adjust the objectives during the optimization process to find a
solution that better meets the practical requirements. Common
interactive decision-making techniques are: stepwise preference
adjustment, interactive multi-objective optimization and dynamic
preference adjustment.

The post-decision technique means that at the end of the
optimization process, the algorithm generates a set of Pareto
optimal solutions from which the decision maker chooses the
most satisfactory solution. The advantage of this technique is that
the decision maker can make a decision after seeing all possible
solutions, but the disadvantage is that it may need to deal with a large
set of solutions. Some common post-decision techniques are: non-
dominated sorting method, MOGA,Multi-Objective Particle Swarm
Optimization (MOPSO) algorithm, Multi-Objective Differential
Evolutionary algorithm.

Pre-decision techniques optimize with fixed objective weights
and constraints, with the advantage of simplicity and clarity and ease
of implementation, but may ignore potential high-quality solutions.
Interactive decision-making techniques dynamically adjust
preferences during the optimization process by providing real-
time feedback and adjusting objective weights, which improves
flexibility and adaptability, but may increase time costs. Post-
decision techniques generate a set of Pareto optimal solutions
after optimization, from which the most satisfactory solutions are
selected, ensuring diversity and quality of solutions, but may need to
deal with a large set of solutions, increasing the difficulty of decision-
making. Depending on the size of the problem, these techniques can
be applied in different methods.

3 Classification of scheduling
optimization objectives

The selection of optimization objectives in shop scheduling
problems fundamentally determines the effectiveness and
practical applicability of scheduling solutions. This section

FIGURE 3
Development of MOEA based on dominance relations.

FIGURE 4
Development of MOEA based on dominance relations.

Frontiers in Industrial Engineering frontiersin.org05

Zhang et al. 10.3389/fieng.2025.1540022

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1540022


presents a systematic classification and analysis of common
scheduling objectives, which can be formalized as follows:

3.1 Time-based objectives

Makespan Minimization: The most fundamental objective in
shop scheduling, defined as (Equation 7):

Cmax � min max
i∈J

Ci{ } (7)

where Ci represents the completion time of job i.
Total Weighted Completion Time: Considers job priorities

through weights (Equation 8):

∑n
i�1

wiCi → min (8)

where wi represents the weight of job i.

3.2 Resource-based objectives

Energy Consumption: Modern scheduling increasingly
emphasizes energy efficiency (Equation 9):

Etotal � ∑n
i�1

∑m
j�1

Eij
proc + Eij

idle + Eij
setup( ) (9)

where: Eij
proc represents processing energy for job i on machine j,

Eij
idle represents idle energy consumption, and Eij

setup represents setup
energy requirements.

Worker-related Objectives: Incorporating human factors
(Equation 10):

Wbalance � max
k∈W

|Lk − �L|{ } → min

Widle � ∑
k∈W

Tk
idle → min (10)

where Lk represents workload of worker k, and Tk
idle is idle time.

3.3 Quality-based objectives

Tardiness-related (Equation 11):

∑n
i�1

wi max 0, Ci − di{ } → min (11)

where di represents the due date of job i.
Fuzzy Objectives: For uncertain environments (Equation 12):

~Cmax � c , c, �c( ) (12)
where (c , c, �c) represents triangular fuzzy numbers.

Analysis of the literature reveals several key trends in scheduling
optimization objectives:

(1) Objective Prevalence: makespan minimization and energy
consumption remain the most frequently studied
objectives, reflecting their fundamental importance in
production efficiency and sustainability.

(2) Multi-objective Complexity: the majority of studies focus on
bi-objective optimization, with fewer addressing three or
more objectives simultaneously. This trend reflects the
inherent complexity of handling multiple competing
objectives.

(3) Emerging Objectives: recent research shows increasing
attention to: sustainability metrics (energy, emissions) and
human factors (workload, fatigue).

(4) Integration Trends: modern studies increasingly combine
traditional time-based objectives with resource and quality
considerations, reflecting the complex requirements of
contemporary manufacturing environments.

Table 1 summarise the studies related to each objective in detail.
This classification demonstrates the evolution of scheduling
objectives from simple time-based metrics to comprehensive
multi-dimensional optimization problems that better reflect real
world manufacturing challenges.

4 Metaheuristic algorithm in flow-shop
scheduling problems

Metaheuristic optimization algorithms have emerged as
powerful tools for solving complex global optimization problems,
particularly in production scheduling. These algorithms excel in
generating high-quality solutions within reasonable computational
timeframes, making them especially valuable for planning,
scheduling, and engineering design applications. Based on their
underlying principles, metaheuristics can be broadly categorized
into evolutionary mechanisms, physical principles, and swarm
intelligence approaches.

To comprehensively analyze the research landscape, we
conducted a systematic literature review using Web of Science
from 2000 to 2024, focusing on metaheuristic algorithms in
multi-objective Flow-shop Scheduling Problem (FSP) from
2015 to 2024.1

As illustrated in Figure 5, research activity in FSP reached its
peak during 2019–2023, with 2023 recording over 50 publications.
The trend analysis reveals a significant increase in academic
attention since 2011, with particular intensity after 2020. Figure 6
further demonstrates that, beyond basic FSP, Hybrid Flow-shop

1 The search query was structured as follows: TS=((metaheuristic* OR

“meta-heuristic*” OR “nature-inspired algorithm*” OR “computational

intelligence” OR “evolutionary algorithm*” OR “genetic algorithm*” OR

“differential evolution” OR “evolution* strategy” OR “evolution*

programming” OR “swarm intelligence” OR “particle swarm

optimization” OR “ant colony optimization” OR “artificial bee colony”

OR “firefly algorithm” OR “bat algorithm” OR “cuckoo search” OR

“simulated annealing” OR “tabu search” OR “harmony search” OR

“memetic algorithm*” OR “scatter search” OR “variable neighbourhood

search” OR “iterated local search”) AND (“multi-objective” OR

multiobjective OR “multi-criteria” OR multicriteria OR Pareto) AND

(“flow shop” OR “flowshop” OR “flow-shop”) NOT (“job shop” OR “job-

shop” OR “jobshop”)) AND PY=(2000–2024) AND DT=(Article).
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TABLE 1 Literature objectives and algorithms.

Problem Reference Objectives The number of
objectives

Algorithms Category

FSP Rahimi-Vahed and Mirghorbani
(2006)

weighted average completion time, weighted
average tardiness rate

2 SPEA-II EA

FSP Sekkal and Belkaid (2023) makespan, total energy consumption 2 SA EA

FSP Vallejos-Cifuentes et al. (2019) makespan, total energy consumption 2 MOGA EA

FSP Anjana et al. (2020) duration time, average tardiness 2 NSGA-II, hybrid NSGA-II,
PSO, hybrid PSO

EA

FSP Hassanzadeh et al. (2016) total weighted tardiness, makespan 2 MOPSO, NSGA-II SI and EA

FSP Tavakkoli-Moghaddam et al.
(2007)

weighted average completion time, weighted
average tardiness

2 IA, BFO SI

FSP Fekri et al. (2024) makespan, total idle time of workers 2 GA, SA EA

FSP Dong et al. (2024) fuzzy makespan, the average fuzzy due date
agreement index

2 multi-objective non-dominated
sorted GSA

PhA

HFSP Engin and Yılmaz (2021) agreement index, average agreement index,
fuzzy makespan

3 improved GA EA

HFSP Wang et al. (2024) makespan, total energy consumption,
system stability

3 multi-objective discrete PSO SI

HFSP Schulz et al. (2019) makespan, total energy cost, peak load 3 multi-stage iterative local search EA

HFSP Wang et al. (2023) fuzzy makespan, total fuzzy energy
consumption

2 improved NSGA-II EA

HFSP Geng et al. (2020) worker makespan, total tardiness, workload
balance

3 improved MA SI

PFSP Rajkumar and Jeen Robert
(2019)

makespan, total flow time 2 SA, GA EA

PFSP Mishra et al. (2020) makespan, tardiness cost 2 Jaya SI

PFSP Fasihi et al. (2023) makespan, job tardiness 2 SA, GA EA

PFSP Motair (2021) makespan, maximum tardiness 2 SA EA

PFSP Zhang et al. (2021) makespan, maintenance cost 2 Pareto IG EA

PFSP Yüksel et al. (2020) total delay, total energy consumption 2 multi-objective discrete PSO SI

PFSP Öztop et al. (2020) makespan, total energy consumption 2 multi-objective IG EA

PFSP Ding et al. (2016) energy consumption, carbon emissions 2 multi-objective IG EA

DPFSP Huang et al. (2022) total flow time, total tardiness 2 two-stage evolutionary
algorithm

EA

DPFSP Fathollahi-Fard et al. (2024a) makespan, energy consumption, the
number of lost workdays

3 SA and TS EA

DPFSP Schulz et al. (2022) makespan, carbon emissions 2 IG EA

DPFSP Lu et al. (2022) makespan, total energy consumption 2 Pareto based collaborative
multi-objective optimization
algorithm

Human
based

DPFSP Chen et al. (2019) makespan, total energy consumption 2 co-optimization algorithm Human
based

DHFSP Rifai et al. (2021) makespan, production cost, tardiness 3 ALNS EA

DHFSP Gao et al. (2024) makespan, worker workload 2 enhanced elite retention
strategy MOEA

EA

JSP Zhang et al. (2024a) makespan, total workload 2 ABC PSO

JSP González et al. (2022) makespan, energy consumption 2 improved NSGA-II EA

(Continued on following page)

Frontiers in Industrial Engineering frontiersin.org07

Zhang et al. 10.3389/fieng.2025.1540022

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1540022


Scheduling Problem (HFSP) and Permutation Flow-shop
Scheduling Problem (PFSP) have garnered substantial
scholarly interest.

4.1 Flow-shop scheduling

FSP represents a fundamental challenge in production
scheduling, where the primary goal is to optimize the
processing sequence of multiple jobs across a series of
sequentially connected machines. As illustrated in Figure 7,
research interest in multi-objective FSP has shown significant
growth since 2019, reflecting the increasing complexity of
modern manufacturing requirements.

4.1.1 Problem model
The problem can be formally defined as follows: Let J �

{J1, J2, . . . , Jn} be a set of n jobs and M � {M1,M2, . . . ,Mm} be
a set of m machines. Each job Ji must be processed on all machines

in the order M1 → M2 → . . .→ Mm, with processing time pij on
machine Mm. The scheduling problem is subject to the following
constraints:

(1) Each machine can process only one job at a time;
(2) Each job can be processed on only one machine at a time;
(3) The processing sequence is identical for all jobs;
(4) No preemption is allowed.

This chapter aims to construct a basic FSP model with the
objectives of minimizing makespan and total flow time. Table 2
illustrates the parameter definitions for this problem.

minCmax π( ) � Cm
π n( ) (13)

minF π( ) � ∑n
i�1

F π i( )( ) � ∑n
i�1

Cm
π i( ) (14)

s.t. C1
π 1( ) � pπ 1( ),1 (15)

Ci
π 1( ) � Ci−1

π 1( ) + pπ 1( ),i (16)

TABLE 1 (Continued) Literature objectives and algorithms.

Problem Reference Objectives The number of
objectives

Algorithms Category

JSP Afsar et al. (2022) makespan, non-processing energy
consumption

2 hybrid metaheuristics
combine MA

SI

JSP Wei et al. (2021) total weighted tardiness, precocity, non-
processing energy consumption, makespan

4 MOGA EA

JSP Li et al. (2020) makespan, total precocity and tardiness 2 TLA Human
based

JSP Xie et al. (2023) tardiness, the number of transferred sub-
batches

2 MOJA/D SI

FJSP Zhang et al. (2020) makespan, total tardiness, total workload 3 distribute ACO SI

FJSP Shahsavari-Pour and
Ghasemishabankareh (2013)

makespan, machine workload, total
workload of all machines

3 hybrid GA and SA EA

FJSP Liu et al. (2021) cost, energy consumption 2 VNS and GA EA

FJSP Li et al. (2014) makespan, total workload of machine,
workload of crucial machine

3 discrete ABC SI

FJSP Caldeira and Gnanavelbabu
(2021)

makespan, total workload of machine,
workload of crucial machine

3 discrete Jaya SI

FJSP Tan et al. (2021) worker fatigue, makespan 2 improved NSGA-II EA

Dist.FJSP Shao et al. (2022) total weighted tardiness, energy
consumption

2 MA SI

Dist.FJSP Xu et al. (2021) makespan, cost, quality, carbon emissions 4 GA and TS EA

Dist.FJSP Luo et al. (2020) makespan, maximum workload, workload
of the workers

3 improved MA SI

Dist.FJSP Li et al. (2018a) makespan, total workload, early arrival/late
arrival criteria

3 Pareto based hybrid TS EA

Dyn.JSP Wang et al. (2019) discontinuity rate of new jobs, makespan
deviation of the initial schedule, order
deviation on the machine

3 improved PSO SI

Dyn.FJSP Liu et al. (2024) makespan, workload imbalance 2 adaptive ALNS EA

Dyn.FJSP Zhang et al. (2013) schedule efficiency, schedule stability 2 GA and TS EA

Note: Abbreviations used in this table can be found in the Glossary section.
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C1
π j( ) � C1

π j−1( ) + pπ j( ),1 (17)
Cj

π i( ) � max Cj
π i−1( ), C

j−1
π i( ){ } + pπ i( ),j (18)

tkh − pkh − tij( )xijxkhyijkh > 0,∀ i, j( ), k, h( ) (19)
yij � 0,∀ i, j( ) (20)

∑m
i�1

xij � 1,∀ i, j( ) (21)

∑n
j�1

xij � 1,∀ i, j( ) (22)

yijkh ∈ 0, 1{ },∀ i, j( ), k, h( ) (23)
xij ∈ 0, 1{ },∀ i, j( ) (24)
tijPpjiP0,∀ i, j( ) (25)

Equations 15–18 represents the completion time of each job,
while Equation 19 defines the processing sequence on each machine.
Equation 20 ensures the feasibility of the operation sequence, and
Equation 21 imposes constraints on job uniqueness. Similarly,
Equation 22 enforces machine uniqueness, and Equations 23–25
specify non-negativity conditions. The optimization objectives of
this model are defined in Equation 13, 14. Among these, Equation 13
represents the minimization of the makespan. As derived from
Equations 15–18, the makespan is determined by Cm

π(n), which
corresponds to the completion time of the last job π(n) in the
processing sequence π on the last machineMm. Equation 15 defines
the minimization of the total flow time, which is the sum of the
completion times of all jobs.

4.1.2 Solution algorithm
The evolution of FSP research can be categorized into three main

phases: classical optimization phase (pre-2010), modern
manufacturing transition phase (2010–2020) and industry
5.0 and sustainability phase (2020-present).

Classical Optimization Phase (Pre-2010): Early research focused
on fundamental scheduling objectives. Rahimi-Vahed and
Mirghorbani (2006) designed an effective MOPSO considering
minimizing the average weighted completion time and weighted
average tardiness, which finds the local Pareto frontiers of the
problem by employing ideal points to specify the position vectors
of the dominant particles in the swarm. Tavakkoli-Moghaddam
et al. (2007) in order to minimize the weighted average completion
time and weighted average tardiness time, proposed a hybrid multi-
objective algorithm based on Immune Algorithm (IA) and Bacterial
Foraging Optimization Algorithm.

Modern Manufacturing Transition Phase (2010–2020): This
period witnessed the convergence of various modern
manufacturing constraints, integrating technological
advancements. Rossit et al. (2022) proposed a decomposition-

FIGURE 5
Statistics on the number of metaheuristic algorithms solving muti-objective FSP and variant problems.

FIGURE 6
Proportion of metaheuristic algorithms solving muti-objective
FSP and variant problems posted.
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based MOEA to solve the multi-objective FSP with missing
operations. The method employs a structured approach to
decompose the solution space, ensuring diversity among initial
solutions. Hassanzadeh et al. (2016) considered an multi-
objective integrated production-distribution FSP with the
objective of minimizing the total weighted tardiness and the
makespan as the first objective function, and minimizing the sum
of total weighted early completion times, total weighted number of
late jobs, inventory cost and total delivery cost as the second

objective function. Hao et al. (2017) proposed a Multi-objective
Estimation of Distribution Algorithm to address stochastic JSP with
uncertain processing times. The algorithm effectively balances the
trade-off between expected mean completion time and total
tardiness. By employing probabilistic model updates and Monte
Carlo sampling, it ensures scheduling quality while enhancing
computational efficiency. Branda et al. (2021) examined two
metaheuristic algorithms combining GA and Harmony Search for
solving the bi-objective problem of FSP. Anjana et al. (2020)
considered a sequence-dependent setup time FSP with the
objective of minimizing duration and average tardiness.

Industry 5.0 and Sustainability Phase (2020-Present): Current
research emphasizes human-centric manufacturing and
environmental considerations. Key developments include: energy
efficiency and worker-centric optimization. Vallejos-Cifuentes et al.
(2019) considered achieving energy savings without compromising
the productivity of the manufacturing system and proposed an
energy-aware FSP with process speed as the main energy related
decision variable for a problem that targets production goals with
energy efficiency. Boufellouh and Belkaid (2023) investigated the
problem of energy saving FSP in the presence of blocking and
collision-free transport constraints. For a manufacturing system
with a sequential dependent setup times, Automatic Guided
Vehicles (AGV), transport speed control and battery
management constraints, an enhanced multi-objective Ant
Colony Optimization (ACO) was developed for the scheduling
problem. With the objective of simultaneously minimizing
makespan and total energy consumption, the algorithm proposes
a novel high-resolution search strategy, a heuristic AGV scheduling
strategy and a critical path based energy saving improvement
strategy. Sekkal and Belkaid (2023) considered the learning effect

FIGURE 7
The number of literature on metaheuristic algorithms solving muti-objective FSP and variant problems over the years.

TABLE 2 Parameter descriptions.

Parameter Statement

J Set of jobs, consisting of n jobs {J1 , J2 , . . . , Jn}

M Set of machines, consisting of m machines M1 ,M2 , . . . ,Mm

Oij The j-th operation of job Ji

pij Processing time of operation Oij on machine Mi

π The processing sequence of jobs (π(1), π(2), . . . , π(n))

πa The a-th job in sequence π

U All possible operation combinations

Cπ(j)i Completion time of job πj on machine Mi

tJi Completion time of operation Oij on machine Mi

xij Binary variable, xij � 1 if operationOij is processed onmachine
Mi ; otherwise xij � 0

yijkh Binary variable, yijkh � 1 if operation Oij is processed exactly
before operation Okh ; otherwise yijkh � 0
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of workers and proposed FSP with learning efficiency. They
developed a metaheuristic algorithm based on multi-objective
Simulate Anneal (SA) with the minimisation of makespan and
energy consumption as two objective functions, in which the
search for solutions is enhanced by local search. Focusing on the
multi-skilled characteristics of the workers, Fekri et al. (2024)
proposed a GA and a SA with the objective of minimizing
makespan and the total idle time of workers, and used a special
Taguchi method for the parameter adjustment. It is finally
concluded that the GA has better performance and efficiency
than the SA for the multi-skill resource constrained FSP, but SA
is superior to GA in terms of solution time. Dong et al. (2024) solved
the multi-objective fuzzy block FSP based on learning and fatigue
effects by combining the characteristics of the workers with the
background of the FSP scheduling of the prefabricated pods
modular cells. They used the objective of minimizing the fuzzy
makespan and maximize the average fuzzy due-date agreement
index, a multi-objective non-dominated Sorted Gravitational
Search Algorithm (GSA) is proposed.

The evolution of FSP research reflects the field’s adaptation to
emerging manufacturing paradigms, with increasing emphasis on
sustainability, worker wellbeing, and system flexibility. Future
research opportunities lie in integrating advanced technologies
while maintaining computational efficiency and practical applicability.

4.2 Permutation flow-shop scheduling

As shown in Figure 8, research interest in PFSP has exhibited
significant volatility between 2007 and 2024, with notable peaks in
2019 and 2022.

4.2.1 Problem model
The PFSP can be described as follows: a set of n jobs is processed

on a set of m machines in the same order. Each job i has a series of
corresponding operations j on different machines, and the processing
times for these operations are predetermined. The rules that must be
followed in the workshop are that the processing order of each job on
all machines is identical, and eachmachinemust process all jobs in the
same sequence. This chapter establishes a mathematical model with
the objectives of minimizing makespan and energy consumption.
Table 3 presents the detailed parameter list of this model.

minf1 � Cmax (26)

minf2 � ∑m
k�1

PkTk (27)

s.t. Tk � C Ji, k( ) − C J1, k( ) − p J1, k( )( ) − ∑n
j�1

p Jk, j( ) (28)

C J1, 1( ) � p J1, 1( ) (29)
C Ji, 1( ) � C Ji−1, 1( ) + p Ji, 1( ) (30)

C J1, j( ) � C J1, j − 1( ) + p J1, j( ) (31)
C Ji, j( ) � max C Ji−1, j( ), C Ji, j − 1( ) + p Ji, j( ){ } (32)

Cmax � C Jn, m( ) (33)

Equations 26–28 define the objective functions of this model.
Specifically, Equation 26 represents the first objective, which is the

minimization of makespan. Equation 27 presents the second
objective. The total energy consumption is calculated as the sum
of the products of the idle time and the corresponding idle power for
all machines. Equation 28 defines the computation of machine idle
times. Equation 29 calculates the completion time of the first job on
the first machine. Equation 30 computes the completion time of job i
on the first machine. Equation 31 determines the completion time of
the first job on machine j. Equation 32 calculates the completion
time of job i on machine j. Equation 33 defines the maximum
completion time for the job sequence.

4.2.2 Solution algorithm
Tajbakhsh et al. (2014) focused on a three-phase manufacturing

system including machining, assembly and batch processing with
the objective of minimizing makespan and the sum of early-to-delay
costs. Based on the formulation of PFSP as a mixed integer
mathematical model, a hybrid algorithm was designed to achieve
efficient exploration of the solution space using a metaheuristic
approach that combines the advantages of GA and Particle Swarm
Optimization (PSO). Rajkumar and Jeen Robert (2019) proposed a
hybrid multi-objective optimization algorithm based on GA and SA
in order to solve the PFSP problem with the objective of minimizing
makespan and the total flow time. The algorithm determines the
near-optimal solution by assigning weights to each
objective function.

The Jaya algorithm has also been used by scholars to study PFSP
due to its advantages of simplicity, efficiency and scalability, Mishra
et al. (2020) used the Jaya algorithmwith the objective of minimizing
makespan and tardiness cost to solve the PFSP problem. The
algorithm converts the job preference vector into job ranking
vector using maximum order value rule after randomly assigning
priority to each job. In order to solve multi-objective, it uses a multi-
attribute model based on Apriori method, and after comparing with
SA. Zhang et al. (2021) considered preventive and corrective
maintenance in manufacturing activities, and with the objective
of minimizing makespan and maintenance cost, they designed a
restarted iterative Pareto greedy algorithm. During the search
process, the algorithm develops a restart mechanism to generate
a new initial solution to prevent the algorithm from falling into a
local optimum. Fasihi et al. (2023) proposed a two-step procedure by
considering the reentrant PFSP with the objective of minimizing
makespan and maximizing delay. The first step divides the
population into sub-populations and applies GA in each sub-
population to obtain the set of approximate Pareto frontier
solutions. The second step unifies all the Pareto solution sets into
a whole, using a multi-objective hybrid metaheuristic algorithm
based on dominance relations.

Considering energy consumption and environmental
constraints on manufacturing, Yüksel et al. (2020) proposed a
new multi-objective discrete Artificial Bee Colony Algorithm
(ABC) with the objective of minimizing both total delay and
total energy consumption. By comparing it with metaheuristic
algorithms such as traditional MOGA, variations of MOGA with
local search, the algorithm is able to adapt to idle free FSP, blocking
FSP, and Job-shop Scheduling Problem (JSP), or other higher level
integrated manufacturing problems. Öztop et al. (2020) with the
objective of minimizing makespan and total energy consumption,
developed an enhanced ϵ constraint method to obtain a Pareto
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optimal solution. For small scale problems this algorithm obtains an
approximation of the Pareto optimal bound using a small ϵ level. In
addition, two multi-objective Integrated Gradients (IG) and a multi-
objective variable block insertion heuristic algorithm were proposed
for initial solution generation.

Ding et al. (2016) concerned about the direct relationship between
energy consumption and carbon emissions, with the aim of improving
the carbon efficiency of industrial factories and thus reducing the
energy cost in the production process. Designed an optimization
algorithm for the PFSP with the objective of minimizing the total
carbon emissions and themakespan as the objective of the optimization
algorithm. The algorithm is based on an extended Nawaz-Enscore-
Ham (NEH) insertion procedure, and amulti-objective NEH algorithm
and an improved multi-objective IG are designed to solve the problem.
Wu and Che (2020) investigated the energy efficient no-waiting PFSP
problem, and designed an adaptive multi-objective Variable
Neighborhood Search (VNS) with the objective of minimizing
makespan and total energy consumption. The algorithm designs two
VNS structures to generate neighbours through insertion and swapping

operations, and uses an adaptive mechanism to dynamically select the
appropriate structure to handle the evolutionary direction of the current
solution. Xin et al. (2021) designed an improved discrete Whale
Optimization Algorithm (WOA) for PFSP with sequential
dependence on setup time, considering that the energy consumption
is related to the time of the job transfer process. The algorithm aims to
minimize makespan and total energy consumption, and combines
Differential Evolution (DE) and enhanced search strategy to
improve the performance of the algorithm.

Recent research developments can be categorized into three
main streams:

• Manufacturing System Integration: recent studies have
expanded PFSP to incorporate real-world manufacturing
complexities.

• Advanced Hybrid Approaches: modern PFSP solutions
employ sophisticated hybrid algorithms. Such as hybrid GA
and SA, Jaya algorithm and hybrid PSO and so on.

• Energy and Environmental Considerations: recent research
has increasingly focused on sustainability objectives. For
example, carbon emissions, energy consumption and
machine availability and so on.

The evolution of PFSP research reflects increasing emphasis on
practical manufacturing constraints and environmental
considerations. This progression suggests a trend toward more
comprehensive and sustainable scheduling solutions that balance
traditional performance metrics with modern manufacturing
requirements.

4.3 Hybrid flow-shop scheduling

As illustrated in Figure 9, research interest in HFSP has shown
significant growth since 2020, reaching unprecedented levels in

FIGURE 8
The number of literature on metaheuristic algorithms solving muti-objective PFSP over the years.

TABLE 3 Parameter descriptions.

Parameter Statement

i Job index, i � 1, 2, . . . , n

j Machine index, j � 1, 2, . . . , m

n Total number of jobs

m Total number of machines

Pk The fixed idle power of machine k

Tk The total idle time of machine k after processing all jobs

p(Ji, j) Processing time of job Ji on machine j

C(Ji, j) Completion time of job Ji on machine j
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recent years. This surge reflects the increasing complexity and
practical relevance of HFSP in modern manufacturing.

4.3.1 Problem model
This chapter takes the HFSP with worker constraints as an

example to establish a mathematical model. The problem can be
described as follows: there are s (s> 1) consecutive stages, capable
of processing b independent jobs that must be handled in the
same sequential order. Each stage is equipped with m (m> 1)
machines, and each machine can be operated by w (w> 1)
workers. All jobs need to be scheduled according to certain
optimization objectives. The problem involves addressing
three sub-problems:

(1) Sequencing all operations based on operational constraints;
(2) Assigning machines to process the jobs;
(3) Allocating workers to operate the assigned machines.

Table 4 summarizes the parameters and their descriptions for
this problem.

minf1 � maxCi,∀i (34)

minf2 � ∑nb
i�1

∑ns
j�1

∑nm
m�1

∑nw
w�1

Lijmw × yijmw( ) (35)

s.t. Ci j+1( ) − Cij ≥Pi j+1( )mwyi j+1( )mw,∀i, j, m, w (36)
Cij ≥ Cngxngmk + Pijmwyijmw( ) − 1 − xijm k+1( )( )LN, ∀i, h, j, g,m, k, w

(37)
Cij ≥ Cngzngwq + Pijmwyijmw( )
− 1 − zijw q+1( )( )LN,∀i, h, j, g, w, q,m (38)

∑nb
k�1

∑nm
m�1

xijkm � 1,∀i, j (39)

∑ns
j�1

∑nb
i�1

xijmk � 1,∀m, k (40)

∑ns
j�1

∑nb
i�1

xijm k+1( ) ≤ ∑ns
j�1

∑nb
i�1

xijmk,∀m, k (41)

∑nb
q�1

∑nw
w�1

zijwq � 1,∀i, j (42)

∑ns
j�1

∑nb
i�1

zijwq ≤ 1,∀w, q (43)

∑ns
j�1

∑nb
i�1

zijw q+1( ) ≤ ∑ns
j�1

∑nb
i�1

zijwq,∀w, q (44)

∑nw
w�1

∑nm
m�1

yijmw � 1,∀i, j (45)

∑ns
j�1

∑nb
i�1

yijmw ≤ nb,∀m,w (46)

The model aims to minimize the makespan and the total
worker cost, as formulated in Equations 34, 35. Equation 36
ensures the precedence constraints for operations. Equation 37
enforces the sequencing constraints for operations on the same
machine. Equation 38 ensures the sequencing constraints for
operations assigned to the same worker. Equation 39
guarantees that each operation is processed by only one
machine at any given time. Equation 40 ensures that each
machine processes at most one operation at any given time.
Equation 41 prevents gaps in the sequence of operations on the
same machine, ensuring that no position is left empty before a
position is fully occupied. Equation 42 ensures that each
operation is handled by only one worker at any given time.
Equation 43 guarantees that each worker handles at most one
operation at any given time. Equation 44 prevents gaps in the

FIGURE 9
The number of literature on metaheuristic algorithms solving muti-objective HFSP and variant problems over the years.
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sequence of operations assigned to the same worker, ensuring
that no position is left empty before a position is fully occupied.
Equation 45 ensures that each operation is performed by
only one worker on one machine at a time. Equation 46
allows each worker to perform multiple operations on the
same machine.

4.3.2 Solution algorithm
Behnamian et al. (2009) proposed a multi-objective HFSP with

sequence-dependent setup times, focusing on minimizing makespan
and the sum of job advance and delay times. Their approach consists
of three stages: first, they use a random-keyed GA to approximate
the Pareto front; second, they unify non-dominated solutions and
enhance the front with a local search; and third, they apply an
ϵ-constraint overlay hybrid metaheuristic, combining SA and VNS
to refine the solutions further. Fadaei and Zandieh (2013) focused on
sequence dependent family setup time for HFSP, considered the two
objectives of minimizing makespan and total tardiness, and used
three MOGA, subpopulation GA, and nondominated sequential GA
to solve the above problems. Engin and Yılmaz, 2021) concerned
about the time uncertainty HFSP problem due to human and other
factors in the actual production process, proposed a multi-objective
processor HFSP method based on fuzzy logic, which formulates the
HFSP problem with fuzzy processing time and fuzzy due date. It
involves three objectives of maximizing the minimum consistency
index, maximizing the average consistency index and minimizing
the maximum fuzzy makespan.

In real production process, energy consumption is one of the
concerns of managers, Li et al. (2018b) proposed an energy-aware
multi-objective optimization algorithm to solve the HFSP problem,
which considers both minimizing makespan and energy consumption.
This metaheuristic algorithm two vectors are used to represent the
solution using machine assignment priority and scheduling, and four
types of decoding methods are used to consider the two objectives
simultaneously. Eight types of neighbourhood structures and an
adaptive neighbourhood selection method are designed to speed up
the search for a solution, effectively balancing the capabilities of global
and local search through deep exploitation and exploration strategies.
Hosseini (2017) focused on the difference between the manufacturing
and assembly phases of a product and proposed a two phase HFSP,
where they assumed the first phase to be a HFSP with the same parallel
machines and the second phase was treated as assembly. The algorithm
uses a two-stage MOGA to solve this problem with the objective of
minimizing makespan and the sum of early and late arrivals of jobs.
For the uncertain time manufacturing process, Wang et al. (2024)
proposed the greenHFSP in the case of emergency batch insertion. The
problem adopts a multi-objective discrete ABC with the objectives of
minimizing makespan, total energy consumption and system stability.
The algorithm is able to significantly reduce the cost and substantially
improve the accuracy and efficiency by testing and comparing it on
small and large scale problems.

Schulz et al. (2019) focused on the importance of energy-aware
scheduling and developed a new multi-stage iterative local search
algorithm for energy-aware HFSP. The algorithm incorporates three
energy saving strategies of reducing energy consumption, reducing
energy cost using different energy prices and considering load
balancing with the objective of minimizing makespan, total
energy cost and peak load. The algorithm incorporates a tabu
list, several time and energy dependent list scheduling algorithms,
a right shift procedure and a reference point based fitness function to
improve the quality of the solution. Chen et al. (2020) used a multi-
objective mixed-integer planning model with the objective of
minimizing makespan and power consumption. The algorithm
uses a GA to obtain the Pareto solution set, and uses a multi-
objective energy-efficient scheduling algorithm to compute the

TABLE 4 Parameter descriptions.

Parameter Statement

i, h Job index, i, h � 1, 2, . . . , nb

j, g Stage index, j, g � 1, 2, . . . , ns

m Machine index, m � 1, 2, . . . , nm

w Worker index, w � 1, 2, . . . , nw

k Sequential index of operations processed on the same
machine, k � 1, 2, . . . , nb

q Sequential index of operations processed by the same
worker, q � 1, 2, . . . , nb

nb Number of jobs

ns Number of stages

nm Number of machines

nw Number of workers

WSj Available worker set in stage j

MSj Available machine set in stage j

nmj Number of machines in stage j

nwj Number of workers in stage j

Oij Operation of job i in stage j

Pijmw Processing time of operation Oij on machine m by worker w

Cij Completion time of operation Oij in stage j

Ci Completion time of job i

Lijmw Cost when operation Oij is processed on machine m by
worker w

Eijmw Green indicator value of operation Oij on machine m by
worker w

Eijmw Energy consumption when operation Oij is processed on
machine m by worker w

Nijm Noise when operation Oij is processed on machine m

Rijm Recycling rate of tool chips when operation Oij is processed on
machine m

Sijm Safety coefficient when operation Oij is processed on
machine m

xijkm Decision variable, if Oij is processed at the k-th position on
machine m, then 1, otherwise 0

yijmw Decision variable, if Oij is processed by worker w on machine
m, then 1, otherwise 0

zijwq Decision Variable, if Oij is processed by worker w at the q-th
position, then 1, otherwise 0

LN A large enough integer

Frontiers in Industrial Engineering frontiersin.org14

Zhang et al. 10.3389/fieng.2025.1540022

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1540022


fitness value of each chromosome in GA. Wang et al. (2023) added
variable machine speed constraints to the energy-efficient HFSP
problem and proposed an energy-efficient fuzzy HFSP considering
variable machine speeds, for which an extended NSGA-II was
designed. The algorithm aims to minimize both fuzzy makespan
and total fuzzy energy consumption, and generates an initial
population through inverse learning, and a new strategy based on
historical information to produce high-quality solutions.

In addition to the consideration of energy consumption, many
scholars have also focused on human-centred manufacturing in the
context of Industry 5.0. Geng et al. (2020) investigated multi-objective
HFSP with dual resource constraints considering the dual flexibility
characteristics of machines and workers. The problemwas formulated
with the objective ofminimizingworkermakespan, total tardiness and
workload balance, and proposed an improved multi-objective
Memetic Algorithm (MA) with parameters set by Taguchi method.
This method significantly outperforms other algorithms in terms of
convergence, diversity, and dominance of non-dominated solutions.
Han et al. (2021) proposed a MOEA with seven heuristic decodings
for HFSP considering workers constraints. The algorithm combines
machine worker allocation priority rules with the optimization
objective of minimizing makespan and total delay. It is
demonstrated through numerical experiments that the algorithm
enables the solution to achieve a balance between exploration and
exploitation, and can reasonably solve the manufacturing problem.

Recent research has focused on several key aspects of HFSP: setup
time considerations, energy-aware scheduling, human-centered
manufacturing and uncertainty management. The evolution of HFSP
research reflects a growing emphasis on practical manufacturing
constraints while maintaining computational efficiency. Future
research opportunities lie in integrating emerging technologies and

addressing increasingly complex real-world scenarios, particularly in
the context of smart manufacturing and Industry 5.0 requirements.

4.4 Distributed flow-shop scheduling

Distributed flow-shop scheduling problems encompasses three
main variants: Distributed Flow-shop Problem (DFSP), Distributed
Permutation Flow-shop Problem (DPFSP), and Distributed Hybrid
Flow-shop Problem (DHFSP). In a DFSP system with f factories,
each containing a FSP, jobs are distributed across factories through
specific allocation mechanisms.

As shown in Figure 10, research interest in distributed
scheduling systems has grown significantly in recent years, which
may be related to the expansion of manufacturing operations.

4.4.1 Problem model
The DFSP can be described in detail as follows. It involves N

jobs and F factories, each containing the sameMmachines. Each job
can only be processed on one machine, and each machine can
process only one job at a time. Every job must be assigned to one of
the F factories, and all operations must be completed within the
same factory, without transferring to another factory during this
period. This chapter establishes a mathematical model with the
objectives of minimizing makespan and total energy consumption.
The detailed parameter list is presented as Table 5.

minCmax � max Ci,πk,j{ }, j � 1, 2, . . . , N, k � 1, 2, . . . , F (47)

min ttec � ∑F
k�1

PECi + SECi( ) (48)

FIGURE 10
The number of literature on metaheuristic algorithms solving muti-objective DFSP and variant problems over the years.
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s.t. ∑N
t�1,t≠j

∑F
k�1

xt,j,k � 1,∀j (49)

∑F
k�1

yj,k � 1,∀j (50)

∑N
t�1,t≠j

xt,j,k + xj,t,k ≤ 2 · yj,k,∀j, k (51)

∑N
j�1,j≠t

∑F
k�1

xt,j,k � 1,∀t ∈ 1, 2, . . . , N{ } (52)

xt,j,k + xj,t,k ≤ 1,∀j ∈ 1, 2, . . . , N − 1{ }, j< t (53)
c0,πk,j � 0,∀j, k (54)
ct,πk,0 � 0,∀i, k (55)

ci,πk,j ≥ ci−1,πk,j + ∑N
j�1

xt,j,k · pi,πk,j,∀i, j, k (56)

ct,πk,j ≥ ct,πk,j−1 + ∑N
j�1

xt,j,k · pt,πk,j,∀i, j, k (57)

c1,πk,1 � ∑F
k�1

x1,1,k · P 1, πk,1( ),∀k (58)

c1,πk,j+1 � c1,πk,j + ∑N−1

j�1
xt,j,k · p1,πk,j+1,∀k, j (59)

ct+1,πk,1 � ct,πk,1 + ∑N
l�1

xt,1,k · pt+1,πk,1,∀k, i (60)

ct,πk,j � max ct,πk,j−1, ct−1,πk,j{ } + ∑N
j�1

xt,j,k · pt,πk,j,∀i, j, k (61)

pi,j � ti,j/vs,∀i, j (62)

PECk � ∑M
i�1

∑N
j�1

xi,j,k · pi,πk,j · ∑S
s�1

zj,i,s · PPi,k,s,∀k (63)

SECk � cN,πk,M − ∑N
i�1

pi,j · ∑N
j�1

xi,l,f
⎛⎝ ⎞⎠ · IPf,j,∀k, j (64)

Equations 47, 48 represent the minimization of the two
objectives. Equations 49, 50 ensure that each job is accurately
assigned to one factory and exists only once within that factory.
Equations 51, 53 indicate that each job can potentially be a
predecessor or successor within the assigned factory, while
avoiding priority conflicts. Equation 52 explains that all jobs
should have the possibility of being assigned to the n positions
in each factory. Equations 54, 55 state that jobs are ready at time 0,
and machines start working at time 0. Equations 56, 57 specify that
a job can only begin after its predecessor in the same factory has
completed processing on the machine. Equations 58–61 describe
the calculation of completion times, starting from the first job
processed on the first machine to the last job processed on the last
machine. Equation 62 defines the actual processing time of a job.
Equations 63, 64 specify the energy consumption of factory kwhen
machine j operates in processing mode and standby mode,
respectively.

4.4.2 Solution algorithm
Rifai et al. (2021) proposed an improved multi-objective

Adaptive Large Neighborhood Search (ALNS) for the DPFSP by
considering the effect of sequence-dependent setup time for the
first time. The algorithm achieves an effective use of balancing and
exploration by introducing new destruction and repair heuristics,
optimizing the solution acceptance criterion and the non-
dominated set update mechanism. Cai et al. (2018) proposed an
improved NSGA-II for the DPFSP with transport and qualification
constraints aiming to optimize the three objectives of fabrication
time, maximum delay, and total cost (including transport and
installation cost) simultaneously. The algorithm introduces a new
solution representation, a population initialisation strategy,
efficient crossover and mutation operators, and local search
techniques.

Huang et al. (2022) proposed a two-stage evolutionary algorithm
with the objective of minimizing the total flow time and total
tardiness time. A two-stage structure is used, in the first stage of

TABLE 5 Parameter descriptions.

Parameter Statement

j Index of job, j � 1, 2, . . . , N

i Index of machine, i � 1, 2, . . . ,M

k Index of factory, k � 1, 2, . . . , F

s Index of processing speeds, s � 1, 2, . . . , S

N The number of jobs

M The number of machines

F The number of factories

S The number of speeds

Vs The S-th processing speed

nk The number of jobs in the k-th factory

πk A complete schedule in the k-th factory, πk � (πk,1 , . . . , πk,nk)

Pi,k,s The processing power of the job on machine i in factory k at
speed S per unit time

IPi,k The idle power of the machine i in factory k per unit time

ti,πkj The standard process time of the j-th job on the i-th machine in
the k-th factory

pi,πkj The actual process time of the j-th job on the i-th machine in
the k-th factory

SECk The idle time of the job in factory k generate energy
consumption

PECk The processing time of the job in factory k generate energy
consumption

Ci,πkj The completion time of job j on machine m in the k factory

xt,j,k A binary variable that takes value 1 if job j occupies position t in
factory k, and 0 otherwise

yj,k A binary variable that takes value 1 if job j is processed in
factory k, and 0 otherwise

zj,i,s A binary variable that takes value 1 if job j is processed in
machine i at speed s, and 0 otherwise
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this algorithm to increase the population diversity through two
constructive heuristics and four crossover and two mutation
operators designed. In the second stage the first two
populations are integrated to improve the performance of the
algorithm by using the normalised objective function and two
new crossover operators to extend the solution to the Pareto
frontier. Fathollahi-Fard et al. (2024a) redefined the sustainable
DPFSP using an online mixed-integer programming model. With
the objective of minimizing makespan, energy consumption, and
reducing the number of lost workdays, SA and Tabu Search (TS)
were designed for the large scale problem. Fathollahi-Fard et al.
(2024b) also proposed an ALNS for the sustainable DPFSP. The
algorithm considers different modes of operation in which
machines can run from manual to automatic, taking into
account energy consumption, number of operators required
and number of working days lost to training. In addition, the
algorithm considers uncertainty problems including machine
failures, variable processing times and the random arrival
of new jobs.

Since carbon emissions will have a direct impact on the
environment, Schulz et al. (2022) designed an IG for the
DPFSP under large-scale instances in order to minimize
makespan while reducing carbon emissions. Lu et al. (2022)
investigated energy efficient scheduling for DPFSP with a finite
buffer, aiming to minimize both the manufacturing time and the
total energy consumption. They proposed a Pareto based
collaborative multi-objective optimization algorithm. The
algorithm reduces the total energy consumption through a
speed scaling strategy, generates a high quality initial
population using a collaborative initialisation strategy, and
exploits the properties of the problem to develop a
collaborative search operator and a knowledge based local
search operator. Chen et al. (2019) investigated the energy
efficient DPFSP with idle-free aiming to minimize both
makespan and total energy consumption. For this problem,
they designed a co-optimization algorithm. The algorithm
uses two metaheuristics for population initialisation together
to ensure the quality and diversity of the initial solutions.
Multiple search operations are designed to collaborate in a
competitive manner to enhance the exploration capability.
Wang et al. (2022) proposed a method combining a multi-
objective mixed integer programming model and a multi-
objective WOA to solve the DFSP considering energy
consumption. The method has the objective of minimizing the
total energy consumption and makespan. For the base WOA, a
new initialisation method, update operator and local search
strategy are designed for this particular problem. When
dealing with large scale problems, this combined approach is
able to strike a good balance between computational cost and the
quality of the solution.

Zhao et al. (2024) considered the problem of energy efficient
DFSP with blocking, and proposed a multi-objective discrete DE
with the objective of minimizing makespan and total energy
consumption. The algorithm employs a local search strategy
based on the knowledge of five operators is introduced to
enhance the utilisation of the algorithm, and a non-critical
path energy saving strategy is used to reduce energy
consumption. In order to cope with environmental problems

and to meet the demand of customised production, Yu F. et al.
(2024) proposed a mixed integer linear programming model and
a multi-objective MA for the study of DHFSP. The method
simultaneously aims at minimizing the total delay and total
energy consumption. The quality of the initial solution is
improved by introducing a speed dependent decoding
method, an initialisation strategy based on the problem
characteristics, and a search strategy that enhances the local
search capability, which guides the population to achieve
effective exploration in the solution space. As the worker
resources also affect the efficiency of scheduling in the actual
production manufacturing process, Gao et al. (2024) studied the
DHFSP with assembly to minimize the degree of imbalance
between makespan and worker workload. To address the
problem, a variation based local search method and an elite
search method were proposed, and a MOEA with an enhanced
elite retention strategy was developed. Xin et al. (2015)
proposed an adaptive binary PSO in the process of solving
the multi-skilled worker assignment problem in a complex
assembly system in order to achieve a balance between
assembly station and process workloads and to minimize
the man cost.

Recent research has addressed various practical aspects:
sequence-dependent setup time, energy efficiency, sustainability
considerations, worker resource management and algorithmic
innovations. These developments reflect the field’s evolution
toward more comprehensive and practical scheduling solutions,
incorporating environmental, worker-related, and efficiency
considerations. Future research opportunities lie in addressing
emerging challenges in distributed manufacturing
environments, particularly in areas of real-time adaptation and
system resilience.

The evolution of FSP and variant problems research reflects
four key trends: Industry 4.0 integration, sustainability
considerations, the development of hybrid algorithms and
human-centered manufacturing. These developments reflect the
field of evolution toward more comprehensive and practical
scheduling solutions, incorporating environmental, worker-
related, and efficiency considerations. Future research
opportunities lie in addressing emerging challenges in smart
manufacturing environments, particularly in areas of real-time
adaptation and system resilience.

5 Metaheuristic algorithm in job-shop
scheduling problems

Job-shop scheduling problems has established itself as a
cornerstone of modern manufacturing, particularly valued for its
flexibility and customization capabilities. Its applications span
diverse industrial sectors, including precision machinery,
aerospace manufacturing, and foundry operations (Tan et al.,
2021; Wu et al., 2018; Gong et al., 2020). However, this
versatility introduces significant complexity in resource utilization
and productivity optimization, making it a focal point for
academic research.

To comprehensively analyze the research landscape, we
conducted a systematic literature review using Web of Science
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from 2000 to 2024, focusing on metaheuristic algorithms in multi-
objective job-shop scheduling problems from 2015 to 2024.2

The analysis reveals several significant trends in job-shop
scheduling problems research. As illustrated in Figure 11, there
has been a marked increase in research activity since 2021, with
sustained growth in publications across various JSP variants.
Figure 12 demonstrates that Flexible Job-shop Scheduling
Problem (FJSP) and Distributed Job-shop Scheduling Problem
(Dist.JSP) have emerged as dominant research areas, likely due to
their enhanced adaptability to modern production environments
characterized by increasing complexity and variability.

5.1 Job-shop scheduling

JSP, classified as NP-hard, finds widespread application in
various industrial contexts, from automotive assembly to airport
operations. As illustrated in Figure 13, research interest in JSP has
shown significant growth since 2016, peaking in 2021, with
continued momentum expected in this field.

5.1.1 Problem model
To address the JSP, the following factors are typically

considered:

(1) Processing sequence of jobs: each job must be processed on
different machines in a specific order;

(2) Machine availability: some machines may be unavailable at
specific times, which affects the scheduling of jobs;

(3) Job arrival time: certain jobs may not arrive at the workshop
simultaneously, and their arrival times can influence the
scheduling plan;

(4) Priority: some jobs may have higher priority than others,
requiring preferential scheduling.

This chapter establishes a mathematical model with the
objectives of minimizing makespan and total overtime. Table 6
presents the parameters and variables of the model.

minf1 � ∑n
i�1

∑ni
j�1

∑t
q�1

xi,j,qPi,j,qoq (65)

minf2 � Cmax (66)
s.t. Ci − di < 0,∀i (67)

Si,j + Pij < Si,j+1,∀i, j (68)
Si,j > 0,∀i, j (69)

Si,j + Pij � Ci,j,∀i, j (70)

∑t
q�1

xi,j,q > 0,∀i, j (71)

∑i
q�1

Pi,j,q � Pij,∀i, j (72)

∑m
k�1

yi,j,k � 1,∀i, j (73)

Si,j,k + Pi,j,k < Sn,l,k + A 1 − zi,j,h,l,k( ),∀i, j, h, k, l (74)

Among them, Equations 65, 66 represent the two objective
functions, which are minimizing the total overtime and
minimizing the makespan, respectively. Equation 67 defines the
no-tardiness constraint. Equations 68, 69 constrain that an
operation of a job can only start after its immediately preceding
operation has been completed, and its start time must be no earlier
than time zero. Equation 70 ensures that an operation cannot be
interrupted once it starts. Equations 71, 72 indicate that an operation
can be processed within one or more time intervals, with its
processing time equal to the total time spent across these
intervals. Equations 73, 74 constrain that each operation can be
processed on only one machine, and each machine can process only
one operation at a time.

5.1.2 Solution algorithm
GA have been extensively applied to address the challenges of

the classical JSP (Cheng et al., 1996; Cheng et al., 1999). Davis
proposed using GA to solve the classical JSP (Davis, 2014).
Gonçalves et al. (2005) introduced a hybrid GA to tackle JSP.
This method utilizes a chromosome representation based on
random keys, where schedules are constructed according to
priorities derived from GA. To enhance solution quality,
parameterized active schedules are first generated, followed by
the application of a local search heuristic for further
optimization. Momenikorbekandi and Abbod (2023) proposed a
metaheuristic hybrid Parthenogenetic Algorithm (PGA) for
traditional JSP with the objective of minimizing makespan and
delay time. The algorithm combines with ethnic selection GA
and PGA to improve the search efficiency and the quality of the
solution by introducing a racial selection mechanism and multiple
selection operators. The parthenogenetic algorithm employs
exchange, inversion, and insertion operators, while population
selection utilizes four different selection operators: random
selection, roulette wheel selection, sexual selection, and aging
selection. Abedi et al. (2020) concerned with the fact that the
speed of the machine has an impact on the productivity,
considered JSP that carry out the necessary maintenance
activities during the scheduling process. The problem with the
objective of minimizing the total weighted delay time and the
total energy consumption also determines the appropriate speed
of the machine and the location of the maintenance activities. They
proposed amulti-cluster, multi-objectiveMA. The algorithm assigns

2 The search query was structured as follows: TS=((metaheuristic* OR

“meta-heuristic*” OR “nature-inspired algorithm*” OR “computational

intelligence” OR “evolutionary algorithm*” OR “genetic algorithm*” OR

“differential evolution” OR “evolution* strategy” OR “evolution*

programming” OR “swarm intelligence” OR “particle swarm

optimization” OR “ant colony optimization” OR “artificial bee colony”

OR “firefly algorithm” OR “bat algorithm” OR “cuckoo search” OR

“simulated annealing” OR “tabu search” OR “harmony search” OR

“memetic algorithm*” OR “scatter search” OR “variable neighbourhood

search” OR “iterated local search”) AND (“multi-objective” OR

multiobjective OR “multi-criteria” OR multicriteria OR Pareto) AND

(“*job shop” OR “*job-shop” OR “*jobshop”)) AND PY=(2000–2024)

AND DT=(Article).
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solutions to different sub-populations, and to better cover the
solution space, the algorithm combines local search and
advanced goal-oriented local search methods. In addition, an
efficient non-dominated sorting method is developed for multi-
objective optimization. For variable batch JSP, Xie et al. (2023)
designed a decomposition-based multi-objective Jaya algorithm.
The algorithm aims to achieve minimize tardiness and the least
number of transferred sub-batches, based on which it combines
forward and backward decoding strategies, problem-specific Jaya
updating mechanisms, and local search strategies in order to better
balance the exploration and exploitation of solutions. With the
development of AI, robots provide new ideas to further improve
the productivity of factories. Li et al. (2020) discussed JSP in a
robotic cell, where the transport of jobs is handled by robots and the
jobs need to be completed within a time window. They used a mixed

integer planning model to formulate the problem and proposed a
Teaching-based Learning Algorithm (TLA). The algorithm is able to
simultaneously determine the operation assignments, the robot
assignments to be used for the transport operations, and the
robot movement order, aiming to minimize makespan and the
overall early arrival and delay rates.

Nowadays, with the growing impact of the Industry 5.0 trend on
the manufacturing industry, more and more scholars are exploring
the constraints of environmental protection and worker scheduling
in JSP as well. González et al. (2022) investigated the problem of
minimizing both makespan and energy consumption in classical
JSP. The energy model considered allows the machine to be in five
states, i.e., off, standby, idle, setup, and processing. They proposed an
NSGA-II based evolutionary algorithm combining local and
heuristic search. Wei et al. (2021) investigated the problem of
simultaneously minimizing makespan, total weighted tardiness
and precocity, and non-processing energy consumption in JSP by
proposing a algorithm based on unified NSGA. The algorithm
incorporates a heuristic that incorporates MinMax and NEH for
population initialisation. The algorithm is capable of generating a set
of Pareto optimal solutions that enable production managers to
select appropriate scheduling schemes based on priorities. González-
Rodríguez et al. (2020) solved the fuzzy JSP by referencing fuzzy sets
to deal with processing time uncertainty with the objective of
minimizing makespan and total non-processing energy. They
used a NSGA-II based approach combined with heuristic
decoding operators that improves the robustness and applicability
of the algorithm in practical applications. Since the processing and
handling time of a job is affected by a number of uncertainties in the
actual production process, Afsar et al. (2022) proposed a new hybrid
metaheuristic approach with the objective of minimizing makespan
and minimizing non-processing energy consumption. The method
combines the design principles of MA, including an evolutionary
component based on explicitness, a forbidden search for makespan
and a heuristic search for non-processing energy, as well as a post-

FIGURE 11
Statistics on the number of metaheuristic algorithms solving muti-objective JSP and variants problems.

FIGURE 12
Proportion of metaheuristic algorithms solving muti-objective
JSP and variant problems posted.
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processing optimization based on linear programming. The
collaborate of multiple algorithms is used to achieve reduced
energy consumption and improved environmental sustainability
without compromising service levels.

Zhang et al. (2024a) investigated a multi-objective JSP for
manual loading and unloading tasks considering the human
factor, and proposed a grid-based ABC with the goal of
minimizing makespan and total workload. The algorithm
combines the artificial bee colony algorithm and the grid
technique to reduce the complexity of the problem using a
decomposition method with earliest and shortest scheduling
rule, and divides the target space into multiple cells by
constructing a grid coordinate system to facilitate the
localisation and evaluation of individuals. The algorithm also
designed to generate observer bees based on a mathematical
formulation of priority weights to improve information
utilisation and algorithm exploration and development.
Efficiency in the manufacturing process is also limited by
worker’s ability to operate the machine, his work capacity, and
the worker’s fatigue level, etc. Rodríguez-Espinosa et al. (2024)
investigated multi-objective JSP considering overtime work in a
make to order manufacturing company, aiming to minimize the
total tardiness and overtime costs. They proposed an enhanced
NSGA-II. To accelerate convergence, a problem-specific two-
stage decoding scheme was designed and an adaptive mechanism
was employed to maintain the stability of global convergence. In
addition, a local search procedure is introduced to enhance
solution exploration.

Recent advances in JSP research have addressed various practical
considerations. These developments reflect the evolving nature of
JSP research, incorporating increasingly complex real-world
constraints while maintaining computational efficiency and
practical applicability.

5.2 Flexible job-shop scheduling

FJSP represents a complex manufacturing scenario where each
job comprises a sequence of operations with specific processing
constraints. The defining characteristic of FJSP is its dual-layer
decision making requirement: machine selection and process
sequencing. Operations must follow sequential constraints and
are non-preemptable, while each operation can be processed on
multiple capable machines.

As shown in Figure 14, research interest in FJSP has grown
significantly since 2019, indicating its continued relevance in
modern manufacturing systems.

5.2.1 Problem model
Addressing FJSP requires not only determining the sequence of

jobs but also assigning each operation to an appropriate processing
machine, resulting in a complex set of constraints. This section
presents a mathematical model formulated with the dual objectives
of minimizing the makespan and the total machine delay time.
Table 7 provides a detailed definition of the parameters for
this problem.

minf1: Cmax � max
1≤i≤N

ciNi (75)

minf2: Td � ∑M
i�1

tj1 − q1j − 0( ) + ∑Mj

v�γ
tjv − qvj − tj v−1( )( )⎡⎢⎢⎣ ⎤⎥⎥⎦ (76)

s.t. cik − ci k−1( ) ≥ xikjpijk,∀i, j; k � 2, . . . , Ni (77)
∑
j∈Ak

xikj � 1,∀k, i (78)

chg − cik ≥ thgj,∀ g, h( ), i, k( ), j (79)
cik − chg ≥ tikj,∀ g, h( ), i, k( ), j (80)

tjv − tj v−1( ) ≥ qvj,∀j, v � 2, . . . ,Mj (81)

FIGURE 13
The number of metaheuristic algorithms solving muti-objective JSP literature over the years.
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xikj ∈ 0, 1{ },∀j, k, i (82)
cik ≥ 0,∀k, i (83)
tjv ≥ 0,∀j, v (84)

Equation 75, 76 represents the objective function for minimizing
the makespan and the total machine delay time. In Equation 76, if a
solution assigns only one operation to machine j, then
Td � tj1 − q1j − 0. If no operation is assigned to machine j, then
Td � 0. Equation 77 specifies the precedence of operations within
the same job, where operation oi(k−1) must be completed before
operation oik can start. Equation 78 stipulates that when processing
an operation, a machine must be selected from the available machine
set A(i, k) for operation oik, and only one machine can be selected.
For two operations, oik and ohg, assigned to the samemachine j, if oik
arrives before ohg, the start time of oik must be greater than or equal
to the completion time of ohg, as shown in Equation 79. Similarly, in

Equation 80, if ohg arrives before oik, the start time of oik must also be
greater than or equal to the completion time of ohg. In the same
manner, Equations 81 specify that all operations assigned to the
same machine j must satisfy the rules outlined in Equations 79, 80.
Equation 82 defines the range of values for the machine selection
decision variables, and Equations 83, 84 ensure that the completion
time of any operation is greater than or equal to zero.

5.2.2 Solution algorithm
Gao et al. (2008) developed a hybrid GA to solve the FJSP with

three objectives: minimizing the makespan, minimizing the
maximum machine workload, and minimizing the total
workload. Pezzella et al. (2008) introduced an integrated
approach to tackle the FJSP, which combines various strategies
for initial population generation, individual selection for
reproduction, and the creation of new offspring. Shahsavari-Pour
and Ghasemishabankareh (2013) proposed a hybrid algorithm
combining the advantages of GA and SA for solving the multi-
objective function optimization problem in FJSP. The algorithm
directly deals with three objectives through a Pareto optimal solution
approach: minimizing makespan, minimizing machine workload,
and minimizing the total workload of all machines. The hybrid
algorithm is able to provide higher quality solutions than existing
methods in solving multi-objective problems while reducing
computation time. Zhang et al. (2020) investigated FJSP with two
neighbouring work areas for a problem involving the production of
basic parts and subsequent assembly operations. In order to
minimize makespan, total tardiness time and total workload, a
distributed ACO is proposed to explore the Pareto frontier. In
addition, the method was successfully applied to different
scenarios of the ball valve production scheduling problem. Liu
et al. (2021) provided a new algorithm which combine with VNS
and GA for solving FJSP. The algorithm aims to improve
productivity, reduce cost and energy consumption, and it
proposes several improvement measures for the problems of slow
convergence and low accuracy of traditional GA in solving FJSP.
These include a mutation operator based on PSO, a hybrid heuristic
initialisation strategy, a VNS based on an improved multilevel
neighbourhood structure, and a real-number based chromosome
representation, encoding, decoding and crossover method. These
improvements improve the convergence performance and solution
accuracy of the algorithm.

Li et al. (2014) proposed a novel discrete ABC in solving a multi-
objective FJSP containing maintenance activities. The algorithm
aims to optimize three main performance metrics: minimizing
makespan, total machine workload and critical machine
workload. The algorithm employs a unique problem solution
representation, the application of TS for local search, an efficient
initialisation scheme, an adaptive strategy to enhance the
exploratory capabilities of the algorithm, and a specially designed
decoding method to handle maintenance activities. An external
Pareto archive set is employed for recording all the non-
dominated solutions found. Kacem et al. (2002) proposed a
Pareto-based hybrid approach combining fuzzy logic and EAs to
address the FJSP. This method leverages the knowledge
representation capability of fuzzy logic and the adaptability of
EAs to optimize three objectives: minimizing the makespan, the
total machine workload, and the workload of the most heavily

TABLE 6 Parameter descriptions.

Parameter Statement

i, h Job index, i, h � 1, 2, . . . , n

j, l Operation index, j, l � 1, 2, . . . , n

k Machine index, k � 1, 2, . . . , m

q Time interval index, q � 1, 2, . . . , t

n Number of jobs

ni Number of operations for job Ji

m Number of machines

t Number of available time intervals

Cmax Maximum completion time for all jobs

Oij Operation j of job Ji

Pij Processing time of operation Oij

Cij Completion time of operation Oij

Ci Completion time of job Ji

di Delivery date of job Ji

Pij,q Time spent on operation Oij in time interval q

Fi Urgency factor for job Ji

Pijk Time spent on operation Oij on machine k

Sijk Start time of operation Oij on machine k

A A sufficiently large positive number

sij Start time of operation Oij

xi,j,q Binary variable, 1 if operationOij is processed in time interval q,
0 otherwise

xi,j,k Binary variable, 1 if operation Oij on machine k precedes
operation Oh,l , 0 otherwise

yi,j,k Binary variable,1 if operation Oij is processed on machine k,
0 otherwise

oq Binary variable,1 if the time interval is an overtime interval,
0 otherwise
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utilized machine. Basiri et al. (2020) designed a hybrid intelligent
algorithm for FJSP dealing with fuzzy time. The algorithm is
optimized based on the Pareto solution set, considering
constraints such as the number of un-predetermined parallel

machines, sequence-dependent setup times, re-entrant workflows
and fuzzy variables, and combines a simple weighted sum method
and a technology preference method.

Industry 5.0 further extends the beautiful vision of Industry
4.0 for energy saving by focusing on sustainable development and
environmental responsibility while emphasising on human-centred
production methods. Luan et al. (2023) developed an enhanced
NSGA-II for multi-objective energy-saving FJSP with the objective
of minimizing makespan, total delay time and total energy
consumption. This algorithm improves the accuracy of the
current solution by performing different neighbourhood search
procedures in the sparse solution space by performing different
neighbourhood search procedures to increase the diversity of the
population of children in the local search, thus improving the
accuracy of the current solution. In addition, a weighted
approach is used to select the desired compromise solution from
the set of Pareto solutions in order to achieve a balance between
multiple objectives. Burmeister et al. (2023) focused on FJSP with
dynamic energy costs and proposed a multi-objective modelling
algorithm based on NSGA-II. The algorithm aims to minimize
makespan and energy cost, and bridges the gap in the existing
literature that is limited to coarse-grained time periods by taking
into account frequently changing real-time energy tariffs. He et al.
(2022) focusing on FJSP with dual resource constraints of machines
and workers, constructed a model considering both machine and
worker constraints, with the aim of minimizing makespan and total
delay. They developed an improved African Vultures Optimization
Algorithm. A neighbourhood search operation was designed to
further minimize makespan and total delay. Zhang et al. (2023b)
focused on the post processing shop for parallel disassembly/
reassembly workstations and FJSP, which needs to decide on the
assignment and sequence of disassembly/reassembly jobs, the as well
as the sequence of operations and workstation assignments for

FIGURE 14
The number of literature on metaheuristic algorithms solving muti-objective FJSP over the years.

TABLE 7 Parameters descriptions.

Parameter Statement

i, h Job index

j Machine index

k, g Operation sequence index of the job

v Operation sequence index on the machine

N Total number of jobs

M Total number of machines

Ni Total number of operations for job i

Mj Total number of operations processed on machine j

A(i, k) The set of available machines for the k-th operation of job i

oik The k-th operation of job i

pijk The processing time of the k-th operation of job i on machine j

wjv The v-th operation processed on machine j

qvj The processing time of the v-th operation processed on
machine j

xikj If machine j is selected to process operation Oik , it is 1;
otherwise, it is 0

cik If operation Oik is completed, it is 1; otherwise, it is 0

tjv If operation wjv is completed, it is 1; otherwise, it is 0
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reprocessing operations. An enhanced Grey Wolf Optimizer is
proposed to address the multi-objective FJSP in remanufacturing
systems, aiming to minimize both makespan and energy
consumption. The algorithm improves accuracy, computational
efficiency, solution stability, and convergence performance by
incorporating multiple local neighborhood search strategies,
stochastic interference methods, and weighted distance updating
mechanisms.

Tan et al. (2021) proposed an optimization model considering
worker fatigue for FJSP with dual resource constraints, aiming to
simultaneously reduce worker fatigue and increase productivity
through joint scheduling of machines and workers. The model
aims at minimizing maximum worker fatigue and makespan. This
research not only provides practical scheduling tools for decision
makers, but also brings fatigue awareness to machine and worker
constrained flexible manufacturing systems, facilitating both worker
health and productivity. Vital-Soto et al. (2023) developed an elite
NSGA-II with innovative operators for a dual resource constrained
FJSP considering machine and worker allocation and sorting. The
algorithm is able to provide a set of Pareto optimal solutions that help
the decision maker to evaluate the trade-offs between different
objectives. The algorithm demonstrates its advantages in defining
daily schedules, adjusting schedules, priority management, on-time
delivery and balancing worker workloads.

With the advent of Industry 5.0, the field of FJSP is increasingly
oriented toward energy efficiency and sustainable development.
Researchers are placing greater emphasis on integrating factors
such as energy consumption, worker fatigue, and environmental
responsibility into the scheduling process, aiming to achieve
sustainability objectives alongside enhanced production efficiency.
Current studies employ various hybrid algorithms designed to
address the limitations of traditional methods, thereby improving
convergence speed and solution accuracy. This trend indicates that
future research will place greater importance on the synergy between
algorithmic innovation and practical applications, underscoring the

necessity of developing efficient and environmentally friendly
scheduling solutions in complex dynamic environments.

5.3 Dynamic job-shop scheduling

Manufacturing environments inherently contain uncertainties,
making dynamic scheduling a crucial research direction that closely
aligns with real-world production scenarios. Dynamic events in
manufacturing can be categorized into four main types: job-related
events, operations-related events, machine-related events and other
operational events.

Within this domain, the Dynamic Flexible Job-shop Scheduling
Problem (Dyn.FJSP) emerged as an extension of Dynamic Job-shop
Scheduling Problem (Dyn.JSP), incorporating machine selection
flexibility.

As illustrated in Figure 15, research interest in dynamic
scheduling problems shows an upward trend, reflecting their
increasing practical significance. The ability to respond rapidly to
environmental changes while generating optimal scheduling
solutions is paramount in this context.

5.3.1 Problem model
The Dyn.FJSP with new job insertion considered in this chapter

can be defined in detail as follows. There are n sequentially arriving
jobs J � {J1, J2, . . . , Jn} to be processed on m machines
M � {M1,M2, . . . ,Mm}. Each job Ji consists of ni operations,
where Oij represents the j-th operation of job Ji. Each operation
Oij can be processed on any machine Mk selected from its
compatible machine set Mij ⊆ M. The processing time of
operation Oij on machine Mk is denoted as tijk. The arrival time
and due date of job Ji are represented as Ai andDi, respectively. The
actual completion time of operation Oij is denoted as Cij. The
urgency level of job Ji is indicated by Pri, where a higher urgency
level results in greater penalties for delays.

FIGURE 15
The number of literature on metaheuristic algorithms solving muti-objective Dyn.JSP and variant problems over the years.
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This chapter establishes a mathematical model with the
objectives of simultaneously minimizing the total weighted
tardiness and maximizing the average machine utilization.
Table 8 presents the detailed parameters of this model.

minTWT � ∑n
i�1

max Ci,ni −Di, 0( ) · Pri (85)

min �Uave � 1
m

∑m
k�1

∑n
i�1∑ni

j�1ti,j,kXi,j,k∑m
k�1maxiCi,ni ·Xi,ni ,k

⎛⎝ ⎞⎠ (86)

s.t. Ci,0 � 0, Ci,j > 0,∀i, j (87)
∑

k∈Mi,j

Xi,j,k � 1,∀i, j (88)

Ci,1 − ti,1,k − Ai( )Xi,1,k ≥ 0,∀i, k (89)
Ci,j − ti,j,k − Ci,j−1( )Xi,j,k ≥ 0,∀i, j, k (90)

Ch,g − th,g,k − Ci,j( )Xi,j,kXh,g,k Yi,j,h,g + 1( )
+ Ci,j − ti,j,k − Ch,g( )Xi,j,k 1 − Yi,j,h,g( )≥ 0,∀i, j, h, g, k

(91)
Equation 85 represents the total weighted tardiness of all jobs,

where urgency is used as the weight factor (i.e., the penalty factor)
for delays. Equation 86 represents the reciprocal of the average
machine utilization. Equation 87 indicates that the completion time
of each operation must be non-negative. Equation 88 ensures that
each operation can only be processed on one available machine.
Equation 89 ensures that a job can only be processed after its arrival
time. Equation 90 guarantees precedence constraints. Equation 91
ensures capacity constraints are satisfied.

5.3.2 Solution algorithm
When solving scheduling problems under the influence of

dynamic events, it is particularly important to design algorithms

that can respond quickly to changes in the environment and
generate reasonable scheduling schemes in immediately.
Chryssolouris and Subramaniam (2001) designed a GA for the
Dyn.JSP with the objectives of average job tardiness and average
job cost. In scheduling considering dynamic events, most scholars
use rescheduling method, i.e., the newly inserted jobs are merged
with the existing jobs to reschedule, this scheduling method will
make the new scheduling scheme completely different from the old
scheduling scheme. In addition, this rescheduling method may lead
to stability degradation. Rangsaritratsamee et al. (2004) in order to
improve the stability degradation caused by rescheduling and other
problems, they proposed a multi-objective rescheduling method
based on GA and local search algorithm. The method adopts
stability as an additional performance measure based on the
objective of minimizing makespan and delay, aiming to balance
efficiency and stability. Random job arrivals are the most common
class of dynamic events in the dynamic scheduling. Wang et al.
(2019) proposed a rescheduling method that combines performance
and stability considerations to address this type of Dyn.JSP. The
method aims to minimize the discontinuity rate of new jobs,
makespan deviation of the initial schedule and order deviation
on the machine. Four matching strategies are modified to
determine the rescheduling range. An improved PSO is proposed,
which consists of a decoding scheme that considers machine
unavailability constraints, a population initialisation method
based on a new transformation mechanism, and a particle
movement method that introduces positional variations and
random inertia weights.

Compared to Dyn.JSP, Dyn.FJSP is more challenging in that it
needs to consider not only the impact of dynamic events in the
manufacturing process, but also the flexibility that jobs can be
assigned to multiple machines for processing. Fattahi and Fallahi
(2010) proposed a multi-objective mathematical model and a
metaheuristic algorithm based on GA to address Dyn.FJSP,
aiming at balancing the efficiency and stability of the schedule.
Zhang et al. (2013) proposed a rescheduling approach based on
hybrid GA and TS to solve Dyn.FJSP. They introduced a simulator
to deal with the complexity of real-time events and the difficulty of
representing them accurately in a mathematical model. Liu et al.
(2024) proposed a multi-objective ALNS for the Dyn.FJSP of self-
driving transportation in smart factories. The algorithm adopts a
proactive responsive approach to cope with the dynamic
interference of new job insertion. The algorithm formulates a two
stage multi-objective mixed-integer planning model: the first stage
aims to minimize makespan and workload imbalance; the second
stage introduces instability minimisation to deal with the effects of
disturbances.

From the above research, it can be concluded that in the field of
dynamic scheduling, the design of algorithms that can quickly
respond to dynamic events is particularly important, as it directly
impacts the efficiency and stability of manufacturing environments.
Researchers are focusing on employing rescheduling strategies to
balance efficiency and stability, particularly in the context of multi-
objective optimization, where the goal is to simultaneously enhance
scheduling efficiency and robustness. The trend towards the
adoption of hybrid algorithms and innovative strategies
underscores the critical role of algorithmic innovation in
improving scheduling performance.

TABLE 8 Parameter descriptions.

Parameter Statement

n Total number of jobs

m Total number of machines

Ji Job Ji

ni Total number of operations belonging to job Ji

Mk Machine Mk

Oij Operation j of job Ji

Mij Set of available machines for operation Oij

tijk Processing time of operation Oij on machine Mk

Ai Arrival time of job Ji

Di Due date of job Ji

Pri Urgency degree of job Ji

Cij The completion time of operation Oij

Xijk If operation Oij is assigned on machine Mk , it is 1; otherwise it
is 0

Yijhg If operationOij is a predecessor ofOhg , it is 1; If operationOij is
a successor of Ohg , it is −1
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5.4 Distributed job-shop scheduling

Modern manufacturing systems have evolved into complex
networks of multiple interconnected job-shop scheduling
problems, each characterized by distinct equipment, process
capabilities, and resources. This evolution has exposed the
limitations of traditional centralized scheduling approaches,
highlighting the growing importance of distributed scheduling
solutions. The field encompasses two main variants: Dist.JSP and
its flexible counterpart, Distributed Flexible Job-shop Scheduling
Problem (Dist.FJSP), distinguished by machine optionality.

As illustrated in Figure 16, research interest in Dist.JSP has
shown a consistent upward trend, driven by industry demands for
enhanced productivity and resource optimization. This trajectory
suggests continued growth in this research domain.

5.4.1 Problem model
In production and manufacturing systems, flexible scheduling

strategies play a critical role in adapting to dynamic market demands
and enhancing production flexibility. As a representative problem of
multi-factory scheduling, Dist.FJSP is characterized by allowing each
sub-factory to operate as an independent flexible job shop, responsible
for processing specific parts of the overall production tasks. The
resolution of Dist.FJSP involves addressing three key subproblems:

(1) The allocation of parts to processing factories;
(2) The matching of operations to processing machines;
(3) The optimization of operation scheduling within

individual factories.

This chapter uses Dist.FJSP as an example to formulate a
mathematical model aimed at minimizing makespan and total

energy consumption. Table 9 presents the detailed parameters of
this model.

minf1 � max Ti | i � 1, 2, . . . , n{ } (92)
min f2 � EAH + EAF + EAM

� ∑n
i�1

∑pi
j�1

∑f
a�1

∑γa
β�1

TijαβEijαβYijαβ + ∑n
i�1

∑p
j�1

TFEUYF
ij

+∑n
i�1

∑p
j�1

TMEUYM
ij

(93)

s.t. Tij − Ti j−1( ) ≥TijαβYijαβ,∀i, j, α, β (94)
Tks − Tij − Tksαβ( )YksαβYijαβ ≥ 0[ ] ∪
Tij − Tks − Tijαβ( )YijαβYksαβ ≥ 0[ ],∀i, j, k, s, α, β (95)

∑f
α�1

∑Ya

β�1
Yijαβ � 1,∀i, j (96)

0≤ YF
ij + YM

ij( )≤ 1,∀i, j (97)

Equations 92, 93 define the optimization objectives of the
problem, which are minimizing the makespan and total energy
consumption, respectively. Equation 94 ensures that each operation
satisfies the precedence constraints. Equation 95 guarantees that
each machine processes at most one operation at a time. Equation 96
ensures that each operation is processed on one machine in a single
factory only once. Equation 97 restricts each operation to undergo
only one transportation, either within or between factories.

5.4.2 Solution algorithm
Li et al. (2018a) proposed a Pareto based hybrid TS for multi-

objective Dist.FJSP that simultaneously minimizes four objectives:
makespan, maximum workload, total workload, and early arrival/
late arrival criteria. The algorithm employs multiple methods to

FIGURE 16
The number of literature on metaheuristic algorithms solving muti-objective Dist.JSP and variant problems over the years.
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initialise the solution set, which take into account both problem
characteristics and objective characteristics. In addition, five
neighbourhood structures are used to balance the exploration
and exploitation of solutions and a well-designed inverse
method is proposed to optimize the early arrival/late arrival
criteria. Luo et al. (2020) focus on the limitation that the job
operations in the traditional Dist.FJSP can not be transferred
between different factories, and propose a Dist.FJSP with
transfers that allow operations to be to be processed between
different factories. They proposed an efficient MA for this
problem that aims to minimize makespan, maximum workload
and total energy consumption. The algorithm devises several
crossover and mutation operators as well as three efficient
neighbourhood structures are developed to extend the search
space and accelerate the convergence of the solution. Jia et al.
(2024) focused on the problem of integrating optimization of
production and distribution in a furniture supply chain, and
proposed an integrated Dist.FJSP aiming to minimize makespan
and total delay. They introduced a multi-objective Brain Storming

Optimization algorithm based on the construction of a mixed
integer mathematical planning model.

The widespread adoption of distributed factories in large and
complex manufacturing industries will inevitably lead to a series of
problems such as energy consumption and environmental impacts.
Xu et al. (2021) proposed a multi-objective low carbon scheduling
model, which takes the minimization of makespan, total cost, carbon
emission andmaximization of quality as the optimization objectives.
A hybrid GA with three-layer coding and TS was developed, which
combines the global search capability of GA and the local search
capability of TS to effectively improve the solution performance. The
method not only considers the three traditional subproblems of
operation sequencing, job assignment and operation to machine
assignment, but also introduces the characteristics of job
outsourcing, which makes it more in line with the operation of
real manufacturing enterprises. Shao et al. (2022) proposed a multi-
objective MA based on multiple neighbourhoods aiming to optimize
the total weighted tardiness and energy consumption for an energy-
efficient Dist.FJSP with variable machine speeds. The algorithm

TABLE 9 Parameter definitions.

Parameter Statement

n Total number of jobs

pi Total number of operations for job i

f Total number of factories

Ya Total number of machines in factory α

i, k Job indices, i, k � 1, 2, . . . , n

j, s Operation indices, j, s � 1, 2, . . . , pi

α Factory index, α � 1, 2, . . . , f

β Machine index, β � 1, 2, . . . , Ya

m Total number of machines across all factories

La Workload of factory α

uij(uks) The j-th (or s-th) operation of job i (or k)

Tijαβ(Tksαβ) Processing time of operation uij on machine β in factory α

TM Transfer time of an operation between different machines within the same factory

TF Transfer time of an operation between different factories

Ti(Tk) Completion time of job i (or k)

Tij(Tks) Completion time of operation uij (or uks)

Eijαβ Energy consumption rate for operation uij on machine β in factory α

EAU Energy consumption rate for transportation

Yijαβ(Yksαβ) Binary variable, equals 1 if operation uij is assigned to machine β in factory α, otherwise 0

YM
ij (YM

ks ) Binary variable, equals 1 if operation uij is transferred between different machines within the same factory, otherwise 0

YF
ij(YF

ks) Binary variable, equals 1 if operation uij is transferred between different factories, otherwise 0

EAH Total energy consumption for job processing

EAM Total energy consumption for transferring jobs between different machines within the same factory

EAF Total energy consumption for transferring jobs between different factories
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designs two genetic global search operators to enhance the solution
search capability and integrates several multi-neighbourhood
strategies including intra and inter factories sequence adjustment,
energy saving strategies and speed adjustment to enhance the
exploration capability. To address the limitation that worker
arrangement is not considered in Dist.FJSP, Luo et al. (2022)
investigated Dist.FJSP with worker arrangement. To solve the
problem, they proposed an improved MA based on the structure
of NSGA-II, aiming to minimize the makespan of the machine, the
maximum workload and the workload of the workers at
the same time.

With the widespread adoption of distributed factories, research
has increasingly focused on issues such as low-carbon scheduling
and worker arrangement to enhance the energy efficiency and
environmental sustainability of scheduling processes. This trend
indicates a shift towards more complex real-world applications,
emphasizing the integration of algorithmic innovation with practical
operations to address the challenges faced by modern
manufacturing industries.

The evolution of research on job-shop scheduling problems and
its variants highlights four key trends: integration with Industry 5.0,
the implementation of flexible manufacturing, the emergence of
distributed manufacturing, and the advancement of hybrid
algorithms. These trends underscore the ongoing evolution and
adaptation of modern manufacturing systems in response to
increasing complexity and diversity.

6 Combining metaheuristic algorithm
and reinforcement learning for shop
scheduling optimization

Despite the widespread application of metaheuristics in shop
scheduling optimization, these algorithms face two significant
limitations. First, their computational intensity and inability to
retain optimization parameters necessitate repeated initialization,
resulting in extended response times. Second, their limited
generalization capability often requires parameter adjustments for
different problem scales, hindering algorithmic transferability.
Recent advances in AI, particularly RL, offer promising solutions
to these challenges (Cheng et al., 2020).

6.1 Integration approaches in flow shop
scheduling

Q-learning (Clifton and Laber, 2020) has emerged as a
particularly effective model-free RL algorithm, offering several
advantages including environment independent learning,
structural simplicity, and efficient exploration exploitation
balance through ϵ-greedy strategy. The Q-learning update rule
can be expressed as (Equation 98):

Q st, at( ) ← Q st, at( ) + α rt + γmaxaQ st+1, a( ) − Q st, at( )[ ] (98)
Recent research has demonstrated successful integration of

Q-learning with various metaheuristic algorithms. Zhang and Cai
(2023) developed a dual population GA incorporating Q-learning to
minimize makespan and delayed jobs. Their approach features

multiple genetic operators and a sophisticated population
evaluation method, where one population employs optimal
search strategies while the other follows Q-learning guidance.
Tao et al. (2023) proposed a NSGA-II with Q-learning for
DPFSP. Firstly, an IG is used to generate the initial solution.
Then, the NSGA-II is designed to optimize the bi-objective
problem, and the algorithm parameters are dynamically adjusted
by Q-learning. In addition, two kind of crucial factory based local
search strategies, including insertion and exchange operations, are
introduced to improve the quality of the solution. Zhang et al.
(2024b) focused on the DHFSP in a heterogeneous shop and
designed a multi-objective MA combining PSO and local search
based on Q-learning to minimize makespan and total energy
consumption. The algorithm employs a multi-group PSO to
improve the fast convergence performance of the multidirectional
solutions on the Pareto front, and two local search strategies are
designed to further enhance the quality and diversity of the
solutions. Q-learning is used to guide the VNS for a better
balance of exploration and exploitation.

In the context of energy-efficient scheduling, Yu H. et al. (2024)
conducted comprehensive research on multi-objective DPFSP,
embedding Q-learning into multiple algorithms including ABC,
GA, PSO, IG, and Jaya. Their work introduced five critical
neighborhood structures, with the Q-learning enhanced Jaya
algorithm demonstrating superior performance. Shao et al. (2024)
addressed the challenges of uncertain processing times in DHFSP
through a novel energy-efficient approach. Their algorithm combines:
machine position-based scheduling rules, decomposition-based
construction heuristics, problem-specific search operators and a two-
phase framework incorporating metatraining and adaptive search.
Zhang et al. (2023a) proposed a Q-learning based MOPSO for
DFSP aiming to minimize makespan and total energy consumption.
The algorithm enhances the convergence speed of PSO by dividing the
particles into three subgroups, enabling it to reach three different
regions of the Pareto front faster. Q-learning is used to guide VNS,
balancing the exploration and exploitation functions. MOPSO uses
exchange sequences to update the job sequence vector, and crossover
and mutation to update the plant allocation vector to improve the
rationality and efficiency of the algorithm.

Research indicates that Q-learning can be integrated with various
metaheuristic algorithms, such as GA and PSO, to enhance their
performance in addressing complex scheduling tasks. Particularly in
the domains of energy-efficient scheduling and multi-objective
optimization, the application of Q-learning demonstrates a
favorable balance between exploration and exploitation, facilitating
faster convergence to high-quality solutions.

6.2 Integration approaches in job shop
scheduling

The integration of metaheuristics and RL has shown particular
promise in job shop scheduling problems scenarios (Zhang et al.,
2024c). Li et al. (2023) developed a sophisticated approach for
energy-efficient HFSP, considering time-sharing tariffs and
disconnection strategies. Their Q-learning enhanced NSGA-II
algorithm demonstrates effective balance between exploration and
exploitation.
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He et al. (2021) proposed an effective multi-objective Jaya
algorithm. The algorithm introduces a strategy based on gray
entropy parallel analysis for evaluating and selecting solutions,
and an opposition learning based strategy to enhance the
algorithm’s search capability and convergence speed. The strategy
of objection learning is integrated into the search operation and
external archiving of Jaya to improve the diversity of solutions and
avoid local optimum. This algorithm solves multi-objective JSP with
the objective of minimizing makespan, total flow time and average
tardiness. Abedi et al. (2020) studied Dyn.FJSP considering random
job arrivals and machine failures with event-driven policy
rescheduling. To solve the problem, they chose VNS as the
rescheduling method with the objective of minimizing makespan
and total delay, and dynamically updated the VNS parameters at
each rescheduling point by a trained Artificial Neural Network. Li
et al. (2022) proposed a RL based Multi-objective Evolutionary
Algorithm Based on Decomposition for multi-objective FJSP with
fuzzy processing time, aiming to minimize makespan and total
machine workload. The algorithm generates high quality initial
populations using three initial strategies, and employs a
Q-learning based parameter adaptation strategy to guide the
populations in selecting optimal parameters to increase diversity.
In addition, VNS combined with RL guides the solution to choose
the correct local search method.

Chen et al. (2023) proposed a predictive reactive dynamic/static
rescheduling model for FJSP with ambiguous processing times,
dynamic interrupts and variable processing speeds, aiming to
optimize the three objectives of maximum completion time, total
energy consumption and average protocol index. To address this
problem, a multi-objective IA incorporating Q-learning was
proposed to optimize the initial solution using an active decoding
heuristic based on the interval insertion mechanism, to improve the
exploration and exploitation capabilities through clone selected IA
and Q-learning, respectively. Kamali et al. (2023) developed an
algorithm to optimize the maximum completion time and the
average protocol index for a multi-objective Dyn.FJSP, developed
a bio-immune based multi-agent system that aims to simultaneously
minimize the four objectives of makespan, total weighted tardiness,
maximum machine workload and progress stability. In this
algorithm, the immune intelligences are responsible for
environment recognition, generating non-dominated
schedules and selecting optimal schedules with self adaptive
and flexible coordination capabilities. Tang et al. (2024)
proposed an improved NSGA-III combined with RL for
Dist.FJSP with transport resource constraints. The algorithm
is designed with a heuristic rule based initialisation method and
an IG decoding method, and the key parameters of NSGA-III are
adaptively tuned using double Q-learning with an improved
ϵ-greedy strategy.

In the field of job-shop scheduling problems, the integration of
metaheuristic algorithms with RL has demonstrated both
effectiveness and significance. By introducing novel evaluation
strategies and dynamically adjusting parameters, these
approaches enhance the search capabilities and convergence
speeds of the algorithms. Furthermore, research addressing
dynamic environments and uncertainty issues employs event-
driven strategies and multi-agent systems to effectively facilitate
dynamic rescheduling.

7 Conclusion and future perspectives

The evolution of manufacturing towards intelligent
production has highlighted the limitations of traditional
scheduling methods in addressing complex production
environments. Metaheuristic algorithms have emerged as
effective solution tools, demonstrating significant advantages in
handling complex, multi-objective scheduling problems through
their nature-inspired optimization approaches. Based on recent
literature analysis, these methods have become a research hotspot
in multi-objective shop scheduling, showing promising results in
various applications.

7.1 Current status analysis

Under the background of Industry 4.0, most studies have
concentrated on distributed and dynamic scheduling problems,
with some research paying special attention to scheduling with
transportation time constraints. In the era of Industry 5.0, a
growing number of studies have started to consider the
environmental impacts of manufacturing processes, alongside
factors such as worker fatigue rates and skill levels. While the
existing literature addresses various aspects, research on
scheduling problems closer to real-world production scenarios,
particularly in the domain of heterogeneous distributed
scheduling involving workers, remains inadequate and requires
further in-depth exploration.

As for research objectives, the optimization goals of multi-
objective scheduling problems currently focus primarily on
minimizing makespan, total energy consumption, and optimizing
tardiness or earliness rates. Almost all studies emphasize makespan
as a critical metric, however, the majority are limited to bi-objective
optimization. Studies addressing tri-objective or multi-objective
optimization remain relatively rare, indicating significant
potential for advancing comprehensive optimization methods.

In addressing multi-objective scheduling problems,
metaheuristic algorithms, with NSGA-II as a prominent example,
dominate the field. Many studies adopt hybrid strategies that
integrate multiple techniques, enhancing the exploration
capabilities of algorithms while improving their exploitation of
existing solutions. These approaches have achieved remarkable
optimization results in multi-objective scheduling problems.

It is worth noting that most studies rely on job-based benchmark
test cases for extended research on standard datasets, with only a
small fraction utilizing real-world production cases. While
benchmark test cases contribute to theoretical advancements,
they often approach tasks at the job level, whereas actual
production processes typically handle tasks at the order level.
This mismatch underscores a gap between current testing
methodologies and real-world production practices.

Additionally, in solving dynamic scheduling problems,
metaheuristic algorithms often require frequent rescheduling,
which incurs additional time costs. In the context of Industry 5.0,
which emphasizes enhancing system resilience, RL has emerged as
an essential complementary method. It effectively reduces the
impact of frequent rescheduling while improving the overall
adaptability and flexibility of scheduling systems.
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7.2 Future research directions

Looking forward, several critical areas demand attention for
advancing the field. First, research problems should expand
beyond current paradigms to better align with actual production
environments. The acceleration of Industry 5.0 necessitates increased
focus on human-centric factors, including worker wellbeing and
multi-skilled workforce deployment. This evolution requires a
more nuanced approach to problem formulation and solution design.

The scope of optimization objectives needs broadening to reflect
the multifaceted nature of modernmanufacturing. While current bi-
objective approaches have proven valuable, future research should
embrace more comprehensive optimization objectives.

Dynamic scheduling represents another crucial frontier.
Manufacturing environments face various uncertainties, from
order modifications to equipment failures and workforce
variations. Future research must develop robust approaches for
handling these dynamic elements while maintaining system
resilience. This includes designing adaptive strategies that can
respond to real-time changes while ensuring production stability.

Methodologically, the integration of metaheuristic algorithms with
RLpresents promising opportunities. While metaheuristics excel at
finding approximate optimal solutions, they often struggle with large-
scale problems and generalization. RL offers complementary strengths,
particularly in strategy generalization and rapid decision-making. The
integration of these two approaches holds promise for enabling
researchers to develop more robust and practical scheduling solutions.

7.3 Implementation considerations

Success in advancing these research directions requires careful
attention to implementation strategies. Researchers and
practitioners should focus on:

• Adopting test cases that better reflect real-world scenarios:
strengthening collaboration between academia and industry is
essential for developing generalized test cases using real order
data frommanufacturing enterprises. This approach ensures that
test scenarios are closer to actual production environments. By
introducing diverse real-world order data and simulating realistic
production processes and dynamic changes, such as order
modifications and equipment failures, it is possible to provide
more reliable and comprehensive performance evaluations. This
ensures that algorithms not only demonstrate theoretical
advantages but also excel in practical applications.

• Effective integration of RL and metaheuristic algorithms: to
meet the demands of resilient manufacturing in Industry 5.0, it
is recommended to effectively integrate RL with metaheuristic
algorithms. Leveraging offline training and online application
capabilities of RL, combined with the powerful search abilities
of metaheuristic algorithms, can enable the development of
more intelligent, flexible, and adaptable scheduling
algorithms. These advanced approaches would facilitate
efficient and stable optimization decisions in dynamically
changing production environments.

• In-depth exploration of multi-objective research: for modern
manufacturing, focusing on only two objectives often fails to

comprehensively address the complexities of real-world
requirements. Therefore, it is recommended to further
explore optimization research involving three or more
objectives. Expanding to multi-objective optimization is not
only a necessary academic advancement but also a critical step
in addressing the challenges of Industry 5.0.

Through these focused efforts, the field can move closer to
achieving practical, efficient, and comprehensive scheduling solutions
that meet the demands of modern manufacturing environments.
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ABC Artificial Bee Colony Algorithm

ACO Ant Colony Optimization

AGV Automatic Guided Vehicles

AI Artificial Intelligence

ALNS Adaptive Large Neighborhood Search

BFO Bacterial Foraging Optimization Algorithm

DE Differential Evolution

DFSP Distributed Flow-shop Problem

DHFSP Distributed Hybrid Flow-shop Problem

Dist.FJSP Distributed Flexible Job-shop Scheduling Problem

Dist.JSP Distributed Job-shop Scheduling Problem

DPFSP Distributed Permutation Flow-shop Problem

Dyn.FJSP Dynamic Flexible Job-shop Scheduling Problem

Dyn.JSP Dynamic Job-shop Scheduling Problem

EA Evolutionary Algorithm

EAs Evolutionary Algorithms

FJSP Flexible Job-shop Scheduling Problem

FSP Flow-shop Scheduling Problem

GA Genetic Algorithm

GSA Gravitational Search Algorithm

HFSP Hybrid Flow-shop Scheduling Problem

IA Immune Algorithm

IG Integrated Gradients

IoT Internet of Things

JSP Job-shop Scheduling Problem

MA Memetic Algorithm

MOEA Multi-objective Evolutionary Algorithms

MOGA Multi-Objective Genetic Algorithm

MOJA/D Multi-Objective Jaya Algorithm Based on Decomposition

MOP Multi-objective Optimization Problem

MOPSO Multi-Objective Particle Swarm Optimization

NEH Nawaz-Enscore-Ham

NPGA Niched Pareto Genetic Algorithm

NSGA Non-dominated Sorting Genetic Algorithm

NSGA-II Non-dominated Sorting Genetic Algorithm II

NSGA-III Non-dominated Sorting Genetic Algorithm III

PAES Pareto Archived Evolution Strategy

PFSP Permutation Flow-shop Scheduling Problem

PGA Parthenogenetic Algorithm

PhA Physics-based Algorithms

POF Pareto-optimal Front

POS Pareto-optimal Set

PSO Particle Swarm Optimization

RL Reinforcement Learning

SA Simulated Annealing

SI Swarm Intelligence

SPEA Strength Pareto Evolutionary Algorithm

TLA Teaching-Learning-Based Optimization

TS Tabu Search

VEGA Vector Evaluated Genetic Algorithm

VNS Variable Neighborhood Search

WOA Whale Optimization Algorithm
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