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Indroduction: As the manufacturing assembly industry advances, increased
customizations and product variety results in operators’ executing more
cognitively complex tasks. To bridge these cognitive challenges, the
assessment of operators’ health and performance in relation to their tasks has
become an increasingly important topic in the field of cognitive ergonomics.

Methods: This paper examines operators’mental workload through an integrated
approach by implementingmeasures covering different mental workload signals:
physiological, performance-based, and subjective, while assembling a 3D-
printed drone. In this study, four validated mental workload instruments were
used and their correlation levels were evaluated: error rate, completion time, the
Rating Scale Mental Effort (RSME), and Heart Rate Variability (HRV).

Results: The results indicate that three out of four mental workload measures
significantly correlate and can effectively be used to support the assessment of
mental workload. More specifically, error rate, completion time, and RSME.

Discussion: Since current literature has stressed the importance of developing a
multidimensional mental workload assessment framework, this paper
contributes with new findings applicable to themanufacturing assembly industry.
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1 Introduction

It is no coincidence that both the public and scientific community have become
increasingly aware of the extensive impact that mental health has on our work performance.
Today, this is considered one of the most challenging predicaments worldwide (Daniel,
2019). National agencies such as the Swedish Work Environment Authority
(Arbetsmiljöverket, 2023) and the Swedish Social Insurance Agency (Försäkringskassan,
2023) report that work-related stress causes more than 700 deaths annually, with
projections indicating continued escalation. To prevent and bridge this issue, research
related to cognitive ergonomics seems to be on the rise and is currently applied to many
different types of professions (Zoaktafi et al., 2020).

The manufacturing assembly industry, in particular, faces intensified cognitive
demands due to greater product variety and customization. Ultimately, requiring
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operators to execute increasingly complex tasks, and thus, increasing
theirmental workload (Bläsing and Bornewasser, 2020; Digiesi et al.,
2020). These demands impose cognitive workloads that affect not
only operator performance but also wellbeing (Galy, 2018; Muñoz-
de-Escalona et al., 2024). At the same time, the adoption of advanced
technologies such as automation, AI, and robotics contributes to
additional cognitive strain as operators must adapt to hybrid
human-technology systems (Longo et al., 2022; Tao et al., 2019).

These developments align with the evolving paradigm of
Industry 5.0, where the emphasis shifts from technology-centered
automation to more human-centered, resilient, and sustainable
manufacturing ecosystems (Antonaci et al., 2024; Trstenjak et al.,
2023). Cognitive ergonomics plays a pivotal role in this transition by
making sure that operators’ cognitive capacities are supported rather
than burned out (Baldassarre et al., 2024; Longo et al., 2023). This
requires moving beyond traditional workload assessments toward
methods that capture real-time, multidimensional, and context-
sensitive indicators of mental workload (Jafari et al., 2023;
Chiacchio et al., 2023). In particular, triangulating physiological,
subjective, and performance-based measures has been identified as a
key research priority to better understand and support human
operators in Industry 5.0 settings (Fan et al., 2020; Lagomarsino
et al., 2022).

Mental workload is the balance between a task’s complexity and the
subject’s cognitive capacity to cope with it. Excessive levels of mental
workload arise from performing tasks that are too cognitively
demanding for our current resources to handle (Galy et al., 2012).
This causes subjects to make more errors, experience delayed
information processing, and exhibit slower response time
(DiDomenico and Nussbaum, 2011; Kantowitz, 1987; Longo et al.,
2022), ultimately, affecting work performance negatively (Lindblom
and Thorvald, 2014). Mental underload is instead caused by performing
monotonous tasks that do not require any (or the absolute minimum)
cognitive attention or resources (Basahel et al., 2010).

Despite the recognized need to elevate current assessment ofmental
workload, many studies continue to rely on isolated workload metrics,
limiting their ecological validity and applicability in complex industrial
environments (Longo et al., 2022; Van Acker et al., 2018). This paper
addresses this gap by examining the triangulation of mental workload
using error rate, completion time, RSME, andHRV during an assembly
task. By evaluating these measures collectively, this study contributes to
the development of practical, multidimensional workload assessment
frameworks tailored for human-centered Industry 5.0 manufacturing
environments.

The study’s twofold objectives are: (i) to investigate the
correlation between different mental workload indicators from
multiple classes (physiological, performance-based, subjective),
and (ii) to explore how these indicators can inform ergonomic
interventions aimed at enhancing operator wellbeing and system
resilience. Through this, we respond to calls in recent literature
emphasizing the integration of cognitive ergonomics into Industry
5.0 strategies (Baldassarre et al., 2024; Longo et al., 2023).

2 Mental workload

Mental workload can be understood and interpreted from a
number of perspectives. This is primarily because the phenomenon

lacks a standardized definition (Arana-De las Casas et al., 2023;
Hertzum and Holmegaard, 2013; Miller, 2001). This paper views
mental workload as “the amount of cognitive resources spent on
tasks which essentially is determined by competence and demand”
(Fogelberg et al., 2025, p. 2). Thus, mental workload is not to be viewed
in binary terms; as a simple dichotomy of ‘on’ or ‘off’. Rather, it is more
accurately represented as a spectrum, where both excessive and
insufficient levels of mental workload negatively affect performance
(Rubio et al., 2004; Ryu and Myung, 2005; Young and Stanton, 2002).

Acute stress and mental workload cause activity in the same
networks of the brain (Hermans et al., 2014; Van Oort et al., 2017),
and the brain responds to stress by inhibiting cognitive functions such
as working memory, learning, and concentration (Schoofs et al., 2008);
all essential functions for performingmost work-related tasks. Although
the two are often used indistinctively, it is necessary to separate them
(Hidalgo-Muñoz et al., 2018) as acute stress and mental workload can
occur independently of one another. Meaning, high mental workload
does not automatically elicit acute stress and vice versa. Partially because
they are thought to be evoked from different mechanisms (emotion vs.
cognitive effort) (Parent et al., 2019).

Excessive levels of mental workload have been shown to alter
physiological processes, including hormonal regulation. Similar to
stress, high mental workload triggers elevated secretion of the
hormone cortisol (Nomura et al., 2009; Zeier et al., 1996). In
addition, Kusnanto et al. (2020) found that blood sugar increases
in correlation withmental workload. Other associated symptoms are
poorer body postures (Adams and Nino, 2024), fatigue, drowsiness,
(Borghini et al., 2014), and decreased HRV (Yannakakis et al., 2016).

2.1 Definition

Adding to the complexity of the phenomenon, a recent review by
Longo et al. (2022) identified 68 uniquemental workload definitions.
As a result, researchers typically focus on and prioritize different
aspects of the concept they deem most pivotal. Some underline the
importance of individual characteristics (Rasmussen, 1979) like
motivation (Fairclough et al., 2019) and competence (Teoh Yi
Zhe and Keikhosrokiani, 2021), while others focus on
neurological functions (Mandrick et al., 2016), cognitive costs
(Andre, 2001), and time (Cain, 2007; Longo et al., 2022).

The multidimensional nature of mental workload presumably
complicates the search for a single definition; as more than
two decades have passed without reaching a consensus (Jeffri and
Rambli, 2021). One of the earliest mental workload depictions is
thought to originate from Bornemann (1942) in which optimization
of human-machine systems first is introduced (Radüntz, 2017).Modern
perspectives phrase it as “. . . the relationship between demands placed
upon individuals and their capacity to cope with it” (Alsuraykh et al.,
2019, p. 372), or, “the total cognitive work needed to accomplish a
specific task in a finite time period” (Longo et al., 2022, p. 8). No matter
the viewpoint researchers adopt, it is crucial that they communicate
their interpretation of the phenomenon given the lack of a standardized
definition. Not only does this facilitate better comparison of findings but
promote clarity and understanding to scholars.

Another terminology that often is used interchangeably with
mental workload is cognitive load. Some researchers argue they are
essentially the same, albeit more prevalent and derived from
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different fields (Longo and Orrú, 2022). Cognitive load is
predominately featured in educational psychology (Sweller et al.,
1998) whereas mental workload has its roots in ergonomics, human
factors (MacDonald, 2003), psychology (Hancock et al., 2021), and
aviation (Hart, 2006).

2.2 Assessment

Mental workload assessments are typically divided into three
main classes, performance-based, physiological, and subjective
ratings of mental workload (Young et al., 2015). Performance-
based techniques quantify how successful subjects are when
performing tasks (Butmee et al., 2019). Physiological instruments
capture biomarkers of mental workload through nervous, auto, and
hormonal regulation (Lean and Shan, 2012). Lastly, self-reports aim
to collect subjects’ perceived level of mental workload. Most research
relies on a single mental workload instrument which ultimately fails
to cover the multidimensional nature of the phenomenon (Longo
et al., 2022; Tsang and Velazquez, 1996; Van Acker et al., 2018).
Over the last 30 years, it has been stressed that employment of all
mental workload classes simultaneously is essential (Di Stasi et al.,
2009) as instruments fail to register pointers of mental workload
beyond their reach (Cegarra and Chevalier, 2008). Assessment (from
different classes) should be viewed as complementary elements
(Jafari et al., 2020); allowing research to understand mental
workload from a greater cognitive context. A more integrated
approach, including assessment from all mental workload classes,
has been proposed to resolve these challenges (Fan et al., 2020;
Lagomarsino et al., 2022; Van Acker et al., 2021).

In combination with the absence of a standardized definition
(Kramer, 2020), the pool of methods used to assess mental workload
has increased. Not only makes this more difficult for studies to
replicate the results, but the findings are often non-uniform due to
methodological heterogeneity.

Multiple software and framework solutions have been developed to
assess mental workload in a multifaceted way. For example, the Tholos
created by Cegarra and Chevalier (2008), Cognitive Load Assessment in
Manufacturing (CLAM) (Thorvald et al., 2017; 2019), and the Improved
Performance Research Integration Tool (IMPRINT) (Rusnock and
Borghetti, 2018). There are nonetheless some challenges posed with
the already existing approaches, mainly in terms of intrusiveness, field of
work, and mental workload sensitivity. Some of the methods employed
in the suggested solutions are not appropriate in naturalistic settings (e.g.,
eye-tracking and the dual-task paradigm), causing difficulties with
applicability. In other cases, triangulation of mental workload metrics
has not been sufficiently reached as it does not include physiological
parameters. As a final point, some of the tools incorporated are highly
complex and are not suitable for the settings of an assembly industry and
those who will manage the intricate systems.

2.3 Basis for assessment

Method triangulation faces many difficulties. Above all, research
must identify an empirically valid triangulation. As there is a wide
array of mental workload assessments, research must discover which
instruments correlate and complement one another. Not only that,

but determine what instrument (from each of the three classes) best
represents and captures the physiological, subjective, and
performance-based mental workload signals; suited to the
targeted environment. Given the large pool of instruments, this is
no straightforward task.

After thoroughly scouring the field of mental workload
assessments, we identified four methods that were incorporated
into our study. These instruments were suitable to the targeted
environment, held empirical weight, and did not require overly
complicated technology and software.

2.3.1 Performance-based: Error rate and time
When researchers assess mental workload through

performance-based methods, two approaches are available:
primary and secondary tasks (Laviola et al., 2022). Measures of
primary tasks collect relevant information concerned with the
original task. Examples of some of the most common ways
recordings of subjects’ completion time, error rate, and response
time (DiDomenico and Nussbaum, 2011; Longo et al., 2022).
Research has shown that primary task measures are insensitive.
They can only detect mental workload effectively when it is
considerably high (Argyle et al., 2021; Bommer and Fendley,
2018). On the contrary, secondary task measures introduce a
complementary task (more known as the dual-task paradigm).
Researchers evaluate subjects’ ability to switch attention and
cognitive resources between different tasks. If subjects exhaust all
of their resources on one task, they tend to perform poorer on the
second task (Laviola et al., 2022). Although this method has
demonstrated high mental workload sensitivity (Lagomarsino
et al., 2022), it is hard enough to find secondary tasks that are
suitable to controlled experiments and not the least to real-
world settings.

2.3.2 Physiological instrument: HRV
Some of the most commonly reported physiological instruments

to assess mental workload are cardiovascular, EEG
(Electroencephalography), and eye movement (Tao et al., 2019).
Notably, some physiological methods are more complex to execute
due to their advanced technology, intricate analysis, and expensive
equipment. These are some of the key benefits of HRV which likely
is why so many implement it (Fista et al., 2019). The method allows
for collecting data in real time (Hoover et al., 2012) and can quite
effortlessly be applied in naturalistic settings (Rajcani et al., 2016).
The advancements of wearables have made it increasingly easy to
measure HRV inmany different environments (Ishaque et al., 2021).

There are a couple of different ways to measure HRV, for
example, electrocardiogram (ECG) and photoplethysmography
(PPG). PPG essentially works by detecting changes in blood
volume variation (Fortino and Giampà, 2010). In comparison to
HR which is determined by beats per minute (BPM), HRV “is the
temporal variation between sequences of consecutive heartbeats”
(Karim et al., 2011, p.71).

2.3.3 Subjective rating scale: RSME
Among the most frequently implemented mental workload

rating scales are the Cooper-Harper Rating Scale (Cooper and
Harper, 1969), the NASA-TLX (NASA Task Load Index) (Hart
and Staveland, 1988), and the Subjective Workload Assessment
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Technique (SWAT) (Reid and Nygren, 1988). All listed scales take
measurably more time to complete in comparison to the RSME. The
RSME (illustrated in Figure 1) developed by Zijlstra (1993) is
noticeably short which permits the questionnaire to interfere
with the task as little as possible. Although the NASA-TLX
likewise is relatively short, it has been shown to correlate with
the RSME on multiple occasions (Ghanbary Sartang et al., 2016;
Hoonakker et al., 2011; Rubio et al., 2004). It takes subjects around
1 minute to complete the RSME, whereas the NASA-TLX takes five
to 10 minutes. More so, the RSME has shown good mental workload
sensitivity (Herlambang et al., 2021; Longo and Orrú, 2022).

3 Methodology

As stated prior, the current study had two main purposes i) to
examine VR, video, and robot as instructional methods, and ii) to
correlate the different mental workload instruments HRV, time,
error, and RSME. Based on the ii) purpose, one main hypothesis has
been formulated and is tried accordingly.

Hypothesis 1: There is a significant correlation between the mental
workload measurements error rate, completion time, the RSME, and
HRV. As one measure changes, the others will reflect corresponding
changes, though not necessarily linear, whilst performing an
assembly task.

3.1 Procedure

After the subjects had agreed and filled out the informed ethical
consent, their baseline HRV levels were collected. Subjects were then
randomly assigned to either one of the instructional method
conditions (video, VR, and robot), creating a between-subject
design. To assess performance, the experiment was divided into
two central phases: learning and operational as can be observed
in Figure 2.

During the learning phase, participants were asked to assemble a
3D-printed model of a drone while the researchers concurrently
emphasized the importance of trying to remember the steps and the
placement of all parts, see Figure 3. While assembling, subjects wore
an ear clip sensor which collected their HRV. The subjects were
allowed to spend as much time as they wanted in the learning phase
and once the subjects stated they were finished, the RSME was filled
out. Subjects rate their perceived level of mental workload on a scale
from 0 to 150 (as can be seen in Figure 1). Immediately after, in the
operational phase, participants were again asked to build a 3D-
printed drone but without any instructions. Throughout the
assembly, subjects’ HRV was again recorded. Upon completion,
subjects instantly filled out the RSME while the researchers
composed the completion time and counted the number of errors.

3.2 Conditions

In the video condition, subjects looked at a looped video
throughout their drone assembly as shown in Figure 4. The video
was separated into smaller segments showing a few seconds for one
step in the assembly. Subjects had the ability to go back and forward
between video fragments if they wanted to look more carefully.

In the VR condition, the entire learning phase took place in a
virtual setup of the drone assembly, very similar to a real-world
environment. Subjects were guided through ‘ghost actions’ where
the VR instructed subjects how to assemble the drone by first
showing what part goes where and then inviting the subject to
follow. Subjects could not dissemble the drone once they were
finished. They could nonetheless lift the drone and look more
carefully at where all parts were located.

In the final condition, the conversational robot gave subjects
instructions through automated AI, as shown in Figure 4. All of the
drone parts that the conversational robot referred to, were listed and
labeled on a screen in front of the subjects. The subjects could ask the
conversational robot to specify and alter its instructions to a certain
degree if they did not understand what was expected of them.

FIGURE 1
The rating scale mental effort (RSME) by Zijlstra (1993).
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3.3 Equipment

The equipment used to collect subjects’ HRV featured a PPG
sensor clipped to their ears. The sensor was powered by an
‘Arduino 33 BLE’ microcontroller and connected to an external
battery source (e.g., a computer or power bank) as shown in
Figure 5. The Arduino transmits raw data in real-time to a
computer via Bluetooth, consisting of digitized heart beat
signals in time domain. This is used to calculate peak-to-peak
interval and HRV directly. While acknowledging ongoing debates
concerning its equivalence to ECG-derived HRV (Georgiou et al.,
2018; Ishaque et al., 2021), PPG was preferred for many reasons;
non-invasive design, subject comfort, portability, affordability, and
suitability for rapid data acquisition in operational phases under

3 minutes. Traditional ECG placement (electrodes attached
directly on the ribcage), was determined impractical considering
the study’s targeted population and settings. In real-world
industrial environments, it is essential that the HRV instrument
is easy to use, both for the operator and the researcher. More so,
that the hands are kept free from sensors during assembly since
this can disturb the HRV signal.

3.4 Signal acquisition and preprocessing

Following recommendations by Tarvainen et al. (2013), three
critical pre-processing steps were applied to ensure robust HRV
estimation.

FIGURE 2
Outline of the experiment procedure for the 4 × 3 factorial between-subject design.

FIGURE 3
The 3D-printed drone subjects assembled in the experiment. Here shown with the cover on, and the parts underneath the cover.
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i. Noise detection

Signal segments contaminated by motion artefacts (e.g.,
abrupt amplitude deviations >20%, sudden spikes, or signal
drops) were systematically flagged and excluded from analysis.
This step minimized the influence of physiologically
implausible data caused by sensor displacement or
participant movement.

ii. Detrending considerations

Detrending process to remove slow, non-physiological
variations in heart rate, was not applied in this study. Given to
the short recording windows (under 5 min), long-term trends in

heart rate were negligible, aligning with Tarvainen et al. (2013), who
suggest that detrending is less critical for ultra-short-term
HRV analysis.

iii. Threshold-based beat correction
• Local baseline: A median-filtered moving window (duration:
10 s) generated a local average of RR intervals.

• Outlier removal: Individual RR intervals deviating from this
baseline by > 400 m (predefined threshold) were classified as
outliers and excluded.

• Adaptive adjustment: The 400 m threshold was dynamically
refined for each subject based on their mean heart rate,
following best practices outlined in Kubios HRV’s pre-
processing guidelines (Kubios, 2024).

FIGURE 4
The three types of instructional methods used in the current experiment, VR, video, and robot.

FIGURE 5
HRV sensor employed in the experiment.
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3.5 HRV calculation

The pre-processed data was used to compute the root mean
square of successive differences (RMSSD), a time-domain metric
commonly employed for short-term PRV assessment (Bourdillon
et al., 2022). All data and plots were automatically saved in a
timestamped Python Jupyter notebook within a local “results”
folder to ensure reproducibility. The root mean square of
successive RR interval differences, or RMSSD, is given in Figure 6.

3.6 Participants

All participants were invited to take part in the experiment
either through course participation at Chalmers or by being
approached while on-site at campus on Chalmers Lindholmen
in Sweden.

Socioeconomic variables. The experiment included a total sample
size of N = 37 participants. Two of them were part of the pilot study
which resulted in minor changes, and therefore, they were not added
to the final sample. Additionally, we were unable to collect complete
and valid HRV recordings for five subjects. In the end, the
experiment consisted of N = 33 participants of which 11 were
female and 22 males. Subjects’ ages ranged from 18 to 42, with a
mean age of 26 years. Although most reported Swedish as their
native language (66.67%), others listed were Malayalam, Chinese,
Portuguese, Telugu, Sinhalese, German, Arabic, Tamil, and Urdu.
The majority of subjects stated high school as the highest level of
education (36.67%), followed by a master’s degree (33.33%),
bachelor’s (26.67%), and PhD (3.33%).

All subjects were required to read and fill out an informed
consent. The document contained information about the
experiment’s purpose and all the instructional methods that
subjects could be randomly assigned to. It further specified that
participation is entirely voluntary from start to finish. More so,
subjects are anonymous throughout, and all information is handled
to not be traceable. To ensure safety, three disclaimers are listed in
the consent: no severe visual or hearing impairments, no medical
conditions posing a health risk, and at least 18 years old. In the end,
we collected subjects’ socioeconomic information and their level of
experience with virtual reality (VR) and conversational robots.

4 Analysis

Although the instructional methods employed in the experiment
(video, conversational robot, and VR) will not be expressively

discussed and stressed in this analysis, separation of the
conditions in some analyses is still necessary to successfully
triangulate the different measurements of mental workload (error
rate, time, RSME, and HRV). The present paper’s analyses are only
interested in the operational phase since error rate, completion time,
and RSME were collected during this stage. HRV and RSME were
exclusively collected in both the learning and operational phases to
assess the instructional methods.

We performed both descriptive and inferential statistics to
summarize and examine the given data. Some of the subjects’
HRV data was not used in the analyses (n = 6) as it showed
obvious outliers due to the sensor not sitting properly, subjects
touching the sensor, etc. However, the same subjects were free from
interferences in the other mental workload assessments. Hence, the
sample size varies across different analyses in both descriptive and
inferential statistics.

4.1 Descriptive statistics

The illustrations in Figure 7 show how the VR condition (n = 11)
generated longer completion times (x�= 08:18 min) than both the
robot (n = 11, x�= 03:53 min) and the video condition (n = 11, x�= 03:
30 min). The same trend is observed in the number of errors made
when VR (x� = 6) is compared to the robot (x� = 1) and video
condition (x�= 0).

Figure 8 illustrates how the highest RSME ratings likewise came
from the VR condition (x�= 71), followed by the robot (x�= 46) and
video condition (x� = 25). Purely based on the initial descriptive
statistics it appears that performance-based and subjective measures
of mental workload align during the operational phase. This, as the
VR condition generated subjects the most mental workload in terms
of both completion time, error rate, and RSME, and the same order
is followed in the robot and video condition.

Lastly, a density plot of the subjects’ average HRV during the
operational phase suggests that the robot condition showed the
highest average HRV followed by the video and VR conditions. It is
important to note that a low HRV indicates a high mental workload.
Therefore, subjects in the VR condition again appeared to
experience the highest mental workload but the robot and video
group switched places in comparison to the previous measures as
shown in Figure 9.

4.2 Inferential statistics

Multiple Pearson correlation analyses were conducted to
examine the level of association between the different mental
workload metrics. To illustrate the results, a correlation matrix
was created containing all of the analyses made as can be
observed in Figure 10.

A Pearson correlation analysis between RSME ratings and
completion time during the operational phase (N = 33) showed a
strong positive correlation r (31) = 0.70, p < 0.001, 95% CI [0.47,
0.84]. Indicating that higher RSME scores are associated with longer
completion times. RSME and error rate also revealed a moderate
positive correlation r (31) = 0.51, p < 0.002, 95% CI [0.20, 0.72].
Higher RSME scores also appear to be associated with higher error

FIGURE 6
Equation of the root mean square of successive RR interval
differences (Malik et al., 1996).
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rates. An additional Pearson correlation between error rate and
completion time also demonstrated a moderate positive correlation r
(31) = 0.57, p < 0.001, 95% CI [0.28, 0.76]. This suggests that higher
error rates are associated with longer completion times. These
results align well with the illustrations presented in the
descriptive statistics.

Pearson correlation analyses with a smaller sample size (N = 27)
were conducted to assess the relationship between average HRV and
the other mental workload metrics. Between HRV and error rate, the
correlation coefficient was found to be (r = −0.2), indicating a weak
relationship. The same trend was found for HRV and time (r = 0.07),
and RSME (r = 0.012). Thus, demonstrating a very weak correlation

FIGURE 7
To the left: density plot of completion times separated by instructional method (N = 33). To the right: density plot of error rate separated by
instructional method (N = 33).

FIGURE 8
Density plot of RSME ratings (N = 33) separated by the instructional method.
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as illustrated in Figure 10. Based on the inferential statistics, a priori
power analysis was conducted which revealed a power of 0.283 and a
small effect size of d = 0.344. Normally, (1−β) of 0.80 statistical
power and α = 0.05, or greater, is generally the recommended power
level (Rawson et al., 2008).

5 Discussion

This study has examined four mental workload assessment
methods (HRV, error rate, completion time, and RSME) while

subjects assembled a 3D-printed drone with one out of the three
instructional methods (VR, video, or robot). Two main objectives
were explored, the first was to scrutinize the designated
instructional methods, with the findings disclosed and discussed
in the paper by Cao et al. (2024). The second, and principal focus of
this paper, is to investigate the level of correlation between
physiological (HRV), performance-based (error rate and
completion time), and subjective (RSME) instruments as mental
workload increases. We found evidence that some of the
measurements significantly correlate. More specifically,
completion time, error rate, and subjects’ RSME ratings. The

FIGURE 9
Density plot of average HRV (N = 27) separated by the instructional method.

FIGURE 10
A correlation matrix between mental workload assessment methods. The strength of the correlation coefficients is inspired and retrieved from
LaMorte (2021) on 5 December 2024.
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results indicate that these mental workload instruments can be
successfully employed simultaneously while picking up different
signals of elevated mental workload levels.

The results make evident that a high mental workload both led
to longer completion times and more errors made. This finding is
supported by prior research, suggesting that an elevated mental
workload causes subjects to perform poorer because their cognitive
abilities (such as focus) become more strained (Bläsing and
Bornewasser, 2020; DiDomenico and Nussbaum, 2011; Longo
et al., 2022). The correlation between error rate and completion
time (in many cases) seems to exhibit a speed-accuracy trade-off
(Standage et al., 2014) that could not be confirmed here. This trade-
off means that there is a conscious or unconscious compromise
between being fast or accurate. Shorter completion times usually
result in more errors made, while longer completion times are the
result of fewer errors.

In this study, elevated mental workload influenced both time
and accuracy negatively. A possible reason for the absence of a
speed-accuracy trade-off is that subjects were not deliberately
instructed to prioritize one metric over the other. Rather, they
were instructed from the beginning that subjects’ performance
would be based on time and accuracy. Nonetheless, the
correlation between time and accuracy was only found moderate.
This could be due to the great spread in both speed and accuracy
among subjects, as presented in Figure 7. Despite being moderate, it
indicates that the performance-based measures applied are sensitive
to mental workload changes to some extent, and can empirically be
used together.

The results further revealed that the subjective mental workload
measure (RSME) significantly correlated with both of the
performance-based instruments. As subjects reported higher
RSME scores, they also exhibited longer completion times and
made more errors. Stressing that high mental workload shows up
in both subjective and performance-based data collections. This is
also coherent with earlier research proposing that mental workload
is a multidimensional phenomenon triggering different types of
signals (Van Acker et al., 2018). This finding supports the concern
that solely relying on a single mental workload instrument may
provide the researcher with insufficient data on the phenomenon;
which earlier has been raised by, for example, Jafari et al. (2020) who
state that the complexity and multidimensionality of mental
workload necessitates multiple assessment methods from
different classes.

Interestingly, the only mental workload measure that showed no
correlation with the other variables in the study was HRV. Previous
studies have shown that HRV is sensitive to mental workload
changes (Grandi et al., 2022; Matthews et al., 2015). However,
the explicit correlation between HRV, completion time, error
rate, and RSME has not been extensively studied. There are
many potential explanations for this. Given that the sample size
was relatively small (N = 27), we performed a power analysis (0.283)
which revealed that there is a relatively low probability for the
current study to find a significant effect for HRV–if we assume a
power of (1−β) of 0.80 and α = 0.05 (Rawson et al., 2008). Meaning
that there is a noticeable risk for the study to conduct a Type II error.
More so, the lowest HRV average in the operational phase was 18.18
(indicating the most mental workload) whereas the highest HRV
average was documented to 258.54. The individual differences might

have been too large for the small sample, consequently diluting
group-level correlations.

In the second paper of the study (Cao et al., 2024), a significant
difference in HRV across instructional methods in the learning
phase was found. Although the learning phase has not been
deliberately discussed here, the findings could provide some
potential explanations to why HRV showed no correlation with
the other measures during the operational phase. As explained in the
procedure, HRV and RSME were the only mental workload
instruments that were collected during the learning phase.
Arguably, it could be that subjects had enough time to regulate
their physiological responses between phases which is why a more
leveled HRV is observed in the operational phase.

Another potential explanation is the drone task itself. It is
possible that the assembly task was too short, or not intensive
enough, to allow subjects’ bodies time to respond physiologically.
Almost 60% of the sample (N = 33) completed the task in under
4 minutes. Other research that has incorporated HRV as a mental
workload measure has had subjects perform the task for a minimum
of five to seven (Grandi et al., 2022), 20 (Alhaag et al., 2021), and
even 30 min (Ma et al., 2024).

Other physiological metrics have earlier been found to
statistically correlate with subjective and performance-based
mental workload assessments in research. Different forms of eye
tracking such as fixation duration (Bommer and Fendley, 2018) and
pupil diameter (Grandi et al., 2022). However, these are not suitable
to naturalistic settings, nor the assembly industry where light
sources often are insufficient in terms of intensity and quantity.
To record proper eye-tracking readings appropriate and controlled
lighting is required (Jongerius et al., 2021). It is crucial that the
mental workload instruments employed are suitable to the targeted
environment and population. In our focus group and environment,
instruments that are not feasible in real-world situations have not
been prioritized.

6 Conclusion

The objective to triangulate all of the mental workload classes
(physiological, subjective, performance-based) and thus, create a
multifaceted framework targeted toward the assembly industry,
takes one step forward by showing that as mental workload
increases, RSME, error rate, and completion time statistically
significantly correlate. Previous literature has stressed that a
multi-dimensional tool to detect multiple mental workload
signals is needed to cover the complexity of the phenomenon.
Findings from the current study are beneficial for future research
and implementation of different mental workload measures. The
key findings of the study are the following.

• Higher RSME ratings are significantly correlated with
increased error rates and longer completion times.

• Completion time and error rate demonstrate a moderate
correlation, proposing that heightened mental workload has
a negative impact on both speed and accuracy.

• While HRV has been demonstrated to be sensitive to mental
workload changes in previous research, it did not statistically
correlate with any of the other measures in the current study.
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With respect to the small power value (0.283) and effect size
(d = 0.344), it also appears pivotal to consider the task duration
when collecting physiological signals.

7 Limitations

The most evident limitation that this study holds is the relatively
small sample size. Naturally, with more participants, the potential to
find significant results increases as was depicted in the power analysis.
Provided with a larger sample, it is feasible that a correlation between
HRV and the other mental workload instruments could have been
established. Especially considering since metrics like HRV are prone
to exhibit substantial individual differences. Thus, the current study is
potentially subject to conducting a Type II error as a result of the
limited sample size. Another limitation pertaining to the HRV
measures is the short task duration. It is probable that the subjects
were too quick assembling the 3D drone, and hence, the task lacking
enough time to provoke any physiological changes. Consequently,
failing to triangulate HRV with any of the other mental workload
instruments. Future studies ought to take note of this and consider
extending the task. A further limitation is the general validity. Seeing
that mental workload is a subjective experience, all types of
physiological and performance-based measures introduce validity
concerns. This, as the phenomenon is not directly observable, nor
measurable for researchers. Lastly, some of the factors display
relatively high variation which raises some concern in regards to
the reliability of the instruments employed. This study opted for a
PPG senor owing to its non-intrusiveness and easy implementation to
real-world environments, however, it was not without fault as six
subjects’ HRV data were incomplete. The sensor is sensitive to
accidental contact, and although being instructed otherwise, some
of the subjects unintentionally touched it which led to disturbances
during the data collection. Future studies are recommended to
investigate if other reliable HRV instruments, like ECG, can be
successfully used on subjects without being intrusive
(i.e., electrodes placed on the chest area) or disturb the task
(i.e., electrodes placed fingers and hands).
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