
Multi-agent reinforcement
learning for flexible shop
scheduling problem: a survey

Weitao Xu1, Jinghan Gu1, Wenqiang Zhang2*, Mitsuo Gen3 and
Hayato Ohwada4

1College of Information Science and Engineering, Henan University of Technology, Zhengzhou, China,
2School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou, China,
3Research Institute for Science & Technology, Tokyo University of Science, Tokyo, Japan, 4Faculty of
Science & Techology, Tokyo University of Science, Tokyo, Japan

This paper presents a systematic and comprehensive review of multi-agent
reinforcement learning (MARL) methodologies and their applications in
addressing the flexible shop scheduling problem (FSSP), a fundamental yet
challenging optimization paradigm in contemporary manufacturing systems.
While conventional optimization approaches exhibit limitations in handling the
inherent multi-resource constraints, dynamics and stochastic characteristics of
real-world FSSP scenarios, MARL has emerged as a promising alternative
framework, particularly due to its capability to effectively manage complex,
decentralized decision-making processes in dynamic environments. Through
a rigorous analytical framework, this study synthesizes and evaluates the current
state-of-the-art MARL implementations in FSSP contexts, encompassing critical
aspects such as problem formulation paradigms, agent architectural designs,
learning algorithm frameworks, and inter-agent coordination mechanisms. We
conduct an in-depth examination of the fundamental challenges inherent in
MARL applications to FSSP, including the optimization of state-action space
representations, the design of effective reward mechanisms, and the
resolution of scalability constraints. Furthermore, this review provides a
comparative analysis of diverse MARL paradigms, including centralized training
with decentralized execution, fully decentralized approaches, and hierarchical
methodologies, critically evaluating their respective advantages and limitations
within the FSSP domain. The study culminates in the identification of significant
research gaps and promising future research directions, with particular emphasis
on theoretical foundations and practical implementations. This comprehensive
review serves as an authoritative reference for researchers and practitioners in the
field, providing a robust theoretical foundation and practical insights for
advancing the application of MARL in flexible shop scheduling and related
manufacturing optimization domains. The findings presented herein
contribute to the broader understanding of intelligent manufacturing systems
and computational optimization in Industry 4.0 contexts.

KEYWORDS

flexible shop scheduling problem, flexible job-shop scheduling problem, hybrid
flow-shop scheduling problem, multi-agent reinforcement learning,
reinforcement learning

OPEN ACCESS

EDITED BY

Dimitrios Bechtsis,
International Hellenic University, Greece

REVIEWED BY

Juan Carlos Seck Tuoh Mora,
Autonomous University of the State of Hidalgo,
Mexico
Lixiang Zhang,
Beijing Institute of Technology, China

*CORRESPONDENCE

Wenqiang Zhang,
zhangwq@haut.edu.cn

RECEIVED 14 April 2025
ACCEPTED 14 July 2025
PUBLISHED 31 July 2025

CITATION

Xu W, Gu J, Zhang W, Gen M and Ohwada H
(2025) Multi-agent reinforcement learning for
flexible shop scheduling problem: a survey.
Front. Ind. Eng. 3:1611512.
doi: 10.3389/fieng.2025.1611512

COPYRIGHT

© 2025 Xu, Gu, Zhang, Gen and Ohwada. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Industrial Engineering frontiersin.org01

TYPE Review
PUBLISHED 31 July 2025
DOI 10.3389/fieng.2025.1611512

https://www.frontiersin.org/articles/10.3389/fieng.2025.1611512/full
https://www.frontiersin.org/articles/10.3389/fieng.2025.1611512/full
https://www.frontiersin.org/articles/10.3389/fieng.2025.1611512/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fieng.2025.1611512&domain=pdf&date_stamp=2025-07-31
mailto:zhangwq@haut.edu.cn
mailto:zhangwq@haut.edu.cn
https://doi.org/10.3389/fieng.2025.1611512
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org/journals/industrial-engineering#editorial-board
https://www.frontiersin.org/journals/industrial-engineering#editorial-board
https://doi.org/10.3389/fieng.2025.1611512


1 Introduction

With the development of intelligent and digital technologies,
the production technology and capabilities of the manufacturing
industry have seen rapid improvements. However,
manufacturing enterprises face significant competitive
pressures in the market. When production capabilities and
scales are comparable, formulating scientific and rational
production plans and resource scheduling schemes has
become a critical approach and key technology for enterprises
to gain a competitive advantage. Shop scheduling involves not
only the upper level production planning, but also the operation
management within the shop floor. How to reasonably allocate
and efficiently coordinate production equipment and resources,
while integrating various production objectives and fully
considering various production resource constraints and
processing technology constraints, has become a major
challenge in enhancing the efficiency of manufacturing.

The flexible shop scheduling problem (FSSP) is a combination of
several classic shop scheduling problems, such as flow-shop
scheduling problem (FSP) and job-shop scheduling problem
(JSP). Hence, FSSP can be divided into two major types: flexible
job-shop scheduling problem (FJSP) and flexible flow shop
scheduling problem, which is commonly known as hybrid flow-
shop scheduling problem (HFSP) (Fan K. et al., 2018). FSSP is a class
of combinatorial optimization problems with NP-hard
characteristics, which has a wide range of applications in the
fields of chemical engineering, machinery, textile, metallurgy,
pharmaceuticals, logistics, etc., (Ruiz and Vázquez-Rodríguez,
2010). Therefore, the study of FSSP has important theoretical
significance and practical application value, especially in the
context of intelligent manufacturing, solving FSSP problems can
help enterprises achieve more efficient production management and
resource allocation.

With the continuous deepening of research, the simple FSSP can
no longer meet the requirements of modern production. FSSP is an
extremely complex problem in the manufacturing industry,
involving the arrangement of operations in multiple stages, and
each stage may include parallel machines. With the development of
Industry 4.0 and intelligent manufacturing, the traditional FSSP
model is no longer sufficient to cope with the increasing production
demands and technological progress. The complexity of actual
production processes and processing environments requires
scheduling algorithms to not only handle static, idealized
scenarios but also adapt to dynamically changing, uncertain
environments. Therefore, researchers have begun to focus on
extended FSSP problems, such as batch FSSP considering job
constraints, distributed FSSP considering factory constraints, and
dynamic FSSP considering production environment constraints.
With the increasing complexity of production processes and
processing environments, FSSP has expanded from simple
models to more complex forms to meet the needs of actual
production. The specific extended problems of FSSP will be
introduced in the second section of this paper. These extended
forms not only increase the complexity of the problem but also
increase the requirements for scheduling algorithms.

In recent years, reinforcement learning (RL) has made
remarkable progress in solving various sequential decision-

making problems in machine learning due to its strong
adaptability, flexibility, and generalization ability, and has become
the main research method in the field of multi-agent systems (MAS).
RL is widely used in fields such as robot control (Schwab et al., 2018),
autonomous driving (Natan and Miura, 2022), and traffic signal
control (Kodama et al., 2022). The combination of RL and
evolutionary algorithms applied to FSSP has been studied in
detail (Drugan, 2019). Cao et al. (2024) conducted various
numerical experiments. Compared with several classical
heuristics, the results show that the proposed method is superior
to other similar methods in finding high-quality solutions in a
reasonable time. With the advancement of deep learning
technology and computing power, multi-agent reinforcement
learning (MARL) has emerged. MARL has better performance in
dealing with high-dimensional state-action spaces and nonlinear
decision-making problems in complex environments than
traditional RL, overcoming some inherent drawbacks of
traditional RL algorithms, and endowing MAS with stronger
collaboration and adaptability, providing a powerful tool and
method for solving complex decision-making problems in
practical applications.

Although MARL has made significant progress in theory,
framework, and application, there is still a certain distance from
the large-scale application of higher intelligence in life and
production. At present, the field is still in the early stage of
research and still faces a series of challenges such as scalability
(Kim and Sung, 2023; Yang et al., 2022), sparse rewards (Fu et al.,
2022), partial observability (Xu et al., 2020; Ortiz et al., 2020), and
credit allocation (Seo et al., 2019).

In this survey, a comprehensive review and analysis was
conducted on the relevant papers that applied MARL to FSSP.
Primarily, Scopus and Web of Science (WOS) databases were
searched using the following keywords in the whole articles:

(“multi-agent reinforcement learning” OR “multi agent” OR
“distributed reinforcement learning” OR “multiagent
reinforcement learning” OR “cooperative
reinforcement learning”)

AND

(“hybrid flow shop” OR “flexible job shop” OR “flexible flow
shop” OR “flexible scheduling” OR “flexible process” OR
“manufacturing scheduling” OR “production scheduling” OR
“scheduling”)

The initial research involved a comprehensive literature search
to ensure that no papers in this field were overlooked. By scanning
all the search results by reading the abstracts of the papers, this was
achieved as the result of the comprehensive search. Firstly, these
papers were examined from the perspective of problem types, and
those involving network scheduling, routing scheduling, computing
resource scheduling, etc. were eliminated. Then, the solution
methods in the remaining papers were analyzed, and those
papers that only involved multi-agent systems but did not
include reinforcement learning methods were eliminated. After
these exclusions, 41 papers were found within the scope of
this study.

Frontiers in Industrial Engineering frontiersin.org02

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


Currently, experts and scholars have published review papers in
the field of MARL, but their perspectives differ from that of this
paper. For instance, Bahrpeyma and Reichelt (2022) have reviewed
the application of MARL in smart factories, providing a
comprehensive overview and future research directions for five
smart factory issues. Oroojlooy and Hajinezhad (2023) reviewed
cooperative MARL problems, introducing five common cooperative
reinforcement learning methods, discussing in detail their
principles, challenges, and countermeasures, and looking forward
to emerging research areas and potential future research directions.
However, no scholars have directly reviewed the application of
MARL in FSSP. From the above discussion, it is evident that as
research deepens, the complexity of HFSP continues to increase, and
MARL, with its unique advantages, has become an effective tool for
handling such complex scheduling problems. Therefore, the
motivation for this paper stems from the need to summarize and
analyze existing research. Future research should further explore
how to better utilize MARL to solve extended problems in HFSP and
successfully apply it to actual production environments. This paper
provides a comprehensive and up-to-date review of MARL for FSSP.
In terms of methodology, we have conducted a more thorough study
from the perspectives of multi-agent training paradigms and multi-
agent collaboration methods. From the perspective of problem
research, we analyze the scalability issues of FSSP and future
research trends, and propose research recommendations. Thus,
this paper can assist managers and practitioners in making
practical and targeted decisions. Compared to previous work, we
have made the following contributions:

(1) This paper analyzes recently published literature on MARL
for shop scheduling problems; We have conducted a
dedicated analysis of MARL for solving FSSP and
summarized the key challenges of existing FSSP
solution methods;

(2) This paper has reviewed the current state of MARL methods
in handling FSSP from aspects such as multi-agent training
paradigms, multi-agent collaboration methods, problem
complexity, and optimization objectives;

(3) This paper has discussed the key challenges of MARL in terms
of dimensional issues in large-scale scenarios and Scenario
scalability;

(4) By analyzing the limitations and challenges of MARL, we
propose future research directions.

The organization of this paper is as follows: Section 1
introduces the method of this study. Section 2 introduces the
flexible shop scheduling, including its classification, extended
types, and optimization objectives, and also introduces the
reinforcement learning method, as well as the MARL method.
Section 3 introduces the application of MARL in the shop
scheduling field, especially focusing on FSSP. Section 4
elaborates on a specific application case of MARL in the FSSP.
The two cases help to gain a deeper understanding of the core
roles and advantages of MARL in solving the FSSP. Section 5
identifies the key challenges of MARL in the application of FSSP
and analyzes the number of publications from multiple
perspectives to derive future research directions. Section 6
summarizes this paper.

2 Fundamentals and concepts

2.1 Flexible shop scheduling problem

According to the constraints of the scheduling problem, FSSP
can be divided into HFSP, FJSP and flexible open-shop scheduling
problem (FOSP) (Fan K. et al., 2018). Both HFSP and FJSP are
complex production scheduling problems, but they have significant
differences in machine configuration, process paths, and scheduling
complexity. HFSP focuses more on assigning operations to multiple
parallel machines within each stage, while FJSP needs to determine
the specific machine selection for each process, and the path is more
flexible. Nevertheless, both have a lot in common in terms of
optimization objectives, dynamics, and uncertainty, all aiming to
improve production efficiency and resource utilization. FOSP is also
theoretically a subset of FSSP. However, due to its inherent openness
and complexity, characterized by unstructured job processing routes
and minimal constraints, FOSP has received significantly less
attention in existing research (Fan K. et al., 2018). Notably, FJSP
and HFSP are currently the most studied and representative
branches of FSSP within the MARL domain. In contrast, FOSP
and other shop types entail greater complexity, including
unstructured routing and expanded state-action spaces. This
introduces distinct challenges, leaving their exploration within
MARL research in a relatively nascent stage. Therefore, this
paper mainly focuses on the related content of HFSP and FJSP.

2.1.1 Hybrid flow-shop scheduling problem
The hybrid flow-shop scheduling problem is a complex

production scheduling problem that involves multiple stages of
processing. Each job must go through a series of processing steps
in a specific order. The basic components of HFSP include jobs,
machines, stages, and operations. Formally, HFSP can be defined as
a quadruple 〈J,M,O,P〉 as shown in Table 1:

As shown in Figure 1, the HFSP problem includes a set of n jobs
that need to be processed in a hybrid flow shop. The job shop
includes c production stages, each of which contains a certain
number of parallel machines. In this production system, each job
can only be processed on one machine at a time, and a machine can
only process one task at any given moment. Only after the current
process is completed can the next process for a specific job begin.

The main objective of this problem, based on the processing
times of all jobs provided, is to determine the sequence of n jobs
before and after each processing stage. The basic assumptions of the
problem are as follows:

• Each job can only be processed on one machine at the
same time;

• The same machine can only process one job at a time;
• The processing duration for each job on a specific equipment
is predetermined;

• Once started, the processing will remain uninterrupted;
• Sequence dependency only exists within the operations of a
given job, with no mutual constraints across different jobs.
Unexpected factors such as machine breakdowns are not
considered;

• No additional time is considered for job transitions between
the same machine.

Frontiers in Industrial Engineering frontiersin.org03

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


With the increasing complexity of the production environment
and demands, HFSP has also expanded into more problems to adapt
to different actual situations, and the summarized results are shown
in Table 2.

2.1.2 Flexible job-shop scheduling problem
The flexible job-shop scheduling problem is an important and

complex problem in the field of shop scheduling. Different from

HFSP, each job in FJSP can have multiple process paths, and each
path corresponds to a different sequence of machines, which
provides greater flexibility for scheduling. The goal of FJSP is to
find the best job scheduling plan under a series of constraints to
optimize production efficiency and resource utilization. The basic
components of FJSP include: jobs, machines, operations, and
process routes. Formally, FJSP can be defined as a quintuple
〈J,M,O,P,R〉, as shown in Table 3.

The FJSP problem can be stated as follows: In a job shop, n jobs
need to be processed. Each job consists of a set of operations, as
shown in Figure 2.

These operations follow specific sequence constraints, i.e., the
second operation cannot start until the first operation is
completed. At the same time, each operation corresponds to a
set of machines with processing capabilities. These machines
have the characteristics of non-preemptive and non-interruptive,
i.e., once a machine starts processing a job, it cannot be
preempted by other jobs, and the processing cannot be
interrupted until the current job is processed. The basic
assumptions of FJSP usually include:

TABLE 1 Quadruple representation of HFSP.

Symbol Definition

J � {J1 , J2 , . . . , Jn} Represents a set of jobs to be processed

M � {M1 ,M2 , . . . ,Mm} Represents a set of available machine tools

O � {Oij | i ∈ J, j ∈ M} Represents the operation set of all jobs on various
machines

P � {pij | pij > 0, i ∈ J, j ∈ M} Represents the processing time matrix for each
operation

FIGURE 1
HFSP description.

TABLE 2 Extended problems of HFSP.

Problem category Definition Ref

Reentrant HFSP Jobs may need to return to a previous stage for processing multiple times Lin et al. (2024)

No-Wait HFSP To reduce job-in-progress inventory and shorten production cycle time, some systems require jobs to immediately enter
the next stage after completing a stage, without any waiting time

Lin et al. (2024)

Blocking HFSP If the machines of the next stage are busy processing other jobs, the jobs of the current stage cannot move to the next
stage, causing blocking

Guirchoun et al. (2005)

Batch Processing HFSP Some machines can only process a certain number of jobs as a batch at one time. The scheduling algorithm must not
only consider the scheduling of individual jobs but also decide how to group them into batches and when to process

these batches

Gholami and Sun
(2023)

Fuzzy HFSP In actual production environments, processing times and delivery dates often exist uncertainties. Fuzzy HFSP deals with
this uncertainty by introducing fuzzy logic

Deng et al. (2023)

Dynamic HFSP After real-time conditions are disturbed, dynamic adjustments are made to the original schedule Liu et al. (2023b)

Frontiers in Industrial Engineering frontiersin.org04

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


• Each job consists of a series of operations, and each operation
needs to be processed on specific machines;

• Each operation can only start after the previous operation
is completed;

• The processing order of each operation within a job is
fixed, but different jobs can be processed on
different machines;

• The processing path for each job is flexible, i.e., the same
operation can be processed on multiple machines with the
same function;

• The same machine can only process one operation at any time,
and an operation can only be processed on one machine at the
same time;

• The processing capacity of the machine is limited and
fixed, and it cannot process multiple operations at the
same time;

• The impact of machine failure or other unexpected factors on
scheduling is not considered.

With the increasing complexity of the production environment
and demands, FJSP has also expanded into more variants to adapt to
different actual situations. The following are some common
extended problems of FJSP as shown in Table 4.

2.2 Single-agent RL

RL is a subfield of machine learning (ML). The main purpose of
reinforcement learning is to maximize the rewards obtained by an
agent in actions about environmental states. Unlike other machine
learning algorithms, it does not directly tell the agent which action to
choose, but allows the agent to learn which action has the greatest
reward through trial and error (Liu and Wang, 2009). In the
standard RL model, an agent is a decision-making unit that
observes the environment and takes actions. Each action will
produce a result, and according to the state of the environment,
this result can be a reward or a punishment. The rewards or
punishments obtained from the environment are used to evaluate
the behavior. The agent decides which actions it will take,
considering which action will produce the greatest reward. The
result of taking actions is evaluated by a reward function about the
current state and the current action. The algorithm retains the value
of actions and the current state of the environment at each decision
step and uses this information to evaluate the next time step
(Kaelbling et al., 1996). The framework of reinforcement learning
is shown in Figure 3.

At each decision step t, the agent observes the state st, performs
an action at, and receives a reward rt. Following the execution of an
action in the current state of a changing environment, the agent
observes the next state st+1 and executes the next action at+1. The
algorithm retains the values of the actions taken and the current
states of the environment at each decision step, using this
information to evaluate the next time step. After several
iterations, the agent acts to optimize the total long-term reward.
The primary goal of the agent is to discover a strategy that
maximizes the long-term objective, which is defined by the value
function. The value function evaluates the worth of a state based on
the total amount of reward acquired by the agent.

2.2.1 Markov decision process
RL mainly solves a Markov decision process (MDP) consisting

of a quintuple 〈S, A, P, R, γ〉, where S is the set of states, A is the set
of actions, P represents the transition probability function, R

TABLE 3 Quintuple representation of FJSP.

Symbol Definition

J � {J1 , J2 , . . . , Jn} Represents a set of jobs to be processed

M � {M1 ,M2 , . . . ,Mm} Represents a set of available machine tools

O � {Oij | i ∈ J, j ∈ M} Represents the operation set of all jobs on various
machines

P � {pij | pij > 0, i ∈ J, j ∈ M} Represents the processing time matrix for each
operation

R � {rij | rij ⊆ M, i ∈ J, j ∈ O} Represents the set of optional machines for each
operation

FIGURE 2
FJSP description.

Frontiers in Industrial Engineering frontiersin.org05

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


represents the reward function, and γ ∈ [0, 1] is a discount factor for
future rewards. The agent interacts with the environment in discrete
time steps. At each time step t, the agent observes state st ∈ S and
selects an action at ∈ A. As a result, the environment transitions to a
new state st+1 ∈ S according to a transition probability distribution
Pr(st+1 | st, at), and the agent receives a scalar reward rt+1 ∈ R.

In an environment where the agent has full observability of the state
and the environment is stationary, meaning that the transition
probability function and rewards remain constant over time, this
setting is referred to as a MDP with fully observable states. The case
where the agent does not have a fully observable state is called partially
observableMarkov decision process (POMDP). A policyπ is amapping
from environmental states to the probability of selecting each action. It
can be deterministic, where each state maps to a specific action, or
stochastic, where each state maps to a probability distribution over
possible actions. The agent’s goal is to learn a policy that maximizes its
performance, usually defined as expectation, computed as the
discounted sum of τ � (s0, a0, s1, ai, . . .) expected rewards within
the trajectory as shown in Equation 1.

Eτ ∑T
t�0

γtRt
⎡⎣ ⎤⎦ (1)

The discount factor γ ∈ [0, 1] describes how the reward is
assigned. A γ close to 0 indicates that the agent is more focused

on the immediate reward, while a γ close to 1 indicates that the agent
is more focused on the future reward. The policy that maximizes the
above function is called the optimal policy, denoted as π*. The
decision-maker chooses the corresponding value function based on
the type of problem (Sutton and Barto, 1999).

When dealing with MDP, reinforcement learning methods can
be divided into two major categories based on whether the
interactive environment is known: model based and model free.
Model based methods are mainly dynamic programming (DP),
while model free methods are mainly represented by monte carlo
(MC), temporal difference (TD) and policy gradient (PG) methods.
These four categories form the core of reinforcement learning and
are the foundation for the subsequent development of deep
reinforcement learning (DRL) and MARL algorithms.
Mainstream reinforcement learning algorithms include
Q-learning (QL) algorithm, state-action-reward-state-action
(SARSA) algorithm, actor–critic (A2C) algorithm, and proximal
policy optimization (PPO) algorithm.

Most MDP solving methods can be divided into three categories:
value function based, policy based and model based methods. Two
model free methods are introduced in the following section.

2.2.2 Value function based methods
Value function based methods learn the value function and

derive the optimal policy from the optimal value function. There are
two kinds of value functions, the state-value function and the action-
value function. With the optimal state-value function and the
optimal action-value function, we can obtain the optimal policy π* �
argmaxπVπ(s) � argmaxπQπ(s, a).

The state-value function and the action-value function are given
in Equations 2, 3.

Vπ s( ) � Es0�s,τ~π ∑T
t�0

γtrt⎡⎣ ⎤⎦ (2)

Qπ s, a( ) � Es0�s,a0�a,τ~π ∑T
t�0

γtrt⎡⎣ ⎤⎦ (3)

The QL algorithm maps from states to the probabilities of each
possible action in the Q-table, aiming to maximize future rewards. It

TABLE 4 Extended problems of FJSP.

Problem category Definition Ref

FJSP with Mode Selection Each operation can be processed under different modes, each mode may have different processing times and
resource requirements

Gao et al. (2008)

FJSP with Setup Times Considers the setup times when jobs are processed on different machines, which affects the overall scheduling
plan

Rossi and Dini (2007)

FJSP with Transportation
Times

Considers the transportation times between different machines, which affects the overall scheduling plan Shen et al. (2018)

FJSP with Maintenance Times Considers the regular maintenance times of machines, which affects the availability of machines Du et al. (2022)

Interruptible FJSP Jobs may be interrupted during processing and need to be rescheduled Luo (2020)

Fuzzy FJSP In actual production environments, processing times and delivery dates often exist uncertainties. Fuzzy FJSP
deals with this uncertainty by introducing fuzzy logic

Liu et al. (2022)

Dynamic FJSP After real-time conditions are disturbed, dynamic adjustments are made to the original schedule Lin et al. (2024), Liu et al.
(2023b)

FIGURE 3
RL framework.

Frontiers in Industrial Engineering frontiersin.org06

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


is worth noting that it does not require prior knowledge of the
environment’s dynamics. QL is a non-policy learning algorithm that
allows learning from experience, even if the current policy is
suboptimal (Mnih et al., 2015). Its goal is to iteratively improve
the Q-values that change over time through experience and learning
from the consequences of different actions in different states. This
process helps the agent learn a strategy that maximizes the
cumulative reward over time.

In QL, the Q-function yields the discounted cumulative reward
with the discount factor γ as shown in Equation 4.

Q s, a( ) � r + γmax
a′

Q s′, a′( ) (4)

The optimal action-value is obtained according to the action-
value function as shown in Equation 5.

Q* s, a( ) � max
π

E ∑
t

rtγ
t|st � s, at � a, π⎡⎣ ⎤⎦ (5)

The Q-value is updated each time an action is taken. Equation 6
proposed by Tacken (2021) essentially updates the Q-value of the
current state-action pair based on immediate rewards and estimated
future cumulative rewards.

Qt+1 s, a( ) � Qt st, at( ) + α rt+1 + γmax
a

Qt st+1, a( ) − Qt st, at( )( )
(6)

Other reinforcement learning algorithms can refer to the
literature review by Kayhan and Yildiz (2023), and due to limited
space, they will not be detailed here.

The emergence of deep neural networks (DNN) has greatly
expanded the application range of RL. Compared with traditional
table based RL methods, DNN can handle more complex tasks
because they can generalize past experiences rather than just relying
on stored values. This generalization ability allows DNN to handle
problems with such large state spaces that they cannot be represented in
tabular form. In RL, DNN can store and approximate value functions
that predict the expected rewards for taking specific actions in given
states. This approach is particularly suitable for “unseen” situations,
i.e., new states that have not been encountered during training. Deep
Q-network (DQN) is a typical example that uses DNN to approximate
the Q-function, enabling effective decision-making in complex tasks.

2.2.3 Policy based methods
Policy based methods in RL directly search for the optimal

policy by optimizing the parameters of a policy function that outputs
the probability distribution over actions. The optimal policy is
typically obtained through gradient ascent on the expected return
with respect to the policy parameters. Specifically, the policy
network’s weights are iteratively updated to favor state-action
pairs that yield higher rewards.

The update rule for the policy parameters is shown in
Equation 7.

∇θJ πθ( ) � Eτ~πθ ∑T
t�0

γtrt⎡⎣ ⎤⎦ (7)

Policy based methods are particularly effective in continuous
and stochastic environments where they can learn specific

probabilities for each action and appropriate levels of
exploration. However, these methods often suffer from low
sample efficiency because new gradient estimates are independent
of past estimates, leading to high variance in the gradient estimates
due to sparse rewards and limited state-action space exploration.

In summary, policy based methods directly optimize the policy
parameters to maximize the expected return, making them suitable
for complex environments but challenging in terms of sample
efficiency and variance control.

2.3 Multi-agent RL

2.3.1 Multi-agent RL problem representation
MARL is a technology where multiple agents interact and

learn optimal strategies in a shared environment. In MARL, the
actions of each agent not only affect themselves but also
indirectly affect the states and rewards of other agents, leading
to the non-stationarity of the environment. Non-stationarity
means that the environment is dynamically changing for each
agent because the actions of other agents change the state of the
environment, making previous experiences and strategies
invalid. Interactions between agents can be cooperative,
competitive, or mixed. The framework of reinforcement
learning is shown in Figure 4.

In the context of MAS, particularly in centralized training and
decentralized execution (CTDE), decentralized partially observable
Markov decision process (Dec-POMDP) offer a robust modeling
framework (Zhang et al., 2021). Widely employed in MARL, Dec-
POMDPs are formally defined by the tuple 〈I, S, A, P, R, O〉. Here, I
denotes a finite set of agents indexed from 1 to n. S represents the
finite set of environmental states. O is the joint set of local
observations where oi ∈ O corresponds to the observation of
agent i. A signifies the joint action space, with a �
(a1, a2, . . . , an) representing the collective actions taken by all
agents. The state transition function P specifies how the
environment’s state evolves based on the actions performed,
while the reward function R assigns a numerical reward for each
state-action pair.

At each time step, each agent i selects an action ai based on its
local observation oi. Given the partial observability of the global
state, agents must coordinate their actions to achieve a common
objective while maximizing their cumulative discounted rewards.
The goal of the cooperative agents is to learn an optimal policy π*
that maximizes the global value function Qtotal(s, a) as shown in
Equation 8:

Qtotal s, a( ) � Eτ~π* ∑T
t�0

γtR st, at( )⎡⎣ ⎤⎦ (8)

where τ represents the trajectory of the system, and π* is the optimal
policy that maximizes the expected cumulative reward over the
trajectory.

Dec-POMDP provide a formal framework for modeling MAS
characterized by limited and local observations. In such settings,
agents must operate independently based on their partial
information while coordinating their actions to achieve a shared
goal and maximize collective rewards. This framework is

Frontiers in Industrial Engineering frontiersin.org07

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


particularly valuable in applications requiring high levels of
cooperation and coordination among multiple autonomous
entities, such as robotics, network management, and resource
allocation. By addressing the challenges posed by partial
observability and decentralized decision-making, Dec-POMDP
offer effective solutions for complex multi-agent environments,
ensuring that agents can efficiently achieve their objectives
despite the inherent limitations of their observations and the
need for decentralized operation.

Thus, Dec-POMDPs not only facilitate the design of
sophisticated MAS but also enhance our ability to manage and
optimize these systems in real-world applications where centralized
control is impractical or impossible.

2.3.2 Multi-agent RL methods
There are three main learning paradigms in MARL shown

in Figure 5:
Independent learning (IL) paradigm, where each agent

independently optimizes its behavior strategy, treating other
agents as part of the environment. Independent learning allows
agents to learn without collaboration or information sharing,
suitable for discrete state-action spaces and small-scale multi-
agent tasks, with good scalability. However, due to the
independence of each agent, this approach is prone to
environmental non-stationarity issues, such as independent
Q-learning (IQL).

Centralized learning (CL) paradigm involves centralizing the
decision-making process of all agents into a single learning
algorithm. In this mode, a central controller or algorithm has
access to information from all agents, including the state, actions,
and rewards of each agent, as well as the global state of the entire
environment. Centralized learning is particularly suitable for
tasks that require precise coordination and cooperation, but
due to the exponential growth of the state space with the
increase in the number of agents, this method may encounter
dimensional disaster, making it difficult for the algorithm to
converge to the optimal strategy, and poor scalability (Nowé
et al., 2012).

CTDE combines the advantages of independent learning
and centralized learning. During the training phase, all agents
share information and guide the learning process of the agents
through centralized training to maximize global performance;
during the execution phase, agents make decisions
independently based on their own perceptions and historical
experiences. This approach overcomes the convergence and
cooperation issues of centralized learning while retaining the
flexibility and efficiency of distributed decision-making, making
it an important direction for MARL research and practice in
recent years.

According to the different ways of handling value functions, the
CTDE paradigm can be divided into two major categories: value
function decomposition methods and centralized value function
methods. The former decomposes the global value function into
local value functions for each agent, meaning that each agent only
needs to focus on its own local value function without needing to
know all the information about other agents, thereby simplifying the
learning process. This approach not only alleviates the
environmental non-stationarity issues faced by independent
learning algorithms but also solves the contribution allocation
problem in the CTDE paradigm.

Value decomposition network (VDN) (Sunehag et al., 2017)
is a cooperative multi-agent learning method based on team
rewards, which decomposes the global value to each agent and
calculates the contribution of each agent to the team’s total
reward through gradient backpropagation. VDN well solves
the credit allocation problem, but due to its linear
decomposition characteristics, the scope of application is
limited. Similar to this, QMIX algorithm (Chen, 2021)
combines the local value functions of each agent in a
nonlinear manner through a mixing network and maintains
the monotonicity constraint between the global value function
and the local value functions, enhancing the algorithm’s
approximation ability for different decomposition tasks.
However, the “monotonicity” constraint still limits the
decomposition form and performs poorly in handling non-
monotonic tasks.

FIGURE 4
MARL framework.

Frontiers in Industrial Engineering frontiersin.org08

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


QTRAN algorithm overcomes the monotonicity constraints of
QMIX and VDN, allowing more flexible value function
decomposition, making it suitable for a wider range of
cooperative multi-agent tasks, especially those involving non-
monotonicity complex tasks (Son et al., 2019). However, the
QTRAN algorithm has high computational complexity and is
often accompanied by large computational overhead and slow
convergence speed. WQMIX algorithm points out the
shortcomings in the design of QMIX, introduces a weighted
mixing network, allowing the algorithm to dynamically adjust the
weights of local value functions according to different states,
enhancing the adaptability to complex tasks (Rashid et al., 2020).
However, the design of WQMIX is relatively complex, and
additional hyperparameters need to be adjusted during the
training process, increasing the difficulty of model optimization.

To solve the limitations of QMIX in handling non-monotonic
tasks, QPLEX algorithm (Wang et al., 2020) designed a dual-track
adversarial structure value function decomposition method, making
the algorithm more effective in dealing with non-monotonic tasks.
Qatten algorithm (Yang et al., 2020) used a multi-head attention
mechanism to approximate and decompose the joint Q-function,
providing a solid theoretical basis for value decomposition methods
through detailed theoretical derivation.

MARL algorithms based on value function decomposition have
the advantages of independent learning, distributed computing, and
local information. Due to the characteristics of value function
decomposition and locality, these algorithms are more scalable
and manageable when dealing with complex multi-agent
environments, but there are still limitations when dealing with
distributed control problems in continuous action spaces.

In contrast, centralized value function methods use global
information to train the value network and guide each agent’s
policy network to learn independently through the value
network. Most of these methods use the actor-critic architecture,
separating policy learning and value learning, thus showing obvious
advantages in flexibility and stability.

3 MARL for FSSP

This section provides a review of common scheduling problems
according to the types of MARLmethods, the complexity of research
issues, and the number of optimization objectives, with a particular
focus on FSSP.

Before surveying the applications of MARL in FSSP, it is
essential to revisit the fundamental backgrounds of single-agent
and MAS (Busoniu et al., 2008). In the context of single-agent RL,
the environment is modeled as a MDP. Within this framework, the
agent’s objective is to select a sequence of actions that maximizes
cumulative rewards over time. To achieve this goal, the single-agent
must learn a value function that guides its decision-making process
toward optimal outcomes.

The environment becomes more complex in MAS, where
multiple agents share the same environment and their behaviors
influence each other. Each agent has its own set of states, actions,
and potentially its own value function. Multi-agent tasks can be
categorized based on the nature of interactions between agents into
fully cooperative, fully competitive, or mixed-type tasks.
Furthermore, static tasks versus dynamic tasks pose different
requirements for defining MAS. In static tasks, agents’ strategies
can converge to a fixed point, whereas in dynamic environments,
agents must continuously adapt to changes in other
agents’ behaviors.

MARL aims to address the complexities introduced by MAS,
enabling agents to discover solutions dynamically rather than
relying on pre-programmed behaviors (Baer et al., 2019). MARL
algorithms typically focus on two key objectives: ensuring stability
during the learning process and adapting to changes in other agents’
behaviors. MARL offers a novel and effective approach to solving
FSSP by leveraging the collaborative characteristics among agents,
overcoming challenges posed by high complexity and dynamic
changes that traditional methods struggle with.

As research deepens and technology advances, MARL is
expected to play an increasingly important role in future

FIGURE 5
Three learning paradigms in MARL.

Frontiers in Industrial Engineering frontiersin.org09

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


intelligent manufacturing systems. Through systematic analysis of
relevant literature, we have found that MARL has significant
advantages in solving FSSP, especially in dealing with dynamic
and uncertain environments. Existing studies have shown that
MARL can find better scheduling solutions through the
collaboration of multiple agents and has demonstrated good
performance in a variety of application scenarios. However, there
are also some challenges, such as high training complexity and
coordination difficulties. In addition, the literature has proposed
various improvement methods, such as VDN, QMIX, IQL, and
CTDE, which play an important role in enhancing the performance
and scalability of MARL algorithms.

3.1 MARL for HFSP

MARL has shown significant potential in addressing scheduling
issues in HFSP. Gerpott et al. (2022) proposed a distributed
advantage A2C method for production scheduling in a two-stage
HFSPmanufacturing system, aiming to minimize total tardiness and
maximum completion time. This work uses identical scheduling
agents that explore different parts of the problem space and share
their gradients with the critic. The study utilizes a global parameter
shared by several agents exploring the environment simultaneously.
As a synchronous and deterministic method, A2C waits for each
agent to complete the corresponding part of the experiment before
executing a global update by taking the average of all gradients
received from the participants. A coordinator manages the collection
of local gradients and passes them to the global network.

Zhang N. et al. (2023) proposed a counterfactual attention-based
multi-agent reinforcement learning (CAMARL) framework to
address the joint condition-based maintenance and production
scheduling problems in multi-stage hybrid flow-shops. The study
models production scheduling and equipment maintenance as
interacting activities and establishes a model through a Dec-
POMDP considering the machine wear process. The framework
consists of three main modules: an attention mechanism module, an
action abstraction representation module, and a coordination
control unit, aiming to reduce the dimensionality of the state
space, handle high-dimensional action spaces, and accelerate the
search for optimal production strategies. To validate the
effectiveness of the proposed CAMARL method in a two-level
HFSP with five independent machines, numerical experiments
were conducted. By comparing with seven benchmark methods
under different production scenarios, the effectiveness of the
CAMARL method was demonstrated. This study not only
promotes the application of MARL in complex manufacturing
systems theoretically but also shows its effectiveness and
superiority under various manufacturing environment conditions
experimentally. In Section 4.1, a detailed introduction to this case
is provided.

Berto et al. (2024) proposed a new method called parallel auto
regressive combinatorial optimization (PARCO), which addresses
multi-agent combinatorial optimization problems such as path
planning and scheduling through parallel autoregressive
decoding. The core of PARCO lies in its innovative model
architecture, which includes multiple pointer mechanisms and
priority based conflict handling schemes, as well as

communication layers specifically designed to facilitate effective
collaboration between agents. These designs enable PARCO to
construct solutions among different agents simultaneously and
efficiently, significantly improving the construction efficiency and
quality of solutions. Through extensive experiments on
representative multi-agent combinatorial problems in routing and
scheduling domains, PARCO demonstrated its competitive
performance in solution quality and computational efficiency
compared to classic heuristic methods and neural baseline
methods. Especially in the flexible flow-shop problem, PARCO
not only improved solution quality but also significantly
accelerated decoding speed and reduced the number of required
decoding steps. In addition, PARCO showed good generalization
ability when dealing with unseen scales and numbers of agents,
indicating its potential and flexibility in practical applications.

Tacken (2021) discussed a MARL method for solving HFSP in
hospitals. The core of the study is to construct an MARL framework,
and the case study demonstrates the effectiveness of the framework
in solving general HFSP problems. The framework not only achieves
solutions comparable to benchmark solutions but also can generate
reasonable solutions in real-time for new, unseen problem instances
during training. This feature is very promising when quick
scheduling solutions for new scenarios are needed. The thesis
first reviews hospital scheduling problems and the application of
reinforcement learning methods in solving scheduling problems.
The authors point out that there is a lack of literature on applying
MARL to HFSP, especially in the context of hospital scheduling.
Wang M. et al. (2022) proposed an independent double deep
Q-network multi-agent reinforcement learning method (MA-
IDDQN) for solving online two-stage hybrid flow-shop
scheduling problems, especially in batch machine environments.
This problem is complex and challenging because it needs to
consider job arriving over time. The researchers transformed the
online scheduling problem into a cooperative MDP and constructed
the model by defining the state space, action space, and reward
function for different agents. They designed two agents, which are
trained through double DQN to handle batch formation tasks and
scheduling tasks, and achieved multi-agent cooperation through
inter-agent behavioral analysis mechanisms. In addition, they
designed an ϵ-greedy strategy that takes into account waiting
time, allowing agents to make reasonable decisions based on
historical data. Compared with common heuristic rules and other
deep reinforcement learning methods, the experimental results show
that MA-IDDQN can effectively integrate online batch formation
and scheduling to minimize total delay time.

Liu et al. (2023a) proposed a novel solution for the dynamic re-
entrant hybrid flow-shop scheduling problem (DRHFSP) by
integrating DRL and MAS. This study takes into account two key
factors: worker fatigue and skill levels. By constructing a self-
organizing MAS and developing two DRL models, the study
effectively addresses the sub-decision problems of job sequence,
machine selection, and worker assignment. In particular, their
proposed reward shaping techniques and attention-based network
models not only improve decision-making efficiency but also
demonstrate excellent performance in dynamic environments.
Ran et al. (2024) presented a dynamic hybrid flow shop
scheduling strategy for multi-agent manufacturing systems,
integrating DRL and federated transfer learning to address

Frontiers in Industrial Engineering frontiersin.org10

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


privacy concerns and enhance scheduling efficiency in Industry
4.0 discrete manufacturing. The study formulated the problem as a
MDP, modeling each machine as an independent agent that
interacts with the environment to maximize long-term rewards.
The state space included static features and dynamic features, while
the action space comprised job processing requests and method
selections. The reward function combined job timeliness, processing
efficiency, and machine utilization. A federated knowledge transfer
module was introduced to adaptively aggregate model parameters,
enabling knowledge sharing among agents while preserving data
privacy. Experimental validation using classic MK benchmark
examples showed that the proposed strategy outperformed GA,
hybrid intelligent algorithms HIA, and single-agent DRL, with up
to 8.3% lower objective values and 21% reduced computation time in
complex scenarios. The approach demonstrated enhanced
adaptability to dynamic job arrivals and equipment changes,
highlighting its potential for real-world multi-agent
manufacturing systems.

A summary of the application of MARL in HFSP is provided
in Table 5.

3.2 MARL for FJSP

In recent years, MARL technology has been widely applied to
solve FJSP. DQN, a value iteration based reinforcement learning
method, guides action decisions by learning the value of state-action
pairs and is used to optimize task scheduling strategies in FJSP.
Bouazza et al. (2017) proposed a distributed QL method for
production scheduling, treating products as intelligent agents,
aiming to emphasize the significant contribution of considering
adjustment time in decision-making to overall performance.
Intelligent product agents can decompose decision-making into
the selection of machine selection rules and scheduling rules.
However, although agents have individual impacts on the
environment, this work does not show the common impact of
the decisions made by the agents on the environment and each
other. Kim et al. (2020) proposed a multi-Agent DQN based method
that can learn from dynamic environments and make better
decisions in job assignment and task prioritization for mass
customization. Different manufacturing component-based DQN
agents evaluate job priorities and negotiate scheduling while
continuously learning to improve their decision-making
performance. Huo and Wu (2023) proposed a solution for the

multi-objective FJSP based on MARL algorithm. The researchers
transformed the objective of shortening the maximum completion
time and reducing machine load into a problem that can be solved
through reinforcement learning. By establishing state, action, and
reward functions and introducing QL, the researchers proposed a
MARL optimization algorithm. The algorithm was applied to the
Brandimarte benchmark example for simulation verification, and
compared with other intelligent algorithms, the algorithm showed
faster convergence speed and higher utilization rate of processing
machines. Using this algorithm in the MK01 example, the minimum
maximum completion time was 40, validating the feasibility,
accuracy, and efficiency of the proposed intelligent optimization
algorithm. Zhu et al. (2023) conceptualized a multi-task multi-agent
reinforcement learning framework designed for real-time
scheduling in a dual-resource flexible job shop environment,
enhancing decision-making processes in complex manufacturing
systems. The framework utilizes a mixture-of-experts model with
double DQN for process planning, job sequencing, and machine
selection, demonstrating effective scheduling solutions under
various constraints. Yuan et al. (2023) proposed a multi-agent
double DQN framework for the FJSP, transforming it into a
multi-stage sequence decision problem via an event-driven
workshop environment model based on state machine and event
stream mechanisms. The model decouples the workshop
environment from the decision analysis model, using job and
machine agents to make decisions based on global and local state
features, with Boltzmann exploitation to maximize cumulative
rewards and avoid local optima. Numerical experiments show
that multi-agent double DQN outperforms traditional methods
like genetic algorithms in large-scale instances, achieving better
makespan results and real-time scheduling capabilities, with an
average performance improvement of 3.01% over single optimal
policies and faster response speeds. Yan et al. (2025) proposed a
multi-agent deep reinforcement learning approach to address the
distributed FJSP with random job arrivals, modeling it as aMDP and
designing a distribute agent (DA) and a sequence agent (SA). The
DA is configured with 12 state features, 5 candidate actions, and a
reward based on production tardiness, while the SA has 7 state
features, 6 candidate actions, and rewards reflecting delay
conditions, both utilizing a DQN framework with a linearly
decreasing threshold probability for exploration-exploitation
balance. Comparative experiments on randomly generated
instances demonstrate the effectiveness of the DA alone and in
conjunction with the SA, showcasing the approach’s superiority in
minimizing tardiness compared to composite dispatching rules and
other optimization algorithms.

To address dynamic problems, numerous experts and scholars
have conducted further research. Pol et al. (2021) proposed the
challenge of achieving cooperation among multiple agents in MARL
to achieve scheduling purposes in manufacturing systems, such as
minimizing the maximum completion time. The authors developed
a experience logic that can quickly estimate an effective reference
completion time based on the total sum of operation times for each
job. They proposed a dense local reward and sparse global reward
augmented by a global reward factor to achieve cooperation among
agents. Their work is based on DQN, simply including information
from other agents in each agent’s state space, enabling smarter
decision-making in dynamic multi-agent environments. Due to the

TABLE 5 Summary of MARL for HFSP.

Type of problem Methodology Obj Ref

HFSP DQN SO Tacken (2021)

HFSP PARCO SO Berto et al. (2024)

Two-stage HFSP A2C SO Gerpott et al. (2022)

Two-stage HFSP DQN SO Wang et al. (2022a)

Dynamic re-entrant HFSP PPO SO Liu et al. (2023a)

Multi-stage HFSP Attention based SO Zhang et al. (2023b)

Dynamic HFSP DQN SO Ran et al. (2024)

Frontiers in Industrial Engineering frontiersin.org11

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


fixed topology structure of the manufacturing system,
communication is implicitly implemented, with agents sharing
DQN to simplify the training process. To address the credit
assignment problem, training is divided into two stages, first
using local rewards, and then retaining local rewards enhanced
by the global reward factor. In addition, they proposed using sparse
rewards given to each agent at the end of an episode to replace global
rewards, simplifying the process of learning to cooperate. Luo et al.
(2021a) proposed a two-layer hierarchical reinforcement learing
(HRL) production scheduling method. The paper uses a high-level
DDQN agent to determine global optimization objectives, and a
low-level DDQN is responsible for selecting appropriate scheduling
rules. However, using a high-level controller agent in the HRL
method increases the depth of the RL problem, thus reducing the
chances of the learning process converging. Qin et al. (2023)
proposed an innovative multi-agent dueling deep reinforcement
learning method to address dynamic FJSP. The method learns
scheduling strategies in a static training phase and directly
applies these strategies to real-time scheduling that includes
random processing times and unexpected machine failures.
Through extensive simulation experiments under different
production environment conditions, the study proves the
effectiveness of the proposed method in optimizing production
scheduling, especially in handling dynamic changes in mass
personalized production. This achievement provides new
solutions for dynamic scheduling problems in intelligent
manufacturing systems and demonstrates the potential of deep
reinforcement learning in improving the flexibility and
adaptability of production scheduling. Zhang et al. (2024a)
proposed a multi-agent reinforcement learning framework to
address dynamic FJSP with transportation constraints, enabling
collaboration between machine and job agents. The study
formulates the problem as a POMDP and designs a reward-
sharing mechanism to tackle delayed rewards and facilitate policy
learning. An improved multi-agent dueling double deep Q network
algorithm is developed, demonstrating superior performance in
shortening weighted flow time compared to state-of-the-art
methods across trained and unseen scenarios. Meanwhile, Zhang
et al. (2024b) proposed a dynamic FJSP strategy based on
heterogeneous MARL. The strategy achieves centralized
optimization and decentralized decision-making through the
collaboration between job agents and machine agents, with the
heterogeneous multi-agent scheduling framework. The
researchers first modeled the dynamic FJSP problem as a
heterogeneous multi-agent POMDP and introduced a reward
shaping mechanism to organize work and machine agents to
minimize the weighted tardiness of dynamic jobs. The method
demonstrated significant adaptability when encountering new
scenarios, highlighting the advantages of using a scheduling
method based on heterogeneous MARL in addressing dynamic
and flexible challenges. The detailed introduction about this case
will be provided in Section 4.2. Wang H. et al. (2025) considered
uncertain processing and transportation times in dynamic FJSP,
constructed a MAS based on this problem model, and proposed a
method based on multi-agent deep reinforcement learning. The
study aims to optimize the makespan, which is the maximum
completion time of all orders. Experimental results show that it
has better convergence and generalization ability in large-scale task

processing. Qin and Lu (2024) presented a knowledge graph-
enhanced MARL approach for adaptive scheduling in smart
manufacturing, aiming to address the challenges of mass
personalization by integrating interoperable communication via
Knowledge Graphs with adaptive manufacturing control through
Reinforcement Learning. The study formulated the dynamic FJSP,
considering manufacturing requirements and dynamic events such
as stochastic processing times and unplanned machine breakdowns.
A machine graph was constructed to represent machine capability,
availability, and preference information, enabling semantic
communication among manufacturing entities. The framework
redesigned agent observation, action, reward, and cooperation
mechanisms to incorporate machine preferences, using a density-
based clustering algorithm to extract preference information from
historical data. The model was trained using a Dueling DQN
approach, with the Machine Graph guiding agents to narrow
down search spaces and accelerate learning. Experimental results
on 12 testing instances showed that the approach outperformed
individual Reinforcement Learning and heuristic rules in both
training efficiency and makespan optimization, particularly under
dynamic events. The approach demonstrated improved convergence
speed and robustness, highlighting the effectiveness of integrating
domain knowledge via Knowledge Graphs to enhance scheduling
adaptability in dynamic manufacturing environments.

PPO, an improved policy gradient method, enhances training
stability by limiting the magnitude of policy updates, helping to find
better solutions in FSSP. Lei et al. (2022) proposed a multi-agent
framework based on deep reinforcement learning for solving FJSP.
The researchers designed an end-to-end deep reinforcement
learning framework that uses graph neural networks to
automatically learn strategies for solving FJSP. In the FJSP
environment, reinforcement agents need to schedule an operation
of a job to a suitable machine from a set of compatible machines at
each time step. This requires the agent to control multiple actions
simultaneously, thus such multi-action problems are formulated as a
multi MDP. To solve MDP, the researchers proposed a multi-
pointer graph network architecture and designed a training
algorithm called multi-PPO to learn two sub-policies: job
operation action policy and machine action policy, thereby
allocating job operations to machines. The MPGN architecture
consists of two encoder-decoder components, defining the job
operation action policy and machine action policy, to predict
probability distributions on different operations and machines.
The researchers introduced a discontinuous graph representation
for FJSP and used graph neural network embeddings for local states
encountered during scheduling. Computational experimental results
show that the agent can learn high-quality scheduling strategies that
perform better than hand-crafted heuristic scheduling rules and
metaheuristic algorithms in terms of solution quality and running
time. In addition, the researchers tested the generalization
performance of the learned strategies on random and benchmark
instances, showing that the strategy has good generalization
performance on real-world instances and larger-scale instances.
Popper et al. (2021) studied FJSP and proposed an innovative
MARL. This method not only considers production efficiency but
also integrates sustainable objective variables, such as energy
consumption and machine usage efficiency. Through
experimental validation, this method has shown excellent

Frontiers in Industrial Engineering frontiersin.org12

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


performance in multi-objective optimization, especially in dealing
with dynamic changes and uncertainties in the production process.
This study provides a new perspective for scheduling problems in
intelligent manufacturing systems, emphasizing the importance of
considering sustainability in production planning, and demonstrates
the potential of MAS in achieving this goal. Lv et al. (2025) proposed
a type-aware MARL strategy to address real-time schedule repair for
FJSP under machine breakdowns, modeling the problem as a multi-
agent MDP. The approach uses a heterogeneous graph to represent
relationships between machine agents and operations, extracting
machine node embeddings via a meta-path type-aware recurrent
neural network and operation embeddings through a heterogeneous
graph attention network, with a hypernetwork enabling parameter
adaptation for node types, edge types, and locations. Experimental
results show that the proposed MARL outperforms heuristic rules
and other MARL algorithms, achieving the minimum stability
objective while reducing makespan, demonstrating its
effectiveness in handling machine breakdowns and maintaining
production stability. Li et al. (2025) proposed a real-time
scheduling method for the dynamic FJSP with AGVs using
MARL, aiming to minimize total tardiness cost in the face of
machine flexibility, limited logistics equipment, and frequent
dynamic events. The study designed a real-time scheduling
framework with a multiagent architecture comprising a task
selection agent, machine selection agent, and AGV selection
agent. It introduced an action space and efficient action decoding
algorithm based on priority dispatching rule weighting and
adjustment, enabling agents to explore high-quality solution
spaces. The state space was generalized to include job, machine,
and AGV attributes, while the reward function considered machine
idle time and handled four disturbance events to enhance
robustness. The model was trained using MAPPO. Experimental
results showed that the proposed method outperformed priority
dispatching rules, genetic programming, and four popular RL based
methods, with performance improvements often exceeding 10%. It
demonstrated strong robustness in handling various disturbance
events, providing appropriate scheduling schemes for uncertain
manufacturing systems. Liang et al. (2025) proposed a MARL
with structural information optimization framework (MARLSIO)
for large-scale FJSP, decomposing the problem into operation
selection and machine allocation sub-tasks and training job
agents using the multi agent PPO algorithm. The framework
introdsuced a structural information-based state and action
abstraction to capture complex machine-operation relationships,
using structural entropy to optimize hierarchical state and action
representations, which enhanced agents’ learning efficiency and
policy quality. Experimental results showed that MARLSIO
outperformed traditional methods in both synthetic and public
benchmark instances, demonstrating better computational
efficiency and generalization ability, especially in large-scale FJSP
scenarios with varying sizes and characteristics. Wang et al. (2024)
proposed an end-to-end multiagent proximal policy optimization
(E2E-MAPPO) approach for the multitarget FJSP, integrating
makespan, processing energy consumption, standby energy
consumption, and transportation energy consumption as
optimization targets. The approach modeled FJSP as a disjunctive
graph, using graph isomorphism network and graph attention
network to encode subtask and machine node features, and

designed job and machine agents to make decisions based on
vectorized value functions and local critic networks. Experimental
results showed that E2E-MAPPO outperformed traditional priority
dispatching rules and state-of-the-art deep reinforcement learning
methods in terms of solution quality, online computation time,
stability, and generalization, especially in large-scale and unseen
testing instances.

Popper and Ruskowski (2022) proposed an innovative MARL
method for solving dynamic FJSP. By constructing a MAS that
includes machine agents and factory agents, this method achieves
dynamic scheduling of production tasks. The factory agent is
responsible for coordinating machine agents and tracking the
status of order processing, while the machine agent decides
whether to accept new production tasks based on the task weight
values generated by its neural network. This MARL based method
can not only handle variable-sized orders but also achieve online
scheduling and can easily integrate more production participants. In
addition, by optimizing the production factory globally, it avoids the
local minimum problems that may occur in sequential planning.
Preliminary experimental results show that the system can match
the planning quality of common heuristic algorithms, and even
perform better in some aspects, providing a new solution for flexible
job-shop scheduling problems. Luo et al. (2021b) developed a
hierarchical multi-agent proximal policy optimization
(HMAPPO) method as a means to address dynamic multi-
objective flexible job-shop scheduling problems, where some
operations are subject to no-wait constraints. The method
includes three types of agents, including objective agents, job
agents, and machine agents. Object agents periodically specify
temporary optimization objectives, job agents select job selection
rules, and machine agents choose machine allocation rules for the
corresponding temporary objectives. Through HRL, the method
learns at different levels of abstraction, where the high-level
controller learns strategies at a high level. This means that some
jobs need to be processed continuously without interruption.
However, the architecture in HRL is not fully decentralized, as
there should be a high-level controller at the top layer. It should also
be noted that the HRL method does not guarantee the optimality of
the overall multi-agent strategy. Gu et al. (2024) proposed a dynamic
scheduling mechanism for intelligent workshops based on a MAS
architecture and a deep reinforcement learning method. The
researchers designed an IoT-based multi-agent manufacturing
system and established a mathematical model for FJSP. To
construct agents in the intelligent workshop, the article proposed
a data-based combination of virtual and physical agents (DB-VPA),
which includes the information layer, software layer, and physical
layer. Wang W. et al. (2025) proposed a hierarchical MARL
framework to address the dynamic FJSP with transportation,
decomposing the decision space into high-level job prioritization,
mid-level machine assignment, and low-level transbot allocation.
The framework integrates an imitation learning strategy to leverage
heuristic methods, using a variable state space representation and
scaled dense rewards to enhance adaptability and convergence
speed. Experimental results on generated instances and
benchmark datasets demonstrate that multi agent PPO
outperforms traditional heuristic and single-agent DRL methods
in makespan, robustness, and computational efficiency, showcasing
its scalability for complex manufacturing scenarios. Zheng et al.

Frontiers in Industrial Engineering frontiersin.org13

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


(2025) proposed a MARL approach based on cross-attention
networks for the dynamic FJSP, aiming to address the complexity
and uncertainty of actual production processes. The study
formulated the dynamic FJSP as an MDP, designing a job
selection agent and a machine allocation agent. It innovatively
represented job processing data and production Gantt charts as
state matrices, and employed a multi-head cross-attention network
to extract state features, enabling the model to capture complex
relationships between jobs and machines. The model was trained
using an IPPO algorithm, allowing agents to learn efficient
scheduling strategies. Experimental results on numerous static
and dynamic scheduling instances demonstrated that the
algorithm outperformed traditional heuristic rules and other
advanced algorithms, such as maskable PPO and multi agent
PPO, with strong learning efficiency and generalization
capability. The algorithm showed superior performance in
minimizing makespan and handling dynamic job arrivals,
highlighting the effectiveness of cross-attention networks and
multi-agent frameworks in solving complex scheduling problems.
Heik et al. (2024) explored the application of single-agent and multi-
agent RL to dynamic scheduling in the growing complexity of
manufacturing environments, using the Industrial IoT test bed as
a case study. The research aimed to enhance manufacturing system
efficiency by optimizing resource consumption and minimizing
makespan. The study formulated the dynamic FJSP as an RL
problem, evaluating heuristic, meta-heuristic, and RL methods. It
designed a state space representation capturing operational details
and used PPO for training. The MARL architecture, with individual
agents for each manufacturing operation, demonstrated superior
performance in managing resources and improving system
efficiency. The reward function was carefully designed to balance
makespan minimization and machine utilization, and the study
investigated the impact of different state representations and reward
parameters on model performance. Experimental results showed
that the multi-agent PPO approach outperformed heuristic
methods, with significant improvements in makespan and
robustness against disturbances. The study highlighted the
potential of MARL in handling complex manufacturing dynamics
and provided insights into designing effective RL policies for real-
world industrial systems.

Graph convolutional networks (GCN) excels in handling graph-
structured data, capturing task dependencies and resource allocation
information in FJSP. Oh et al. (2023) explored FJSP, a complex
scheduling problem involving the modeling of production systems.
Traditionally, mathematical optimization and metaheuristic
methods have been widely used to solve FJSP. With the
advancement of DRL, particularly the combination of MARL and
GNN, new approaches have emerged for FJSP. In previous studies,
work and machines were defined as agents, but due to the dynamic
nature of the number of work agents, there were scalability issues
when the number of work agents increased. To overcome this
limitation, this study modeled FJSP as a graph structure of
machine pairs and applied GNN to reflect the cooperation
between agents. Through experiments, the researchers
demonstrated that the proposed method outperformed existing
heuristic rules and metaheuristic algorithms in reducing the
weighted delay of dynamic jobs. These results indicate that the
combination of MARL and GNN has potential in solving FJSP and

can achieve efficient scheduling through learned strategies in real-
time scheduling environments. Zhang J.-D. et al. (2023) proposed an
innovative model DeepMAG, which combines DRL and MARL to
address this issue. By constructing multi-agent graphs, DeepMAG
can simulate the operational relationships between machines and
jobs, enabling agents to work together to find the best scheduling
strategy. The experimental results of the study show that DeepMAG
can significantly improve scheduling efficiency and effectiveness
compared to traditional methods when dealing with complex
scheduling problems with a large number of machines and jobs.
This achievement provides a new solution for scheduling problems
in intelligent manufacturing systems and demonstrates the potential
of deep learning and MAS in solving practical industrial problems.
Jing et al. (2024) proposed a CTDE framework based on GCN to
address the challenges of high flexibility, agility, and robustness in
FJSP. The study transformed the FJSP into a topological graph
structure prediction problem by constructing a directed acyclic
graph (DAG) probability model of the product processing
network and the job shop environment, and used GCN to extract
interaction information between job agents, achieving efficient
scheduling in complex and dynamic environments. This method
not only improves machine utilization but also enhances
adaptability to personalized production, providing a new
perspective for the application of FJSP in intelligent manufacturing.

Peng et al. (2023) proposed a double Q-value mixing (DQMIX)
algorithm specifically for extended flexible job-shop scheduling
problems (FJSP-DT) with dual flexibility and variable
transportation times. By modeling FJSP-DT as Dec-POMDP and
combining GCN to handle high-dimensional state and observation
spaces, the DQMIX algorithm effectively addresses the curse of
dimensionality and enhances the adaptability and real-time
performance of scheduling. The algorithm introduces a dual-
critic network structure to enhance the exploration and
exploitation capabilities of the algorithm, while integrating
mechanical constraints into the learning process to further
improve performance. Experimental results demonstrate the
significant advantages of the DQMIX algorithm in solving FJSP-
DT problems in terms of solution accuracy, stability, and
generalization, especially in handling large-scale scheduling
problems, where the DQMIX algorithm shows exceptional
performance. Pu et al. (2024) proposed an innovative MARL
method for solving dynamic FJSP, which is of great significance
in intelligent manufacturing. By constructing a distributed multi-
agent scheduling architecture, each job is regarded as an agent, and
reinforcement learning algorithms are used to achieve collaboration
among agents to optimize production scheduling. Through graph
neural networks and heterogeneous GNN encoding of state nodes,
the researchers can effectively calculate scheduling strategies
including machine matching and process selection. Furthermore,
through the multi-agent proximal policy optimization algorithm,
the method excels in minimizing energy consumption and
improving resource efficiency, surpassing existing scheduling
rules and RL-based methods in terms of solution accuracy and
stability. Experimental results validate the effectiveness and
generalization capability of the method in handling large-scale
problems, providing new solutions for real-time dynamic
scheduling in intelligent manufacturing. Johnson et al. (2024)
introduced the continuous dynamic FJSP to address the

Frontiers in Industrial Engineering frontiersin.org14

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


challenges of mass personalization in smart manufacturing, where
job orders arrived continuously, products were diverse, and urgent
orders disrupted traditional scheduling. They proposed MAC-
Sched, a graph based MARL model, to tackle this problem.
MAC-Sched represented the manufacturing environment as a
heterogeneous graph, with nodes for operations and machines
and edges for processing capabilities and sequences. Each
machine acted as an agent, using a heterogeneous GNN to
extract state embeddings, and a shared actor-critic policy was
trained via PPO. Conflicts between agents selecting the same job
order were resolved through a bidding mechanism prioritizing
machines with fewer options and shorter processing times. The
reward function was based onminimizing estimated mean tardiness.
Experiments on the Brandimarte Dataset showed that MAC-Sched
outperformed 18 combinations of heuristic rules, particularly at high
machine utilization rates. It demonstrated strong generalization to
factories with varying numbers of machines, product diversity, and
utilization levels, highlighting its reliability in dynamic, continuous
manufacturing environments.

Gui et al. (2024) proposed a new dynamic scheduling method by
constructing the manufacturing system as a self-organizing MAS
and using MARL. The method transforms the complex scheduling
problem into a collaborative decision-making task between agents
through a partially observable Markov game (POMG) based on the
contract net protocol. Through training with the MADDPG
algorithm, agents can learn to choose the best scheduling rule
weights at each decision point, thus optimizing the collaborative
scheduling decision-making between heterogeneous manufacturing
equipment. The research not only advances the application of
MARL in complex manufacturing systems theoretically but also
demonstrates its effectiveness and superiority in the dynamic FJSP
scenario through experiments, providing new solutions for dynamic
scheduling in intelligent manufacturing systems. Waseem and
Chang (2024) proposed a method that combines Nash games
with MADDPG algorithms, called Nash-MADDPG. This method
developed a multi-agent control scheme for allocating mobile robots
to load/unload different product types on different machines by
observing the system’s permanent production loss (PPL) andmarket
demand for each product type. First, the authors developed a Nash
game among mobile robots and defined a cooperative cost to
improve cooperation, which was then used in the reward
function of the MADDPG algorithm. Secondly, the actions were
defined based on the action values from the MADDPG and the
strategies of the mobile robots in the Nash game, thereby updating
the environment to a new state. Wang X. et al. (2025) proposed a
MADRL system with game theory to address the FJSP, aiming to
minimize Makespan, total energy consumption, and human factor’s
comfort. The study formulates the FJSP as a MDP, using a deep
convolutional neural network to extract state features from
processing time, task assignment, and adjacency matrices, and
employs simple constructive heuristics as candidate actions for
scheduling decisions. A game model combining Nash equilibrium
and Pareto optimality is established to unify multi-objective
optimization into a reward strategy, and a MADDPG framework
is designed to train the model, demonstrating superior performance
in solving real-world production scheduling problems compared to
traditional algorithms. A summary of the application of MARL in
FJSP is provided in Table 6.

4 Case study of FSSP by MARL

To facilitate a clearer understanding of the role of MARL in the
FSSP, this section will present two concrete case studies. These case
studies focus on the HFSP and FJSP, respectively, and cover
discussions on the MDP formulations, MARL algorithms, and
numerical experiments. The choice of these two cases was based
on several key criteria: problem complexity, real-world relevance,
current research trends, and their potential for further development
within the context of MARL.

4.1 Case study of HFSP by MARL

Zhang N. et al. (2023) proposed a CAMARL approach to solve
the joint optimization problem of maintenance and production
scheduling in manufacturing systems. Its main advantage is the
ability to handle large-scale, dynamic environments and boost
performance through counterfactual attention and collaboration
mechanisms. This problem considers a setting where each stage
comprises multiple parallel machines, and jobs sequentially pass
through all stages, with each stage selecting one machine for
processing. While frequent maintenance can reduce failure rates,
it inevitably leads to downtime, impacting production efficiency.
Conversely, neglecting maintenance increases the risk of machine
failures, necessitating corrective maintenance (CM), which escalates
costs and downtime. Machine degradation is influenced by various
factors, including workload and environmental conditions. The
objective is to optimize production scheduling and maintenance
strategies, balancing production efficiency and maintenance costs to
minimize total costs.

4.1.1 Decentralized partially observable Markov
decision process

This section models the HFSP as a Dec-POMDP and defines the
key components of MARL: state, action, and reward. The
observation result at the decision moment serves as input for the
agent to guide its action selection.

The state is divided into three categories of information: job
information, machine information, and system-level information.
Job information includes actual processing time, the quantity of
jobs in the waiting queue, and the index of available jobs. This
information reflects the current demands and task status of
production scheduling. Machine information is represented as a
tuple 〈Hm, Gm,Wm, Pm, Cm, CUm〉, with the following definitions.
Hm: the current hazard rate of the machine, indicating the
likelihood of failure. Gm: the virtual age of the machine,
reflecting its degradation level. Wm: the working state of the
machine, where a value of 1 indicates it is occupied, and a
value of 0 indicates it is idle. These pieces of information
provide a comprehensive view of the machine’s health
condition and maintenance history. Pm: the number of
preventive maintenance (PM) actions performed. Cm: the
number of corrective maintenance (CM) actions performed.
CUm: the cumulative failure probability of the machine. System-
level information includes stage production efficiency and global
maintenance cost. This information reflects the operational status
and economic performance of the entire production system.

Frontiers in Industrial Engineering frontiersin.org15

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


At the decision moment t, the agent gm,t selects an action
am,t based on the policy network π(am,t|om,t) using an ϵ-greedy
policy. The action space A is defined as
A � a1, a2, . . . , as, as+1, as+2, as+3, where: production actions
include seven meta-heuristic scheduling rules as shown in

Table 7. Maintenance actions (as+1, as+2, as+3) are related to
machine maintenance operations.

A real-time reward settlement mechanism is designed. Once the
action am,t is determined, the reward rt is immediately generated based
on the reward function. The function f(am) is defined as in Equation 9:

TABLE 6 Summary of MARL for FJSP.

Type of problem Methodology Obj Ref

FJSP DQN SO Bouazza et al. (2017)

FJSP DQN SO Kim et al. (2020)

FJSP PPO MO Popper et al. (2021)

FJSP PPO SO Lei et al. (2022)

FJSP GCN SO Oh et al. (2023)

FJSP DQN SO Zhu et al. (2023)

FJSP DQN MO Huo and Wu, (2023)

FJSP GCN SO Zhang et al. (2023a)

FJSP QMIX and GCN SO Peng et al. (2023)

FJSP DQN SO Yuan et al. (2023)

FJSP GCN SO Jing et al. (2024)

FJSP PPO MO Wang et al. (2024)

FJSP DDPG MO Wang et al. (2025c)

FJSP PPO SO Lv et al. (2025)

FJSP PPO SO Liang et al. (2025)

Distributed FJSP DQN SO Yan et al. (2025)

Dynamic FJSP DQN MO Luo et al. (2021a)

Dynamic FJSP PPO MO Luo et al. (2021b)

Dynamic FJSP DQN SO Pol et al. (2021)

Dynamic FJSP PPO SO Popper and Ruskowski (2022)

Dynamic FJSP DQN SO Qin et al. (2023)

Dynamic FJSP DDPG SO Gui et al. (2024)

Dynamic FJSP GCN SO Pu et al. (2024)

Dynamic FJSP DQN SO Zhang et al. (2024a)

Dynamic FJSP DQN SO Zhang et al. (2024b)

Dynamic FJSP DDPG SO Waseem and Chang (2024)

Dynamic FJSP PPO SO Gu et al. (2024)

Dynamic FJSP DQN SO Qin and Lu, (2024)

Dynamic FJSP DQN SO Wang et al. (2025a)

Dynamic FJSP PPO SO Wang et al. (2025b)

Dynamic FJSP PPO SO Zheng et al. (2025)

Dynamic FJSP PPO SO Li et al. (2025)

Dynamic FJSP PPO SO Heik et al. (2024)

Dynamic FJSP PPO and GCN SO Johnson et al. (2024)

Frontiers in Industrial Engineering frontiersin.org16

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


f am( ) �

max 0, Cgm,t,am,t − dr
gm,t

( )
Aj

, if am ∈ A,m≤ 7,

0, if am ∈ A, m � 8,

Cpm

Ap
, if am ∈ A, m � 9,

Ccm

Ac
, if am ∈ A, m � 10,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

For production-related actions, the reward is proportional to the
difference between the completion timeCgm,t,am,t and the due date d

r
gm,t

. If
the job is completed after the due date, the reward decreases, reflecting a
penalty for tardiness. The result is normalized byAj, which represents a
scaling factor related to job-specific attributes.When the machine is idle,
the reward is set to zero. This indicates that no positive or negative
contribution is made to the system during this state. For PM actions, the
reward is determined by the ratio of the preventive maintenance cost
Cpm to a scaling factor Ap. This reflects the economic impact of
performing maintenance proactively to prevent potential failures. For
CM actions, the reward is calculated as the ratio of the corrective
maintenance cost Ccm to a scaling factor Ac. This accounts for the
cost incurred when addressing unexpected failures or breakdowns.

4.1.2 Algorithm description
This section provides a detailed introduction to the framework

and implementation steps of the CAMARL algorithm, including
action abstraction, coordination control, attention mechanisms,
counterfactual reasoning, and the training process. The goal of
the algorithm is to optimize the problem through multi-agent
collaboration, minimizing the total cost. The framework of the
CAMARL algorithm is shown in Figure 6.

The problem involves a large-scale action space, and directly
handling it can lead to the curse of dimensionality. Action
abstraction reduces the action space by clustering similar actions.

In the multi-agent system, the agents’ action selections may
conflict with one another. The coordination control module avoids

invalid actions and accelerates exploration by generating a legal
action space. Each agent has limited local observations and struggles
to directly obtain global information. The attention mechanism
integrates local observations to generate global information by
quantifying the importance of agents.

Traditional attention mechanisms can lead to unstable training,
especially when the number of agents dynamically changes.
Counterfactual attention reduces training variance and improves
adaptability by comparing an agent’s actual contribution with a
baseline. CAMARL adopts a CTDE framework, and the specific
algorithm flow is shown in Algorithm 1.

1: Random initialize actor parameter θπ, critic

parameter θc and target critic parameter θc′

2: Initialize replay buffer D′
3: for i ← 0 to max-iteration do

4: Reset the environment;

5: while The trajectory is not terminal and t≤T do

6: t ← t + 1;

7: for Each agent gm ∈ G do

8: Calculate the Maskk;

9: Taking action am,t � π(zm,t);
10: end for

11: Execute the joint action at, and get the reward

rt and the next state dt+1;
12: Store the (dt,zt ,at ,rt ,dt+1) to the

temporary buffer Y;

13: end while

14: Add the trajectory Y into replay buffer D′;
15: Sample x from replay buffer D′;
16: for t � 0 → x.length do

17: Calculate the integrated information yt;

18: Calculate the TD target bλ,t;

19: end for

20: for t � x.length → 0 do

21: Δθc � Vθc(bλ,t − Qθc(yt))2;
22: θc � θc + β p Δθc;

23: Calculate R(yt ,ag);
24: Δθπ � Δθπ + Vθπ logπθ(ag|yg)R(yt ,ag);
25: Every F step θc′ ← θc;

26: end for

27: θπ � θπ + η p Δθπ;

28: end for

Algorithm 1. Training Algorithm of CAMARL in Zhang et al. (2023b).

4.1.3 Experimental results and analysis
The experiment was conducted in a two-stage HFSP consisting

of five independent machines. Three different types of jobs were
considered, with varying initial processing times on different
machines. This case focuses on the comparison between
CAMARL and other reinforcement learning methods, primarily
analyzing the objective values and computational time.

To evaluate the performance of CAMARL, the authors
compared it with four reinforcement learning methods: QMIX,
IQL, VDN, and QTRAN. Table 8 lists the mean objective values
of the five MARL algorithms compared to the optimal solution and
the computation times (in hours) for all algorithms. The data

TABLE 7 Definitions of the action space.

Notations Description

a1 SPT: selecting the job with shortest processing time

a2 LPT: selecting the job with longest processing time

a3 FIFO: first in first out

a4 LWKR: selecting the job with the longest waiting time including
current operation

a5 MWKR: selecting job with the shortest waiting time including
current operation

a6 SRM: selecting the job with the longest waiting time without
current operation

a7 LRM: selecting job with the shortest waiting time without
current operation

a8 DN: idle state due to the environment

a9 PM: conducting a preventive maintenance

a10 CM: conducting a corrective maintenance

Frontiers in Industrial Engineering frontiersin.org17

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


visualization analysis of the comparison of the average target value
and the computation time is shown in Figure 7.

In contrast, QMIX, IQL, VDN, and QTRAN showed larger gaps,
indicating that CAMARL is closer to the optimal solution.
Numerical studies demonstrate that CAMARL performs
exceptionally well in joint maintenance and production
scheduling problems.

4.2 Case study of FJSP by MARL

Zhang et al. (2024b) first modeled the dynamic FJSP problem
as a heterogeneous multi-agent POMDP and introduced a reward
shaping mechanism to organize work and machine agents to
minimize the weighted tardiness of dynamic jobs. The
researchers proposed an extension of the dynamic FJSP that
incorporates transportation times. In this extended
formulation, jobs are allowed to arrive dynamically within the
system, and each job can be processed by a set of available
machines, with each machine having different processing
times for the operations. Under these conditions, information
about the jobs is not visible until they arrive, and the
transportation time between machines is also non-negligible.
This paper aims to minimize the average weighted tardiness of
dynamic jobs as outlined.

4.2.1 Multi-agent partially observable MDP
Each job’s state is precisely described by a set of feature

parameters, specifically including: the current job ID, arrival
time, earliest possible start time, remaining number of jobs,
average remaining processing time, list of available machines for
processing, job weight, and due date. These features collectively

provide a comprehensive description of job requirements and
priorities.

For machine states, the representation focuses on several
key indicators: residual processing time for the current task,
total residual processing time, and the number of jobs in the
buffer zone. This information aids agents in evaluating the
machine’s workload and potential task scheduling over the
coming period.

The observation space of an agent encompasses detailed
information about all pending jobs in its queue, such as the
aforementioned job state attributes. Utilizing a POMDP
framework, agents make decisions based on limited yet critical
information. This setup not only enhances system adaptability
and robustness but also promotes collaboration among different
agents, thereby improving the overall performance of the dynamic
FJSP. This method ensures that each agent can operate efficiently
within a broader, more adaptive system environment, thereby
enhancing the performance outcomes of the entire
manufacturing system.

For job agents, the action space is discrete and specified across
six dimensions, as shown in Table 9.

This table lists a series of heuristic rules guiding the
allocation of machines to specific operations. Once a rule is
selected, subsequent machine selection is determined based on
priority values calculated according to the chosen rule. This
means that, depending on the attribute values under the
selected rule, the agent evaluates the suitability of each
candidate machine and ultimately decides which machine is
most appropriate for the current task. After selecting a
machine, considering transportation time, the relevant job is
placed in the machine’s buffer zone awaiting further
processing.

FIGURE 6
The heterogeneous multi-agent based scheduling framework in Zhang N. et al. (2023).

Frontiers in Industrial Engineering frontiersin.org18

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


For machine agents, their action space is also discrete but
extends to nine dimensions, as detailed in Table 9.

This table lists various heuristic rules applied to job sequencing
within the buffer zone. When a rule is adopted, the machine agent
assesses all candidate jobs based on this rule and assigns them
corresponding priority values. The job with the highest priority is
then selected for processing. This design enables machines to
respond quickly to dynamic changes while ensuring high-quality
scheduling decisions.

In dynamic FJSP, job tardiness cannot be realized until the
last operation of each job is completed, leading to sparse rewards
during the learning process for both job and machine agents. To
address this issue, the authors propose a reward shaping
mechanism where the completion reward of a job is shared
between the job and the machine agents involved in its
processing. Specifically, when a job is completed, weighted
tardiness serves as the shared reward for all agents involved in
the completion process. Thus, job agents receive rewards directly
aligned with optimization goals, and these rewards are
distributed among machine agents corresponding to the set of
machines completing the job operations.

The introduction of this reward shaping mechanism ensures
that each decision experience provides feedback directly related

to the optimization objective. This approach effectively mitigates
the problem of sparse rewards and establishes a collaborative
environment among heterogeneous agents with different
decision points, aiming to achieve common optimization
goals. Consequently, agents can learn faster and improve
strategies, significantly enhancing the overall system
performance.

4.2.2 Algorithm description
Zhang et al. (2024b) proposed a dynamic FJSP strategy based on

heterogeneous MARL. The strategy achieves centralized
optimization and decentralized decision-making through the
collaboration between job agents and machine agents, with the
heterogeneous multi-agent scheduling framework. The scheduling
framework based on heterogeneous multi-agent is shown
in Figure 8.

To solve this problem, the researchers developed an
adversarial double deep Q-network algorithm combined with
the reward shaping mechanism to determine the optimal strategy
for machine assignment and job sequencing. This approach not
only solves the problem of sparse rewards but also accelerates the
learning process. Numerical experiments validated the
effectiveness of the proposed method, showing its superiority

TABLE 8 Combined comparison of mean objection value and computational time for MARL algorithms.

Job size Optimal solution Mean objection value Computational time (hour)

CAMARL QMIX IQL VDN QTRAN CAMARL QMIX IQL VDN QTRAN

30 6,066.78 6,964.38 7,102.75 7,226.56 7,246.222 7,003.07 3.75 3.33 2.08 3.20 3.66

40 8,422.98 9,831.33 10,092.88 10,882.72 10,547.41 10,768.53 5.00 5.24 4.34 5.22 5.71

50 11,844.27 13,871.71 14,130.16 15,034.95 14,590.60 14,917.24 7.08 8.33 6.01 7.67 8.27

FIGURE 7
Comparison of mean objective values and computation times.

Frontiers in Industrial Engineering frontiersin.org19

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


over existing state-of-the-art baselines in reducing the weighted
tardiness of dynamic jobs.

The simplified algorithm flow is shown in Algorithm 2.

1: Initialize main and target networks for machine

allocation (θ′, θ″) and job sequencing (φ′,φ″)
2: Initialize replay buffers for machine allocation

and job sequencing

3: for each episode do

4: Generate machine agents using the job

sequencing Q-function

5: while jobs remain incomplete do

6: if new job arrives then

7: Create job agent and allocate machine using

ϵ-greedy strategy

8: for each machine k do

9: Update machine state; select job if idle

10: end for

11: for each job i do

12: Update job state; record experiences if

operation completes

13: if job completes: then

14: Calculate reward and store experience in

replay buffer

15: else:

16: Allocate machine using ϵ-greedy strategy

17: end if

18: end for

19: if learning criteria met then

20: Sample from replay buffers and update main/

target networks

21: Share updated Q-functions with agents

22: end if

23: end if

24: end while

25: end for

26: Output: Optimal Q-functions for machine

allocation and job sequencing

Algorithm 2. Training Processes of HMAD3QN RS.

4.2.3 Experimental results and analysis
This study performs a comparative analysis of the proposed

method against four benchmark approaches for solving the dynamic
FJSP across various scenarios. Initially, it evaluates the performance
of different combinations of machine allocation and job sequencing
rules within the action space, which includes 54 composite heuristic
rules. Following this evaluation, the best composite heuristic rule
(BCHR) for each instance is selected as one of the baseline methods.
Additionally, two advanced methodologies are included in the
comparison: a novel cooperative coevolution genetic
programming (CCGP) approach, as described by Zhang et al.
(2020), and a multi-agent double deep Q-network (MADDQN)
method, as detailed in Liu et al. (2022). Furthermore, an
heterogeneous multi-agent dueling double deep Q-network
(HMAD3QN) approach is incorporated to evaluate the
improvements brought about by the reward-shaping mechanism.
The study deliberately excludes meta-heuristic-based approaches

from the comparison. The rationale is that comparing rescheduling
and real-time scheduling methods, which require time-consuming
iterations during dynamic events, would introduce bias and inequity
in the evaluation framework.

Weighted tardiness is an important evaluation criterion, and its
calculation is shown in Equation 10.

wti � −wiTi � −wi max 0, ci − di{ } (10)

Wherein, ci denotes the completion time of job i, di denotes the
completion time of job i, wi denotes the weight of job i, Ti denotes
the tardiness of job i.

The article evaluates weighted tardiness in different
scenarios, and the experimental results obtained are shown
in Table 10. m is the scale of machines, dfj is the delay
factor of jobs.

The empirical results demonstrate that HMAD3QN-RS
consistently achieves the lowest average weighted tardiness across
all evaluated scenarios. This finding underscores the significant
improvement in scheduling performance attributable to the
incorporation of reward shaping mechanisms. This finding
underscores the significant improvement in scheduling
performance attributable to the incorporation of reward shaping
mechanisms. Additionally, HMAD3QN-RS not only outperforms
other methods in terms of mean performance but also exhibits lower
standard deviations in most cases, indicating both its efficiency and
consistency.

To clearly dissect the outcomes, we assign rank values to the
algorithms by sorting them in descending order based on their ave
values. Figure 9 illustrates the ranking results. It is evident that
HMAD3QN-RS attains the best “Ave.” values across all instances in
terms of mean performance, indicating its superior effectiveness.
Notably, HMAD3QN, which can be regarded as a variant of
HMAD3QN-RS without the specific optimization strategy RS,
consistently ranks second or third. This observation underscores
the competitive advantage of incorporating the RS optimization
strategy into the HMAD3QN algorithm, significantly enhancing its
convergence performance.

These graphical representations provide deeper insights into the
comparative performance metrics across various scenarios, thereby
supporting the authors’ assertions with clear and accessible
evidence. Notably, the proposed method demonstrates
remarkable adaptability. Even when applied to a new
environment featuring 20 machines, a scenario not encountered
during training, the learned Q-functions remain highly efficient.
This underscores the robustness and generalizability of the
proposed approach.

5 Challenges and future directions

In this study, a comprehensive review of the application of
MARL to shop scheduling, especially flexible shop scheduling, was
conducted from a technical and analytical perspective. Specifically,
the application of MARL in FSSP was studied, with a particular
emphasis on HFSP and FJSP. A comparative analysis was provided
for different shop scheduling problems and MARL methods,
representing how to select different MARL characteristics to

Frontiers in Industrial Engineering frontiersin.org20

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


implement corresponding MARL solutions. The research presented
in this paper indicates that MARL has become one of the excellent
methods for solving flexible shop scheduling problems due to its
ability to handle uncertainties in a self-organized manner within
multi-agent and decentralized systems.

5.1 Analysis and findings

This study comprehensively collected 78 relevant data and
conducted a detailed classification of these data. After screening,
a total of 39 research papers were finally identified. These papers

TABLE 9 Heuristic scheduling rules for machine allocation and job sequencing.

Rule category Rule ID Description

Machine Allocation SPTM Selecting the machine with the shortest processing time

ESTM Selecting the machine with the earliest starting time

LPTM Selecting the machine with the longest processing time

MRPTM Selecting the machine with the minimum remaining processing time

SPTTM Selecting the machine with the shortest processing and transportation time

MROM Selecting the machine with the minimum remaining jobs

Job Sequencing SPTJ Selecting the job with the shortest processing time

LPTJ Selecting the job with the longest processing time

FIFOJ Selecting the job with the earliest arrival time

MXWJ Selecting the job with the maximum weight

EDDJ Selecting the job with the earliest due date

MROJ Selecting the job with the most remaining operations

MSTJ Selecting the job with the minimum slack time

FILOJ Selecting the job with the latest arrival time

SRPTJ Selecting the job with the shortest remaining processing time

FIGURE 8
The heterogeneous multi-agent based scheduling framework in Zhang et al. (2024b).

Frontiers in Industrial Engineering frontiersin.org21

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


TABLE 10 Average and standard deviation of weighted tardiness for different scenarios in Zhang et al. (2024b).

ID m dfj BCHR MADDQN CCGP HMAD3QN HMAD3QN_RS

Ave. Std. Ave. Std. Ave. Std. Ave. Std. Ave. Std.

EX11 5 1.5 975.95 497.21 570.68 180.00 422.53 135.62 405.42 156.11 293.55 77.39

EX12 5 2.0 959.97 534.46 497.35 194.84 321.33 142.21 311.94 152.64 208.70 78.54

EX13 5 3.0 522.77 427.08 299.30 185.58 125.84 95.39 128.37 98.05 93.62 52.63

EX21 10 1.5 1,044.50 495.10 602.33 109.01 462.39 170.15 326.65 131.58 272.28 60.98

EX22 10 2.0 978.19 641.57 463.31 198.30 282.16 159.74 155.99 129.37 115.90 57.47

EX23 10 3.0 484.17 322.94 369.64 208.72 45.56 34.09 16.56 35.44 15.27 10.77

EX31 20 1.5 2041.44 884.57 1,301.98 153.09 1,316.90 678.03 1,157.73 109.36 901.74 125.22

EX32 20 2.0 1,336.79 743.41 935.81 294.60 637.70 467.64 468.59 91.91 464.97 87.21

EX33 20 3.0 326.65 382.13 308.63 248.31 182.33 232.12 145.98 52.28 140.30 43.42

Fro
n
tie

rs
in

In
d
u
strial

E
n
g
in
e
e
rin

g
fro

n
tie

rsin
.o
rg

2
2

X
u
e
t
al.

10
.3
3
8
9
/
fi
e
n
g
.2
0
2
5
.16

115
12

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


cover different research questions and methods, providing a solid
foundation for follow-up research.

5.1.1 Problem distribution analysis
From the perspective of problem analysis: Currently, there are

relatively few studies on HFSP (only 7 papers), while there are more
studies on FJSP (34 papers). Future research should pay more
attention to HFSP, especially in the application of MARL
methods. By filling this research gap, the development of MARL
in a wider range of industrial application scenarios can be promoted.
As depicted in the outer section of Figure 10, which utilizes a donut
chart representation.

In FSSP research, optimization objectives vary, including
minimizing makespan, reducing machine load, improving
resource utilization, reducing energy consumption, shortening
average waiting time, and balancing workload. Different studies
may focus on single or multi-objective optimization depending on
the needs of the application scenario. As shown in the middle section
of Figure 10 which displays the visual analysis of the number of
optimization objectives. These analyses help us understand the
distribution and focus of current research, providing guidance for
future research directions.

5.1.2 Methodology analysis
From the perspective of method analysis: Currently, there are

relatively few studies on centralized methods (only 3 papers), while
there are more studies on CTDE methods (38 papers). Future
research can focus more on the application of centralized
methods in scheduling problems, exploring their strengths and
limitations in different scenarios. As shown in the inner section
of Figure 10.

Through collaboration among agents, MARL achieves more
efficient resource allocation and task scheduling in the FSSP,
thereby enhancing production efficiency and reducing costs. In
Section 3 of this paper, we reviewed the base MARL methods
applied to FSSP, including DQN, A2C, PPO, GCN, DDPG,

QMIX, Attention-based mechanisms, and Parallel decoding
techniques. DQN, a value iteration-based reinforcement learning
method, guides action decisions by learning the value of state-action
pairs and is used to optimize task scheduling strategies in FSSP. A2C
combines the advantages of policy gradient and value function
methods, accelerating the learning process by training multiple
agents in parallel to quickly find approximate optimal scheduling
strategies. PPO, an improved policy gradient method, enhances
training stability by limiting the magnitude of policy updates,
helping to find better solutions in FSSP. GCN excels in handling
graph-structured data, capturing task dependencies and resource
allocation information in FSSP, and strengthens the MARL
algorithm’s understanding and prediction of complex scheduling
problems. DDPG is suitable for problems with continuous action
spaces, improving learning effects through deterministic policies,
and dealing with dynamic machine load adjustments in FSSP.
QMIX, a value decomposition-based learning method, promotes
cooperation in multi-agent environments by decomposing global
value into individual value contributions, coordinating agent
behaviors to achieve common optimization goals. Attention-
based methods highlight key information in the input, effectively
handling long sequence dependencies in FSSP, and improving
scheduling quality. Parallel decoding technology speeds up
learning by distributing computational tasks among multiple
agents, increasing the efficiency of exploring the solution space in
FSSP. As shown in Figure 11, we conducted statistical and visual
analysis of the number of literature used.

5.2 Key challenges

Addressing the dimensional disaster in large-scale scenarios and
scalability issues can be achieved through independent learning, task
decomposition, simplifying network structures, transfer learning,
and knowledge reuse. Each method has its advantages and
limitations, and the most suitable technology needs to be selected

FIGURE 9
Algorithm rankings across different scenarios.

Frontiers in Industrial Engineering frontiersin.org23

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


according to the specific scenario in practical applications. Through
these methods, the performance and scalability of MAS can be
effectively improved.

5.2.1 Dimensional issues in large-scale scenarios
For the dimensional disaster that occurs in large-scale clusters

with unknown or continuous state-action spaces, leading to slow
convergence or even failure of the algorithm, there are two main
existing solutions: First, independent learning is used to deal with
large-scale cluster problems to avoid the complexity brought by
centralized learning; second, for algorithms with centralized
learning architecture, optimization algorithms and network itself
are optimized, that is, task decomposition, simplifying network
structures, and information compression to alleviate
dimensional disasters.

5.2.1.1 Independent learning
Independent learning inherently does not have scalability

issues and does not need to consider the state-action of other
agents in the cluster, making independent decisions, thus not
affected by system scale. Fan T. et al. (2018) and Long et al. (2018)
proposed independent QL based multi-robot collision avoidance
algorithms. Each robot uses radar to perceive the surrounding
environment as input variables of the network. Embedding
independent QL algorithms in the multi-agent platform
effectively solves the action decision problem for a large
number of agents. DIAL (Foerster et al., 2016) and CommNet
(Sukhbaatar et al., 2016) algorithms introduced communication
mechanisms between agents to learn communication protocols
through feedback mechanisms, making independent learning
methods effectively solve the dimensional disaster problem.
Zhang et al. (Zhang et al., 2019) proposed a QCOMBO
algorithm for optimizing the global traffic state of large-scale

road networks. By combining the advantages of independent and
centralized learning and selecting actions from separate
optimized utility functions, scalability is ensured. This utility
function is maximized through a new consistency regularization
loss between separate utilities and global action-value functions.
Wang et al. (Wang W. et al., 2022) used the independent learning
paradigm to extend single-agent reinforcement learning
algorithms to multi-agent scenarios, solving the scalability
problem of UAV swarms. Although the above methods can
effectively avoid dimensional disasters and improve the

FIGURE 10
Comparison of the number of literatures.

FIGURE 11
Comparison of the number of publications on MARL methods.

Frontiers in Industrial Engineering frontiersin.org24

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


convergence speed of the algorithm, this approach has no
communication with the outside world, leading to
environmental non-stationarity and partial observability issues
(Nguyen et al., 2020), which limits the application of such
algorithms.

5.2.1.2 Task decomposition and simplifying network
structures

The CTDE paradigm can effectively avoid the partial
observability and non-stationarity issues of independent learning
and is currently the most widely used learning architecture. For this
type of learning method, the convergence of the algorithm and the
learning of the strategy are easily affected by the scale of the cluster.
To address the scalability issues of CTDE-type algorithms, the
mainstream ideas mainly include two aspects: First, using the
idea of hierarchical reinforcement learning, complex tasks are
decomposed into multiple levels, each level handles smaller sub-
tasks, simplifying the decision-making process and reducing the
dimension of the joint decision space (Yin et al., 2020). Second, on
the network structure level, the model architecture is lightened by
pruning and quantization to improve computational efficiency and
performance. Hierarchical reinforcement learning aims to accelerate
learning and improve performance by organizing complex tasks into
different levels. In hierarchical reinforcement learning, the actions
and decisions of agents are organized into a multi-level structure,
with each level responsible for different decision-making issues. This
method can greatly reduce the complexity of the action space and
provide more effective learning and generalization capabilities. Xu
et al. (2023) proposed a hierarchical reinforcement learning
framework to improve the scalability of multi-domain elastic
optical networks. The framework consists of a high-level DRL
module and multiple low-level DRL modules that collaborate
with each other. The proposed HRL framework retains the
autonomy of each domain while providing efficient network
performance through the cooperation of high-level and low-level
DRL modules. Li (2022) proposed a hierarchical architecture
learning paradigm that combines multi-agent algorithms and
single-agent algorithms. By learning hierarchical strategies and
the independence of each level in the model, macro operations
are introduced to reduce the original action space, cleverly
alleviating the scalability issue. Kim and Sung (2023) addressed
the issue that using the same shared parameters among multiple
agents limits the representative capacity of the joint policy, leading
to a decline in collaborative performance. The study applied
structured pruning to deep neural networks, increasing the
representative capacity of the joint policy without introducing
additional parameters, and auxiliary parameter sharing improved
the model’s scalability.

5.2.2 Scenario scalability
MARL has demonstrated tremendous potential in a variety of

application scenarios, but it also faces the issue of scalability.
Scalability is a significant challenge in the field of MARL,
especially when it comes to dealing with a large number of
agents and complex environments. Here are some key points
regarding scalability issues in MARL application scenarios:

The scalability of MARL in scenarios mainly refers to the
ability of the algorithm to effectively transfer the optimal policy

from the source task to a similar but not identical target task,
thereby accelerating the learning process of the target task,
reducing resource consumption in the target task, and
improving the collaboration efficiency and effectiveness among
multi-agents. Research on the scalability of MARL across
scenarios mainly involves three key issues: First, the transfer
between different task domains, where the state and action spaces
of the source and target domains differ, and the mapping
relationship between the two needs to be considered. Second,
when there are multiple available source strategies, how to choose
the source strategy that best fits the target domain to achieve
better transfer and avoid negative transfer. Finally, how to choose
the appropriate transfer learning solution based on the
characteristics of the source domain-target domain task is
related to the final effect of cross-scenario scalability.

Knowledge reuse usually refers to the transfer of learned
models, parameters, rules, or experience to new problems or
domains to improve learning efficiency, accelerate model
training, or improve system performance. Knowledge reuse
can be achieved through various technologies and methods,
such as transfer learning, model fine-tuning, and shared model
parameters. Through knowledge reuse, similar knowledge does
not need to be learned repeatedly, saving training time and
resources, and improving system performance and scalability.
In recent years, many scholars have been committed to using the
idea of parameter sharing to address the scalability issues of
MARL. In terms of algorithm innovation, as early as 2017, Peng
et al. (2017) proposed the BiCNet algorithm to solve the
scalability issue in large-scale environments by introducing a
parameter sharing mechanism, allowing agents to share model
parameters, and showed significant effects in the game of
StarCraft. In the same year, Gupta et al. (2017) applied
DDPG, TRPO, DQN algorithms, and RNN in multi-agent
environments, improving the scalability of the algorithm by
introducing parameter sharing and curriculum learning
mechanisms. Chu and Ye (2017) studied the scalability issue
of MADDPG under local observation conditions and proposed a
parameter-sharing deterministic policy gradient method based
on neural networks, including three variants: Actor-Critic
sharing, Actor sharing, and full Actor sharing. However,
simply using the original parameter sharing often leads to a
high degree of homogeneity in agents. This lack of learning
adjustment for task or individual specificity often suppresses
the diversity between individuals, leading to uneven model
performance and even poor performance on some specific
tasks. Parameter sharing, as an effective means to address the
scalability issues of MARL, has shown its significant advantages
in many studies. However, simple parameter sharing often leads
to a lack of diversity in agents and insufficient policy diversity.
Therefore, optimizing the sharing mechanism, such as
introducing clustering grouping, network structured pruning,
or identity mapping, etc., has effectively improved the training
efficiency and convergence of the model, enhanced the policy
diversity and collaboration ability between agents, but further
improvements are needed in terms of dynamic adaptability,
scalability in complex environments, balance between
individuality and collaboration, and the ability to cope with
non-stationarity issues.

Frontiers in Industrial Engineering frontiersin.org25

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


5.3 Future research directions

5.3.1 Literature quantity comparison analysis
A statistical comparison of the literature quantity in the Scetion

3 of this paper was conducted, comparing the research quantities of
HFSP, FJSP, and other scheduling problems. Through comparative
analysis, it can be found that the research on HFSP and FJSP is
relatively scarce. This finding provides an important reference
direction for future research.

5.3.2 Optimizing the coordination and cooperation
between agents

Due to the increasing complexity of the problem, MARL needs
to further optimize the coordination and cooperation mechanisms
between agents. Specifically, this can be achieved by introducing
more efficient communication mechanisms, designing reasonable
reward and punishment mechanisms, and developing new
algorithms to enhance the collaborative ability of agents.

5.3.3 Reducing training duration and improve
convergence speed

In response to the issues of long training duration and difficulty
in convergence in MARL, future research can start from the
following aspects:

• Algorithm optimization: develop new algorithms or improve
existing algorithms to improve training efficiency;

• Hardware acceleration: use high-performance computing
resources (such as GPUs, TPUs, etc.) to accelerate the
training process;

• Model compression: reduce model size through model
pruning and quantization to improve
computational efficiency;

• Transfer learning: use transfer learning technology to migrate
existing knowledge to new tasks and accelerate the
learning process.

5.3.4 Problem modeling enhancement
Modeling complex scheduling problems is an important

direction for future research. More refined and accurate
mathematical models need to be developed to describe
scheduling problems so that they can be better applied to MARL
methods. At the same time, it is also necessary to consider how to
effectively integrate the constraints of actual production into
the model.

6 Conclusion

The FSSP is one of the core issues in the field of production
scheduling. Effectively solving manufacturing scheduling problems
is an extremely challenging task. In recent years, despite significant
progress made through RL methods, traditional single-agent RL
approaches still have limitations when facing large-scale problems.
Therefore, MARL has emerged as an innovative technology and is
gradually becoming an important means to solve FSSP. The
recognition of MARL’s potential in solving FSSP is continuously
increasing, leading to sustained attention from both academia and

industry. Over the past 5 years, the number of research papers in this
field has been growing, proving that MARL for handling FSSP will
become a hot research topic.

This study begins with a brief description of FSSP and explores
the current state of research on its extended problems, while also
summarizing the progress in MARL research, laying the foundation
for subsequent MARL solutions to FSSP. Then, we proceed from the
application ofMARL in other shop scheduling problems to the study
of FSSP. We organize cutting-edge research from multiple
perspectives, including research questions, methods, and
optimization objectives, and demonstrate its practical effects and
theoretical innovation. Finally, we conclude with a visual analysis of
the paper data and draw the following conclusions.

(1) The lower volume of published studies on HFSP and FJSP, as
compared to other scheduling domains, indicates a relative
lack of exploration in relation to MARL solution approaches.
This finding provides an important reference direction for
future research. Given the limited research on MARL in
HFSP, future studies should focus on these two areas. By
filling this research gap, we can promote the development of
MARL in a broader range of industrial application scenarios.

(2) In the field of MARL, researchers prefer to apply DQN
methods. Due to the relative simplicity and high efficiency
of QL methods, they have been widely recognized and
adopted in both practical applications and
theoretical research.

(3) Current research on FSSP mainly focuses on single-objective
optimization problems. However, through literature analysis,
it has been observed that scholars have already achieved
promising results by using MARL to solve FSSP.
Therefore, the future trend could expand into multi-
objective optimization research to better meet the diverse
needs of actual industrial environments.

(4) When dealing with large-scale problems, MARL should adopt
methods of problem decomposition to simplify problems and
network structures, and design effective multi-agent
collaboration mechanisms to achieve efficient cooperation
among agents. This approach can enhance the scalability and
practicality of the algorithms.

Through the aforementioned research results, we have identified
new scenarios to focus on in FSSP and proposed an approach to
decompose more complex problems into multiple sub-problems for
resolution. At the level of MARL methods, we need to consider how
to design agents and how to structure MDP, while ensuring efficient
collaboration among the agents. With the continuous improvement
of MARL methods, MARL is expected to solve more complex FSSP
such as FOSP. These research directions will not only help advance
MARL technology but also provide new perspectives and solutions
for tackling complex scheduling problems in the industrial sector.

Author contributions

WX: Conceptualization, Formal Analysis, Methodology,
Supervision, Writing – review and editing. JG: Conceptualization,
Data curation, Investigation, Methodology, Writing – original draft,

Frontiers in Industrial Engineering frontiersin.org26

Xu et al. 10.3389/fieng.2025.1611512

https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


Writing – review and editing. WZ: Conceptualization, Formal
Analysis, Funding acquisition, Methodology, Project
administration, Supervision, Writing – review and editing. MG:
Conceptualization, Data curation, Formal Analysis, Supervision,
Validation, Writing – review and editing. HO: Conceptualization,
Formal Analysis, Validation, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. Science & Technology
Research Project of Henan Province (232102211049), Open Fund of
Key Laboratory of Grain Information Processing and Control,
Ministry of Education (KFJJ2023005), Zhengzhou Science and
Technology Collaborative Innovation Project (21ZZXTCX19),
Open Fund of Institute for Complexity Science, Henan
University of Technology (CSKFJJ-2024-29), and Scientific
Research (C) of Japan Society of Promotion of Science
(JSPS) (19K12148).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Andrew, A. M., and Barto, A. G. (1999). Reinforcement learning: an introduction by
Richard S. Sutton and Andrew G. Barto, Adaptive computation and machine learning
series, MIT Press (bradford book), Cambridge, Mass., 1998, xviii + 322 pp, ISBN 0-262-
19398-1, (hardback, £31.95). Robotica 17, 229–235. doi:10.1017/s0263574799211174

Baer, S., Bakakeu, J., Meyes, R., and Meisen, T. (2019). “Multi-agent reinforcement
learning for job shop scheduling in flexible manufacturing systems,” in 2019 Second
International Conference on Artificial Intelligence for Industries (AI4I), Laguna Hills,
CA, USA, 25-27 September 2019 (IEEE), 22–25.

Bahrpeyma, F., and Reichelt, D. (2022). A review of the applications of multi-agent
reinforcement learning in smart factories. Front. Robotics AI 9, 1027340. doi:10.3389/
frobt.2022.1027340

Berto, F., Hua, C., Luttmann, L., Son, J., Park, J., Ahn, K., et al. (2024). PARCO:
learning parallel autoregressive policies for efficient multi-agent combinatorial
optimization. arXiv preprint arXiv:2409.03811.

Bouazza, W., Sallez, Y., and Beldjilali, B. (2017). A distributed approach solving
partially flexible job-shop scheduling problem with a q-learning effect. IFAC-
PapersOnLine 50, 15890–15895. doi:10.1016/j.ifacol.2017.08.2354

Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey of
multiagent reinforcement learning. IEEE Trans. Syst. Man, Cybern. Part C Appl. Rev. 38,
156–172. doi:10.1109/tsmcc.2007.913919

Cao, Z., Lin, C., Zhou, M., and Wen, X. (2024). Learning-based genetic algorithm to
schedule an extended flexible job shop. IEEE Trans. Cybern. 54, 6909–6920. doi:10.
1109/tcyb.2024.3413054

Chen, Q. (2021). NQMIX: non-Monotonic value function factorization for deep multi-
agent reinforcement learning. arXiv preprint arXiv:2104.01939.

Chu, X., and Ye, H. (2017). Parameter sharing deep deterministic policy gradient for
cooperative multi-agent reinforcement learning. arXiv preprint arXiv:1710.00336.

Deng, L., Di, Y., andWang, L. (2024). A reinforcement-learning-based 3-d estimation
of distribution algorithm for fuzzy distributed hybrid flow-shop scheduling considering
on-time-delivery. IEEE Trans. Cybern. 54, 1024–1036. doi:10.1109/tcyb.2023.3336656

Drugan, M. M. (2019). Reinforcement learning versus evolutionary computation: a survey
on hybrid algorithms. Swarm Evol. Comput. 44, 228–246. doi:10.1016/j.swevo.2018.03.011

Du, Y., Li, J., Li, C., and Duan, P. (2024). A reinforcement learning approach for
flexible job shop scheduling problem with crane transportation and setup times. IEEE
Trans. Neural Netw. Learn. Syst. 35, 5695–5709. doi:10.1109/tnnls.2022.3208942

Fan, K., Zhai, Y., Li, X., and Wang, M. (2018a). Review and classification of hybrid
shop scheduling. Prod. Eng. 12, 597–609. doi:10.1007/s11740-018-0832-1

Fan, T., Long, P., Liu, W., and Pan, J. (2018b). Fully distributed multi-robot collision
avoidance via deep reinforcement learning for safe and efficient navigation in complex
scenarios. arXiv preprint arXiv:1808.03841.

Foerster, J., Assael, I. A., De Freitas, N., and Whiteson, S. (2016). Learning to
communicate with deep multi-agent reinforcement learning. Adv. Neural Inf.
Process. Syst. 29. doi:10.48550/arXiv.1605.06676

Fu, Q., Qiu, T., Pu, Z., Yi, J., and Yuan, W. (2022). “A cooperation graph approach for
multiagent sparse reward reinforcement learning,” in 2022 International Joint
Conference on Neural Networks (IJCNN), Padua, Italy, 18-23 July 2022 (IEEE), 1–8.

Gao, J., Sun, L., and Gen, M. (2008). A hybrid genetic and variable neighborhood
descent algorithm for flexible job shop scheduling problems. Comput. and Operations
Res. 35, 2892–2907. doi:10.1016/j.cor.2007.01.001

Gerpott, F. T., Lang, S., Reggelin, T., Zadek, H., Chaopaisarn, P., and Ramingwong, S.
(2022). Integration of the a2c algorithm for production scheduling in a two-stage hybrid
flow shop environment. Procedia Comput. Sci. 200, 585–594. doi:10.1016/j.procs.2022.
01.256

Gholami, H., and Sun, H. (2023). Toward automated algorithm configuration for
distributed hybrid flow shop scheduling with multiprocessor tasks. Knowledge-Based
Syst. 264, 110309. doi:10.1016/j.knosys.2023.110309

Gu,W., Liu, S., Guo, Z., Yuan,M., and Pei, F. (2024). Dynamic scheduling mechanism
for intelligent workshop with deep reinforcement learning method based on multi-
agent system architecture. Comput. and Industrial Eng. 191, 110155. doi:10.1016/j.cie.
2024.110155

Gui, Y., Zhang, Z., Tang, D., Zhu, H., and Zhang, Y. (2024). Collaborative dynamic
scheduling in a self-organizing manufacturing system using multi-agent reinforcement
learning. Adv. Eng. Inf. 62, 102646. doi:10.1016/j.aei.2024.102646

Guirchoun, S., Martineau, P., and Billaut, J.-C. (2005). Total completion time
minimization in a computer system with a server and two parallel processors.
Comput. and Operations Res. 32, 599–611. doi:10.1016/j.cor.2003.08.007

Gupta, J. K., Egorov, M., and Kochenderfer, M. (2017). “Cooperative multi-agent
control using deep reinforcement learning,” in Autonomous Agents and Multiagent
Systems: AAMAS 2017 Workshops, Best Papers, São Paulo, Brazil, May 8-12, 2017
(Springer), 66–83.

Heik, D., Bahrpeyma, F., and Reichelt, D. (2024). Study on the application of single-
agent and multi-agent reinforcement learning to dynamic scheduling in manufacturing
environments with growing complexity: case study on the synthesis of an industrial iot
test bed. J. Manuf. Syst. 77, 525–557. doi:10.1016/j.jmsy.2024.09.019

Huo, S., and Wu, W. (2023). “Multi-objective FJSP based on multi-agent
reinforcement learning algorithm,” in 2023 6th International Conference on
Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 22-
24 September 2023 (IEEE), 341–343.

Jing, X., Yao, X., Liu, M., and Zhou, J. (2024). Multi-agent reinforcement learning
based on graph convolutional network for flexible job shop scheduling. J. Intelligent
Manuf. 35, 75–93. doi:10.1007/s10845-022-02037-5

Johnson, D., Chen, G., and Lu, Y. (2024). “Multi-agent scheduler for the continuous
dynamic flexible job shop scheduling problem,” in 2024 IEEE 20th International
Conference on Automation Science and Engineering (CASE), Bari, Italy, 28 August
2024–01 September 2024 (IEEE), 2924–2930.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement learning: a
survey. J. Artif. Intell. Res. 4, 237–285. doi:10.1613/jair.301

Frontiers in Industrial Engineering frontiersin.org27

Xu et al. 10.3389/fieng.2025.1611512

https://doi.org/10.1017/s0263574799211174
https://doi.org/10.3389/frobt.2022.1027340
https://doi.org/10.3389/frobt.2022.1027340
https://doi.org/10.1016/j.ifacol.2017.08.2354
https://doi.org/10.1109/tsmcc.2007.913919
https://doi.org/10.1109/tcyb.2024.3413054
https://doi.org/10.1109/tcyb.2024.3413054
https://doi.org/10.1109/tcyb.2023.3336656
https://doi.org/10.1016/j.swevo.2018.03.011
https://doi.org/10.1109/tnnls.2022.3208942
https://doi.org/10.1007/s11740-018-0832-1
https://doi.org/10.48550/arXiv.1605.06676
https://doi.org/10.1016/j.cor.2007.01.001
https://doi.org/10.1016/j.procs.2022.01.256
https://doi.org/10.1016/j.procs.2022.01.256
https://doi.org/10.1016/j.knosys.2023.110309
https://doi.org/10.1016/j.cie.2024.110155
https://doi.org/10.1016/j.cie.2024.110155
https://doi.org/10.1016/j.aei.2024.102646
https://doi.org/10.1016/j.cor.2003.08.007
https://doi.org/10.1016/j.jmsy.2024.09.019
https://doi.org/10.1007/s10845-022-02037-5
https://doi.org/10.1613/jair.301
https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


Kayhan, B. M., and Yildiz, G. (2023). Reinforcement learning applications to machine
scheduling problems: a comprehensive literature review. J. Intelligent Manuf. 34,
905–929. doi:10.1007/s10845-021-01847-3

Kim, W., and Sung, Y. (2023). Parameter sharing with network pruning for scalable
multi-agent deep reinforcement learning. arXiv preprint arXiv:2303.00912.

Kim, Y. G., Lee, S., Son, J., Bae, H., and Chung, B. D. (2020). Multi-agent system and
reinforcement learning approach for distributed intelligence in a flexible smart
manufacturing system. J. Manuf. Syst. 57, 440–450. doi:10.1016/j.jmsy.2020.11.004

Kodama, N., Harada, T., and Miyazaki, K. (2022). Traffic signal control system using
deep reinforcement learning with emphasis on reinforcing successful experiences. IEEE
Access 10, 128943–128950. doi:10.1109/access.2022.3225431

Lei, K., Guo, P., Zhao, W., Wang, Y., Qian, L., Meng, X., et al. (2022). A multi-action
deep reinforcement learning framework for flexible job-shop scheduling problem.
Expert Syst. Appl. 205, 117796. doi:10.1016/j.eswa.2022.117796

Li, B. (2022). “Hierarchical architecture for multi-agent reinforcement learning in
intelligent game,” in 2022 International Joint Conference on Neural Networks (IJCNN),
Padua, Italy, 18-23 July 2022 (IEEE), 1–8.

Li, Y., Wang, Q., Li, X., Gao, L., Fu, L., Yu, Y., et al. (2025). Real-time scheduling for
flexible job shop with agvs using multiagent reinforcement learning and efficient action
decoding. IEEE Trans. Syst. Man, Cybern. Syst. 55, 2120–2132. doi:10.1109/tsmc.2024.
3520381

Liang, L., Sun, S., Hao, Z., and Yang, Y. (2025). Structural entropy-based scheduler for
job planning problems using multi-agent reinforcement learning. Int. J. Mach. Learn.
Cybern., 1–18. doi:10.1007/s13042-024-02504-w

Lin, C.-C., Peng, Y.-C., Chang, Y.-S., and Chang, C.-H. (2024). Reentrant hybrid flow
shop scheduling with stockers in automated material handling systems using deep
reinforcement learning. Comput. and Industrial Eng. 189, 109995. doi:10.1016/j.cie.
2024.109995

Liu, R., Piplani, R., and Toro, C. (2022). Deep reinforcement learning for dynamic
scheduling of a flexible job shop. Int. J. Prod. Res. 60, 4049–4069. doi:10.1080/00207543.
2022.2058432

Liu, W.-B., and Wang, X.-J. (2009). Dynamic decision model in evolutionary games
based on reinforcement learning. Syst. Engineering-Theory and Pract. 29, 28–33. doi:10.
1016/s1874-8651(10)60008-7

Liu, Y., Fan, J., Zhao, L., Shen, W., and Zhang, C. (2023a). Integration of deep
reinforcement learning and multi-agent system for dynamic scheduling of re-entrant
hybrid flow shop considering worker fatigue and skill levels. Robotics Computer-
Integrated Manuf. 84, 102605. doi:10.1016/j.rcim.2023.102605

Liu, Y., Shen, W., Zhang, C., and Sun, X. (2023b). Agent-based simulation and
optimization of hybrid flow shop considering multi-skilled workers and fatigue factors.
Robotics Computer-Integrated Manuf. 80, 102478. doi:10.1016/j.rcim.2022.102478

Long, P., Fan, T., Liao, X., Liu, W., Zhang, H., and Pan, J. (2018). “Towards optimally
decentralized multi-robot collision avoidance via deep reinforcement learning,” in
2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
QLD, Australia, 21-25 May 2018 (IEEE), 6252–6259.

Luo, S. (2020). Dynamic scheduling for flexible job shop with new job insertions by
deep reinforcement learning. Appl. Soft Comput. 91, 106208. doi:10.1016/j.asoc.2020.
106208

Luo, S., Zhang, L., and Fan, Y. (2021a). Dynamic multi-objective scheduling for
flexible job shop by deep reinforcement learning. Comput. and Industrial Eng. 159,
107489. doi:10.1016/j.cie.2021.107489

Luo, S., Zhang, L., and Fan, Y. (2022). Real-time scheduling for dynamic partial-no-
wait multiobjective flexible job shop by deep reinforcement learning. IEEE Trans.
Automation Sci. Eng. 19, 3020–3038. doi:10.1109/tase.2021.3104716

Lv, L., Fan, J., Zhang, C., and Shen, W. (2025). A multi-agent reinforcement learning
based scheduling strategy for flexible job shops under machine breakdowns. Robotics
Computer-Integrated Manuf. 93, 102923. doi:10.1016/j.rcim.2024.102923

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al.
(2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi:10.1038/nature14236

Natan, O., andMiura, J. (2023). End-to-end autonomous driving with semantic depth
cloud mapping and multi-agent. IEEE Trans. Intelligent Veh. 8, 557–571. doi:10.1109/
tiv.2022.3185303

Nguyen, T. T., Nguyen, N. D., and Nahavandi, S. (2020). Deep reinforcement learning
for multiagent systems: a review of challenges, solutions, and applications. IEEE Trans.
Cybern. 50, 3826–3839. doi:10.1109/tcyb.2020.2977374

Nowé, A., Vrancx, P., and De Hauwere, Y.-M. (2012). “Game theory and multi-agent
reinforcement learning,” in Reinforcement learning: state-of-the-art (Springer),
441–470.

Oh, S. H., Cho, Y. I., and Woo, J. H. (2023). “Applying multi-agent reinforcement
learning and graph neural networks to flexible job shop scheduling problem,” in IFIP
International Conference on Advances in Production Management Systems (Springer),
506–519.

Oroojlooy, A., and Hajinezhad, D. (2023). A review of cooperative multi-agent deep
reinforcement learning. Appl. Intell. 53, 13677–13722. doi:10.1007/s10489-022-04105-y

Ortiz, A., Weber, T., and Klein, A. (2021). Multi-agent reinforcement learning for
energy harvesting two-hop communications with a partially observable system state.
IEEE Trans. Green Commun. Netw. 5, 442–456. doi:10.1109/tgcn.2020.3026453

Peng, P., Wen, Y., Yang, Y., Yuan, Q., Tang, Z., Long, H., et al. (2017). Multiagent
bidirectionally-coordinated nets: emergence of human-level coordination in learning to
play starcraft combat games. arXiv preprint arXiv:1703.10069.

Peng, S., Xiong, G., Yang, J., Shen, Z., Tamir, T. S., Tao, Z., et al. (2023). Multi-agent
reinforcement learning for extended flexible job shop scheduling. Machines 12 (8), 8.
doi:10.3390/machines12010008

Pol, S., Baer, S., Turner, D., Samsonov, V., and Meisen, T. (2021). Global reward
design for cooperative agents to achieve flexible production control under real-time
constraints. Proc. 23rd Int. Conf. Enterp. Inf. Syst. 1, 515–526. doi:10.5220/
0010455805150526

Popper, J., Motsch, W., David, A., Petzsche, T., and Ruskowski, M. (2021). “Utilizing
multi-agent deep reinforcement learning for flexible job shop scheduling under
sustainable viewpoints,” in 2021 International Conference on Electrical, Computer,
Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius,
07-08 October 2021 (IEEE), 1–6.

Popper, J., and Ruskowski, M. (2022). Using multi-agent deep reinforcement learning
for flexible job shop scheduling problems. Procedia CIRP 112, 63–67. doi:10.1016/j.
procir.2022.09.039

Pu, Y., Li, F., and Rahimifard, S. (2024). Multi-agent reinforcement learning for job
shop scheduling in dynamic environments. Sustainability 16, 3234. doi:10.3390/
su16083234

Qin, Z., Johnson, D., and Lu, Y. (2023). Dynamic production scheduling towards self-
organizing mass personalization: a multi-agent dueling deep reinforcement learning
approach. J. Manuf. Syst. 68, 242–257. doi:10.1016/j.jmsy.2023.03.003

Qin, Z., and Lu, Y. (2024). Knowledge graph-enhanced multi-agent reinforcement
learning for adaptive scheduling in smart manufacturing. J. Intelligent Manuf., 1–24.
doi:10.1007/s10845-024-02494-0

Ran, P., Jiang, B., Wang, S., Li, X., and Qin, L. (2024). “Dynamic hybrid flow shop
scheduling in multi-agent manufacturing systems via federated transfer learning,” in
2024 43rd Chinese Control Conference (CCC) (IEEE), 6893–6898.

Rashid, T., Farquhar, G., Peng, B., and Whiteson, S. (2020). Weighted qmix:
expanding monotonic value function factorisation for deep multi-agent
reinforcement learning. Adv. neural Inf. Process. Syst. 33, 10199–10210. Available
online at : https://proceedings.neurips.cc/paper_fi les/paper/2020/hash/
73a427badebe0e32caa2e1fc7530b7f3-Abstract.html.

Rossi, A., and Dini, G. (2007). Flexible job-shop scheduling with routing flexibility
and separable setup times using ant colony optimisation method. Robotics Computer-
Integrated Manuf. 23, 503–516. doi:10.1016/j.rcim.2006.06.004

Ruiz, R., and Vázquez-Rodríguez, J. A. (2010). The hybrid flow shop scheduling
problem. Eur. J. Operational Res. 205, 1–18. doi:10.1016/j.ejor.2009.09.024

Schwab, D., Zhu, Y., and Veloso, M. (2018). “Zero shot transfer learning for robot
soccer,” in Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, 2070–2072.

Seo, M., Vecchietti, L. F., Lee, S., and Har, D. (2019). Rewards prediction-based credit
assignment for reinforcement learning with sparse binary rewards. IEEE Access 7,
118776–118791. doi:10.1109/access.2019.2936863

Shen, L., Dauzère-Pérès, S., and Neufeld, J. S. (2018). Solving the flexible job shop
scheduling problem with sequence-dependent setup times. Eur. J. Operational Res. 265,
503–516. doi:10.1016/j.ejor.2017.08.021

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y. (2019). “Qtran:
learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” in International conference on machine learning
(PMLR), Cambridge, MA, 5887–5896. Available online at: https://proceedings.
mlr.press/v97/son19a.html.

Sukhbaatar, S., Szlam, A., and Fergus, R. (2016). Learning multiagent communication
with backpropagation. Adv. Neural Inf. Process. Syst. 29. doi:10.48550/arXiv.1605.07736

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M.,
et al. (2017). Value-decomposition networks for cooperative multi-agent learning. arXiv
preprint arXiv:1706.05296.

Tacken, A. M. L. (2021). “Msc thesis A multi-agent reinforcement learning approach
for the hybrid flow shop problem,”. Ph.D. thesis (Tilburg University). Available online
at: https://arno.uvt.nl/show.cgi?fid=157805.

Wang, H., Lin, W., Peng, T., Xiao, Q., and Tang, R. (2025a). Multi-agent deep
reinforcement learning-based approach for dynamic flexible assembly job shop
scheduling with uncertain processing and transport times. Expert Syst. Appl. 270,
126441. doi:10.1016/j.eswa.2025.126441

Wang, J., Ren, Z., Liu, T., Yu, Y., and Zhang, C. (2020). Qplex: Duplex dueling multi-
agent q-learning. arXiv preprint arXiv:2008.01062.

Wang, M., Zhang, J., Zhang, P., Cui, L., and Zhang, G. (2022a). Independent double
DQN-based multi-agent reinforcement learning approach for online two-stage hybrid
flow shop scheduling with batch machines. J. Manuf. Syst. 65, 694–708. doi:10.1016/j.
jmsy.2022.11.001

Frontiers in Industrial Engineering frontiersin.org28

Xu et al. 10.3389/fieng.2025.1611512

https://doi.org/10.1007/s10845-021-01847-3
https://doi.org/10.1016/j.jmsy.2020.11.004
https://doi.org/10.1109/access.2022.3225431
https://doi.org/10.1016/j.eswa.2022.117796
https://doi.org/10.1109/tsmc.2024.3520381
https://doi.org/10.1109/tsmc.2024.3520381
https://doi.org/10.1007/s13042-024-02504-w
https://doi.org/10.1016/j.cie.2024.109995
https://doi.org/10.1016/j.cie.2024.109995
https://doi.org/10.1080/00207543.2022.2058432
https://doi.org/10.1080/00207543.2022.2058432
https://doi.org/10.1016/s1874-8651(10)60008-7
https://doi.org/10.1016/s1874-8651(10)60008-7
https://doi.org/10.1016/j.rcim.2023.102605
https://doi.org/10.1016/j.rcim.2022.102478
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1016/j.asoc.2020.106208
https://doi.org/10.1016/j.cie.2021.107489
https://doi.org/10.1109/tase.2021.3104716
https://doi.org/10.1016/j.rcim.2024.102923
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/tiv.2022.3185303
https://doi.org/10.1109/tiv.2022.3185303
https://doi.org/10.1109/tcyb.2020.2977374
https://doi.org/10.1007/s10489-022-04105-y
https://doi.org/10.1109/tgcn.2020.3026453
https://doi.org/10.3390/machines12010008
https://doi.org/10.5220/0010455805150526
https://doi.org/10.5220/0010455805150526
https://doi.org/10.1016/j.procir.2022.09.039
https://doi.org/10.1016/j.procir.2022.09.039
https://doi.org/10.3390/su16083234
https://doi.org/10.3390/su16083234
https://doi.org/10.1016/j.jmsy.2023.03.003
https://doi.org/10.1007/s10845-024-02494-0
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2020/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://doi.org/10.1016/j.rcim.2006.06.004
https://doi.org/10.1016/j.ejor.2009.09.024
https://doi.org/10.1109/access.2019.2936863
https://doi.org/10.1016/j.ejor.2017.08.021
https://proceedings.mlr.press/v97/son19a.html
https://proceedings.mlr.press/v97/son19a.html
https://doi.org/10.48550/arXiv.1605.07736
https://arno.uvt.nl/show.cgi?fid=157805
https://doi.org/10.1016/j.eswa.2025.126441
https://doi.org/10.1016/j.jmsy.2022.11.001
https://doi.org/10.1016/j.jmsy.2022.11.001
https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512


Wang, R., Jing, Y., Gu, C., He, S., and Chen, J. (2025). End-to-end multi-target flexible
job shop scheduling with deep reinforcement learning. IEEE Internet Things J. 12,
4420–4434. doi:10.1109/jiot.2024.3485748

Wang, W., Wang, L., Wu, J., Tao, X., and Wu, H. (2022b). Oracle-guided deep
reinforcement learning for large-scale multi-uavs flocking and navigation. IEEE Trans.
Veh. Technol. 71, 10280–10292. doi:10.1109/tvt.2022.3184043

Wang, W., Zhang, Y., Wang, Y., Pan, G., and Feng, Y. (2025b). Hierarchical
multi-agent deep reinforcement learning for dynamic flexible job-shop
scheduling with transportation. Int. J. Prod. Res., 1–28. doi:10.1080/00207543.
2025.2511239

Wang, X., Liang, Z., Zhong, P., Li, D., Li, H., and Liu, M. (2025c). Multi-objective
scheduling for green flexible assembly job-shop system via multi-agent deep
reinforcement learning with game theory. IEEE Access 13, 103417–103438. doi:10.
1109/access.2025.3577044

Waseem, M., and Chang, Q. (2024). From nash q-learning to nash-MADDPG:
advancements in multiagent control for multiproduct flexible manufacturing systems.
J. Manuf. Syst. 74, 129–140. doi:10.1016/j.jmsy.2024.03.004

Xu, L., Huang, Y.-C., Xue, Y., and Hu, X. (2023). Hierarchical reinforcement learning
in multi-domain elastic optical networks to realize joint RMSA. J. Light. Technol. 41,
2276–2288. doi:10.1109/jlt.2023.3235039

Xu, Y., Yu, J., and Buehrer, R. M. (2020). The application of deep reinforcement
learning to distributed spectrum access in dynamic heterogeneous environments with
partial observations. IEEE Trans. Wirel. Commun. 19, 4494–4506. doi:10.1109/twc.
2020.2984227

Yan, Y., Yi, W., Pei, Z., and Chen, Y. (2025). Multi-agent reinforcement learning for
distributed flexible job shop scheduling with random job arrival. IEEE Access 13,
80941–80957. doi:10.1109/access.2025.3564433

Yang, N., Ding, B., Shi, P., and Feng, D. (2022). “Improving scalability of multi-agent
reinforcement learning with parameters sharing,” in 2022 IEEE International
Conference on Joint Cloud Computing (JCC), Fremont, CA, USA, 15-18 August
2022 (IEEE), 37–42.

Yang, Y., Hao, J., Liao, B., Shao, K., Chen, G., Liu, W., et al. (2020). Qatten: a general
framework for cooperative multiagent reinforcement learning. arXiv preprint arXiv:
2002.03939.

Yin, C., Yang, R., Zhu, W., Qiu, X., and Li, F. (2020). A survey on multi-agent
hierarchical reinforcement learning. CAAI Trans. Intell. Syst. 15, 646–655. Available
online at: https://tis.hrbeu.edu.cn/EN/oa/darticle.aspx?type=viewi&id=201909027.

Yuan, M., Huang, H., Li, Z., Zhang, C., Pei, F., and Gu, W. (2023). A multi-agent
double deep-q-network based on state machine and event stream for flexible job shop
scheduling problem. Adv. Eng. Inf. 58, 102230. doi:10.1016/j.aei.2023.102230

Zhang, F., Mei, Y., Nguyen, S., and Zhang, M. (2021). Evolving scheduling heuristics
via genetic programming with feature selection in dynamic flexible job-shop scheduling.
IEEE Trans. Cybern. 51, 1797–1811. doi:10.1109/tcyb.2020.3024849

Zhang, J.-D., He, Z., Chan, W.-H., and Chow, C.-Y. (2023a). DeepMAG: deep
reinforcement learning with multi-agent graphs for flexible job shop scheduling.
Knowledge-Based Syst. 259, 110083. doi:10.1016/j.knosys.2022.110083

Zhang, K., Yang, Z., and Başar, T. (2021). “Multi-agent reinforcement learning: a
selective overview of theories and algorithms,” in Handbook of reinforcement learning
and control, 321–384.

Zhang, L., Yan, Y., and Hu, Y. (2024a). Dynamic flexible scheduling with
transportation constraints by multi-agent reinforcement learning. Eng. Appl. Artif.
Intell. 134, 108699. doi:10.1016/j.engappai.2024.108699

Zhang, L., Yan, Y., Yang, C., and Hu, Y. (2024b). Dynamic flexible job-shop
scheduling by multi-agent reinforcement learning with reward-shaping. Adv. Eng.
Inf. 62, 102872. doi:10.1016/j.aei.2024.102872

Zhang, N., Shen, Y., Du, Y., Chen, L., and Zhang, X. (2023b). Counterfactual-
attention multi-agent reinforcement learning for joint condition-based maintenance
and production scheduling. J. Manuf. Syst. 71, 70–81. doi:10.1016/j.jmsy.2023.08.011

Zhang, Z., Yang, J., and Zha, H. (2019). Integrating independent and centralized multi-
agent reinforcement learning for traffic signal network optimization. arXiv preprint
arXiv:1909.10651.

Zheng, J., Zhao, Y., Li, Y., Li, J., Wang, L., and Yuan, D. (2025). Dynamic flexible flow
shop scheduling via cross-attention networks and multi-agent reinforcement learning.
J. Manuf. Syst. 80, 395–411. doi:10.1016/j.jmsy.2025.03.005

Zhu, X., Xu, J., Ge, J., Wang, Y., and Xie, Z. (2023). Multi-task multi-agent
reinforcement learning for real-time scheduling of a dual-resource flexible job shop
with robots. Processes 11, 267. doi:10.3390/pr11010267

Frontiers in Industrial Engineering frontiersin.org29

Xu et al. 10.3389/fieng.2025.1611512

https://doi.org/10.1109/jiot.2024.3485748
https://doi.org/10.1109/tvt.2022.3184043
https://doi.org/10.1080/00207543.2025.2511239
https://doi.org/10.1080/00207543.2025.2511239
https://doi.org/10.1109/access.2025.3577044
https://doi.org/10.1109/access.2025.3577044
https://doi.org/10.1016/j.jmsy.2024.03.004
https://doi.org/10.1109/jlt.2023.3235039
https://doi.org/10.1109/twc.2020.2984227
https://doi.org/10.1109/twc.2020.2984227
https://doi.org/10.1109/access.2025.3564433
https://tis.hrbeu.edu.cn/EN/oa/darticle.aspx?type=viewi&id=201909027
https://doi.org/10.1016/j.aei.2023.102230
https://doi.org/10.1109/tcyb.2020.3024849
https://doi.org/10.1016/j.knosys.2022.110083
https://doi.org/10.1016/j.engappai.2024.108699
https://doi.org/10.1016/j.aei.2024.102872
https://doi.org/10.1016/j.jmsy.2023.08.011
https://doi.org/10.1016/j.jmsy.2025.03.005
https://doi.org/10.3390/pr11010267
https://www.frontiersin.org/journals/industrial-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fieng.2025.1611512

	Multi-agent reinforcement learning for flexible shop scheduling problem: a survey
	1 Introduction
	2 Fundamentals and concepts
	2.1 Flexible shop scheduling problem
	2.1.1 Hybrid flow-shop scheduling problem
	2.1.2 Flexible job-shop scheduling problem

	2.2 Single-agent RL
	2.2.1 Markov decision process
	2.2.2 Value function based methods
	2.2.3 Policy based methods

	2.3 Multi-agent RL
	2.3.1 Multi-agent RL problem representation
	2.3.2 Multi-agent RL methods


	3 MARL for FSSP
	3.1 MARL for HFSP
	3.2 MARL for FJSP

	4 Case study of FSSP by MARL
	4.1 Case study of HFSP by MARL
	4.1.1 Decentralized partially observable Markov decision process
	4.1.2 Algorithm description
	4.1.3 Experimental results and analysis

	4.2 Case study of FJSP by MARL
	4.2.1 Multi-agent partially observable MDP
	4.2.2 Algorithm description
	4.2.3 Experimental results and analysis


	5 Challenges and future directions
	5.1 Analysis and findings
	5.1.1 Problem distribution analysis
	5.1.2 Methodology analysis

	5.2 Key challenges
	5.2.1 Dimensional issues in large-scale scenarios
	5.2.1.1 Independent learning
	5.2.1.2 Task decomposition and simplifying network structures
	5.2.2 Scenario scalability

	5.3 Future research directions
	5.3.1 Literature quantity comparison analysis
	5.3.2 Optimizing the coordination and cooperation between agents
	5.3.3 Reducing training duration and improve convergence speed
	5.3.4 Problem modeling enhancement


	6 Conclusion
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


