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Biohydrogen (bioH2) production in rural regions of the United States leveraged

from existing biomass waste streams serves two extant needs: rural energy

resiliency and decarbonization of heavy industry, including the production of

ammonia and other H2-dependent nitrogenous products. We consider bioH2

production using two different strategies: (1) dark fermentation (DF) and (2)

anaerobic digestion followed by steam methane reforming of the biogas (AD-

SMR). Production of bioH2 from biomass waste streams is a potentially ‘greener’

pathway in comparison to natural gas-steam methane reforming (NG-SMR),

especially as fugitive emissions from these wastes are avoided. It also provides a

decarbonizing potential not found in water-splitting technologies. Based on

literature on DF and AD of crop residues, woody biomass residues from forestry

wastes, and wastewaters containing fats, oils, and grease (FOG), we outline

scenarios for bioH2 production and displacement of fossil fuel derived

methane. Finally, we compare the costs and carbon intensity (CI) of bioH2

production with those of other H2 production pathways.
KEYWORDS

biorefinery, biohydrogen, biogas, dark fermentation, anaerobic digestion,

energy resiliency
1 Introduction

H2 production through renewables could play a major role in combating the effects of

climate change via applications in industrial, transportation and utility/microgrid-scale

electricity, provided the cost of production can be reduced. The Hydrogen Earthshot

initiative (EERE, 2021) targets production of clean hydrogen at a cost of $1 per kg in 1

decade (“111”). Around 70 million metric tons (MMT) of H2 are produced annually, 10

MMT/year in the U.S., with 95% produced by steam methane reforming of natural gas

(NG-SMR) at high temperatures and pressures, i.e., ‘grey H2’. The remainder is produced

by gasification of coal and oil (Ferraren-De Cagalitan and Abundo, 2021). Process

emissions and the use of natural gas as a precursor has led to interest in cleaner
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technologies and feedstocks for H2 production. While ‘green H2’

(produced using renewable energy, usually via electrolysis of water)

has lower emissions than NG-SMR and gasification, those from

biohydrogen (bioH2) can be even lower.

Ideally, bioH2 production leverages an integrated biorefinery

where biomass collection, transport, separations of components,

followed by valorization of intermediates through process streams,

and complete utilization of the feedstock is achieved. BioH2

refineries can produce H2 from waste biomass either directly

through dark fermentation (DF) or through anaerobic digestion

followed by biogas SMR, among others. An ideal bioH2 refinery

would, therefore, utilize process waste biomass residues that are

locally available and produce H2 for use either as a source of fuel for

electricity, or a feedstock for the manufacture of chemicals –

allowing for industrial decarbonization.

For context in production cost and GHG emission, grey H2 has

the lowest cost ~$1/kg H2, but also generates high greenhouse gas

(GHG) emissions (Majumdar et al., 2021). It was estimated that

median CO2 emissions from NG-SMR facilities in the US was ~9 kg

CO2/kg H2 (or ~75 g CO2/MJ) (Sun et al., 2019). Cho, et. al (Cho

et al., 2022). found that H2 production using NG-SMR led to direct

GHG emissions of 9.35 kg CO2e/kg H2 (and 11.2 kg CO2e/kg H2

when upstream emissions of H2 production were included). This

analysis further found that replacing fossil-derived CH4 with

landfill gas and AD-derived biomethane (using animal manure)

as feedstocks reduced the GHG potential by 68% and 54%,

respectively. Other studies have found similar improvements to

the life cycle carbon emissions of H2 production using vegetable oils

(Marquevich et al., 2002) and biomass gasification (Susmozas et al.,

2013), among others.

Several biological pathways exist to produce H2 as described

here. Using water molecules (H2O) as the starting feedstock,

biophotolysis (BP) uses sunlight to dissociate H2O into oxygen

(O2) and hydrogen (H2) by photosynthetic organisms (Kamran,

2021). H2 can also be generated through photo-fermentation (PF)

and dark fermentation (DF) using organic compounds as the

starting feedstock. For photo-fermentation, specialized

photosynthetic organisms (e.g., purple non-sulfur bacteria) use

light energy to convert volatile fatty acids such as acetate,

butyrate, lactate among others to H2 and CO2 without oxygen

(Yin and Wang, 2022), whereas for dark fermentation, H2 is

typically produced from carbohydrates (e.g., glucose, or more

commonly known as “sugars”) anaerobically without light input

(Kamran, 2021). Two-stage processes integrating PF and DF have

also been explored. Amongst these processes, BP suffers low light

conversion efficiency (Oh et al., 2013) and high oxygen sensitivity of

hydrogenase that are specialized enzymes catalyzing the

biosynthesis of H2 from protons (H+) and electrons (e-)

(Ghirardi, 2015). While PF can achieve higher H2 yield than DF,

growth rates of the photo-fermenting bacteria without oxygen are

much lower and the H2 productivity of these bacteria is about two

orders of magnitude lower than that of DF (Zhang and Zhang,

2018). In addition, high cost in feedstock pretreatment and

enzymatic hydrolysis of lignocellulosic biomass that may be
Frontiers in Industrial Microbiology 02
required for photo-fermentative H2 production renders it

economically unfavorable. Taking these together, H2 production

from DF remains compelling and favorable among biological

processes. In-depth description of these processes is beyond the

scope of this paper, but we point to relevant articles that discuss

these (Manish and Banerjee, 2008). The term bioH2 herein refers to

H2 produced using microbial pathways and those using biomass-

based feedstocks.

BioH2 via DF using thermophilic bacteria offers sustainable H2

generation pathways with lower GHG emissions. Utilizing waste

biomass sources (such as crop residues, municipal solid wastes,

seafood industry wastes, etc.) for H2 production using DF can

improve process economics due to reduced feedstock costs. An

advantage of fermentative biological H2 production is reduced

electricity demand—a current study estimated over 50% reduction

in electricity requirement by DF-integrated with microbial

electrolysis cell (MEC) compared with clean H2 produced by water

electrolysis (Liu et al., 2022a). One of the challenges, however, is

incomplete feedstock utilization by the microbial systems due to

biomass recalcitrance and low accessibility to the sugars embedded in

the biomass. Recent research has shown increased H2 production

using Clostridium thermocellum engineered to co-utilize both

cellulose and hemicellulose in waste plant biomass (i.e.,

lignocellulose) through consolidated bioprocessing (CBP) (Xiong

et al., 2018; Chou et al., 2024).

Waste streams high in fats, oils, and grease (FOG), such as fish

and seafood processing wastewaters, have the highest biogas

potential, but also tend to adsorb to sludge and inhibit microbial

activity (Holohan et al., 2022), particularly that of methanogens

(Nges et al., 2012). Anaerobic co-digestion of various wet wastes

with lignocellulosic feedstocks such as sugarcane bagasse, rice

husks, corn stover, etc., which are rich in cellulose and

hemicelluloses, is known to increase biogas and H2 production

(Carver et al., 2011; Li et al., 2013; Bohutskyi et al., 2018; Adarme

et al., 2019; Fernando Herrera Adarme et al., 2022). Anaerobic co-

digestion of FOG with high fiber feedstocks can improve

biomethane potential (BMP), dilute toxins, improve nutrient

balance, and allow for increasing the load of biodegradable

organic matter (Shah et al., 2015). Blending carbohydrate-rich

crop residues could be reasonably expected to enhance bioH2

production from seafood industry wastes and wastewaters

through added minerals and nutrients as well as diluting

inhibitory compounds.

Sparging to lower the partial pressure of H2 in the reactor can

also enhance H2 production (Kim et al., 2023). Biogas CH4 is

separated from CO2 and trace gases such as H2S, NH3, CO, etc.

using processes such as temperature and pressure swing adsorption,

pressurized water scrubbing, membrane separations, etc (Chen

et al., 2015). Due to their lower installation and operational costs,

membranes represent a cost-effective solution for recovery of

biomethane in high purity. Biogas can be upgraded through

multiple reforming processes (Kumar et al., 2022), resulting in H2

production with lower GHG emissions compared to NG-SMR.

Siloxanes, sulfur species, and other gases should be removed to
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increase reaction specificity and reduce energy consumption (Zhao

et al., 2020). Biogas reforming can also overcome the theoretical

Thauer limit of DF processes (4 mol H2 per mol glucose).
2 Technoeconomics and emissions
associated with H2 production

The net energy ratio (NER) for three different bioH2 production

technologies was calculated, and it was found that gasification of forest

residues via the Gas Technology Institute (GTI) gasifier resulted in the

highest NER (of 9.3) with GHG emissions ranging between 1.2 to 8.1

kgCO2e/kgH2 (Kabir and Kumar, 2011). Manish and Banerjee (2008)

compare the efficiency and emissions from several biohydrogen

production processes with those of NG-SMR. DF was compared with

PF, a two-stage process combining DF and PF, and bio-catalyzed

electrolysis, and it was found that efficiencies of the fermentative

approaches improved in comparison to NG-SMR when removal and

utilization of by-products from the former was considered. Carbon

capture and storage (CCS) is another aspect of H2 production that can

reduce emissions. It can potentially add to the costs or offsets cost

through decarbonizing tax credits (e.g., IRA 45Q). Modeling scenarios

project that up to 80% of CO2 emissions in NG-SMR can be

inexpensively abated, whereas the remainder of the 20% are expensive

to avoid (Pruvost et al., 2022). Table 1 shows a compilation of some of

the reported findings on emissions from various H2 production

pathways. In general, the source of electricity plays a key role in

carbon intensity. As exemplified by DF, CI is substantially lower

when renewable electricity is utilized compared to grid electricity.

When renewable electricity is utilized for bioH2 production followed

by CCS, there is a removal of CO2 per kilogramH2 generated (Table 1),

providing a decarbonization potential not associated with H2

production from water-splitting technologies. In essence, not only can

biological H2 displace energy demands currently filled by fossil-derived

energies, concentrated streams of CO2 co-released during the oxidation

of organic compounds for the production of bioH2 from DF can be

removed (Lou et al., 2023) through point-source carbon capture rather

than direct air capture (DAC), with the latter generally understood to be

more energy intensive.

Based on recent technoeconomic analysis for H2 production via

dark fermentation through consolidated bioprocessing (CBP)

configuration (van Zyl et al., 2007), top drivers for the production

cost are capital expenses (CAPEX) in the bioreactor and cost

associated with the feedstock (Randolph et al., 2017). As the cost

of the bioreactor directly correlates with bioreactor footprint,

economic DF must operate at high loadings of lignocellulosic

biomass at high H2 yield for a given amount of feedstock while

minimizing bioreactor footprint. Efficient feedstock deconstruction,

utilization, and conversion to H2 in this condition is therefore a

priority for ongoing research and development through which

novel chassis organisms and bioprocess designs are pursued.
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3 BioH2 in rural energy resiliency

BioH2 can impact energy resiliency where access to reliable

energy is a concern. Disaster recovery and energy resilience are not

equitably distributed—rural areas witness disproportionate impacts

and have been shown to be less energy-resilient than urban regions

(Mitsova et al., 2018). Grid susceptibility is likely to worsen due to

the projected increased frequency of tropical storms as a result of

climate change in combination with aging grid infrastructure

(Casey et al., 2020). Existing power systems that are reliable

under ‘normal conditions’ are not necessarily resilient under

high-impact events (Panteli and Mancarella, 2015; Hussain et al.,

2019). Emergency diesel generators (EDGs) are the main source for

backup power during extended power outages (Phillips et al., 2016)

and can be unreliable (Marqusee and Jenket, 2020), contribute to

greenhouse gas emissions (Jakhrani et al., 2012), require expensive

transported fuel, and have negative human health impacts due to

exhaust exposure (Gilmore et al., 2006; Gilmore et al., 2010).

Microgrids (groups of interconnected loads and distributed

energy resources that act as singular entities and have the ability

to operate in either grid-connected or island modes) are

increasingly suggested as alternatives to EDGs for reliable backup

power during disasters (Callaway et al., 2014). The benefit of

microgrids during power disruptions is that they can avail local

energy assets to improve costs and reliability, particularly for rural

areas (NREL, 2023). Solar photovoltaics (PV) and wind energy have

been typical microgrid candidates, however, the stochastic nature of

these requires the inclusion of backup power sources, historically

fossil fuel-based (Singh et al., 2016). Utilizing biomass resources

such as those generated from agricultural operations or the vision of

utilizing renewable carbons sourced from biogenic waste streams

(Langholtz, 2024) for backup power can reduce the carbon footprint

of microgrids and improve their life cycle emissions (Aberilla et al.,

2019), while improving energy resiliency.

BioH2 production can be leveraged for energy resiliency as

microgrids, either by combustion for power or through the

deployment of H2 fuel cells, the latter having the advantage of

instantaneous deployment. Rural microgrids have been evaluated as

hybrid systems based on solar photovoltaic (PV) or other renewable

energy technologies in combination with biomass-based energy.

Many of these analyses have been conducted for other nations and

typically involve thermochemical biomass conversion (combustion

or gasification) (Mazzola et al., 2016; Kaur et al., 2020; Ribó-Pérez

et al., 2021; Singh and Basak, 2022). Similarly, H2 fuel cells have

been evaluated as potential electrification devices in rural and

remote areas (Cotrell and Pratt, 2003; Munuswamy et al., 2011).

Taking this further, there is the potential for bioH2 to play key roles

in rural electrification and energy resiliency (especially in the

aftermath of emergencies) in the form of microgrids or fuel cells,

especially when incorporating biomass waste residues generated in

these communities.
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4 BioH2 in chemical manufacturing

Of the three waves of clean H2 adoption proposed in the 2023

DOE National Clean Hydrogen Strategy and Roadmap (DOE,

2023), NH3 production was identified as the second-largest

captive market following refining, and was suggested to provide a

stable market for clean H2. Current consumption of H2 produced

from NG-SMR is primarily due to chemical manufacturing of NH3.

Due to its high energy density and ease of shipping internationally,

NH3 is considered an energy carrier and has applications as a direct

fuel source in the electricity, transportation, and heating sectors

(Nayak-Luke et al., 2018; Joseph Sekhar et al., 2024). Approximately

80% of industrial NH3 production is used for fertilizer, indicating

bioH2 for NH3 production could play a major role in decarbonizing

agriculture (Yüzbas ̧ıoğlu et al., 2022). Each ton of NH3 produced via

NG-SMR and tertiary reactions generates 2.6 tons of GHG

emissions over its life cycle (Liu et al., 2020) (or 114.4 g CO2e/MJ

(Busch et al., 2023)); NH3 production can be attributed to 2% of

worldwide fossil fuel consumption, resulting in 420 million tons of

CO2 emissions each year (Liu et al., 2020). In a life cycle assessment

study (Singh et al., 2018) comparing several pathways for NH3

production, it was found that NG-SMR and coal gasification led to

the greatest carbon intensity (CI) of 3.85 kg CO2e/kg NH3, whereas

biomass gasification led to the lowest CI of 0.38 kg CO2e/kg NH3.

Local production of bioH2 as a feedstock for this NH3 production
Frontiers in Industrial Microbiology 04
capacity can aid in emissions reductions and, therefore, decarbonize

a hard-to-abate sector. ‘Green NH3’, produced from bioH2, can

reduce the GHG burdens and CI associated with the fossil fuel

based SMR process.
5 Impact on energy equity for rural,
disadvantaged communities

Applications of bioenergy (including biofuels) in a rural

perspective have previously been explored (Hiloidhari et al.,

2020), leveraging particularly the agroforestry industries in these

regions (Dubois and Kristensen, 2018). A Hungarian study found

that rural ethanol-producing biorefineries can stimulate

employment and drive rural development (Heijman et al., 2019).

Stöhr et al. developed a rural-centric outline to establish a bioH2

value chain comprised of 7 steps that differentiate rural needs from

urban. This study incorporated distinctions between urban and

rural environments by focusing on a central supply chain (hub

concept) versus a distributed/decentralized supply chain, with pros

and cons for each type. They also suggest that community

engagement between population, industry, and stakeholders is

critical when it comes to acceptance and sustainability of

hydrogen production technologies in rural regions (Stöhr et al.,

2024). As conventional H2 production is energy intensive, bioH2

also provides more opportunities for energy-poor areas as it only

requires organic waste and water for production (Goria et al., 2022).

An interesting recent development is technology to convert diesel

engines to run on H2 or diesel/H2 blends (Liu et al., 2022b). In

addition to multiple efforts in developing rural H2 from electrolysis

with renewable energy, efforts are underway to transition rural

communities to bioH2, including transitioning from diesel to dual

fuel to H2 powered generators (ABB in Australia) (ABB, 2023) and

exploring bioH2 from biogas (European Biogas Association)

(EBA, 2024).
6 Discussion

Biohydrogen represents a clean, renewable, low-carbon energy

source for industrial and flexible-scale use. The potential of

producing bioH2 from waste biomass material provides

production options that do not rely on sunlight or wind and can

be bolted on or adapted to existing waste digestors. Rural

communities particularly stand to benefit from this approach as

they tend to be spatially more distributed (compared to urban

areas), have existing waste and agricultural feedstocks available, and

are subject to elevated energy cost and limited supply chain due to

transportation costs and logistics of bringing in outside fuels and

power. As part of a biorefinery, bioH2 production can deliver

localized energy security to communities, especially during

disruptive weather or natural disasters, while enabling other fuels,

chemicals, and bioproducts to be produced locally. Depending on
TABLE 1 Comparison of H2 production pathways.

H2

Technology
CI
(kgCO2e/
kgH2)

Proj.
Cost
($/kgH2)

Refs.

NG-SMR 9–11 ~1 (Sun et al., 2019;
Roussanaly
et al., 2020;
Majumdar
et al., 2021)

NG-SMR-CCS
(Blue H2)

1.1 1.5–2.9 (Roussanaly
et al., 2020;
Majumdar et al.,
2021; Shiva
Kumar and
Lim, 2022)

Electrolysis using
Renewable Energy
(Green H2)

1–1.8 3.6–5.8 (Yadav and
Banerjee, 2020;
Shiva Kumar
and Lim, 2022)

DF using grid
electricity
Grid electricity +
CCS
Using renewable
electricity
Renewable
electricity + CCS

13.5
2.7
2.4
-8.5

3.40–7.91 (Randolph et al.,
2017; Liu
et al., 2022a)

AD-SMR 3.36 1.39 (Braga et al.,
2013; Hajizadeh
et al., 2022)
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the local energy needs and resources, bioH2 could be augmented

with H2 from electrolysis when excess renewable electricity is

available from wind or solar. Advances in converting diesel

engines to run on H2 or H2/diesel blends makes bioH2 even more

attractive as a locally produced, renewable fuel, especially during

energy disruptions in rural areas reliant on generators.

There is a substantial knowledge gap on operational data and

performance pertaining to not only commercial-scale but also pilot-

scale bioH2 systems, a fact underscored by uncertainties associated

with scaleup (Zhang et al., 2024). To our knowledge, there are few

commercial-scale projects that have been announced globally. A

project based in the United Kingdom integrates AD with DF to

produce bioH2 and NH3 from feedstock such as chicken litter

(EcoScience, A, 2024). An operation based in Czechia supplies

modular units ranging between 40 to 120 Nm3/h H2 to produce

bioH2 via AD-SMR (Mega, 2024). The nascent stage of current

implementation of bioH2 is evidence for greater R&D efforts in this

area—the realization of a bioH2 economy will require persistent

R&D with concerted effort in genome editing to produce robust

microbial consortia which can metabolize seasonally-varying

organic waste streams (e.g., changes in feedstock quality due to

prevailing weather, or introduction of new feedstock blends

depending on availability, etc.). Addressing the production cost of

hydrogen and efforts to bring it within parity of costs associated

with NG-SMR will require innovative solutions, particularly

strategies which can integrate bioH2 production methods, such as

DF and PF, and with other co-products which can improve energy

recovery compared to a single-stage H2 production process (Brar

et al., 2022). Technoeconomic assessments of niche applications of

bioH2 as a source of energy (as discussed in Section 4) are needed in

scenarios where the lack of access to reliable energy can lead to loss

of life; such studies can incentivize bioH2 even if it is not currently

cost-competitive against the current grid mix. Along with the

applications of H2 as a fuel source, it would be prudent to explore

additional applications, including H2 utilization in biomass/crude

oil upgrading, production of synthetic fuels and chemicals,

reduction of iron in steelmaking, and finally, NH3 production,

which was briefly discussed in Section 5 (Elgowainy et al., 2020).

We suggest that concerted efforts in laboratory and pilot-scale R&D,
Frontiers in Industrial Microbiology 05
technoeconomic, life-cycle, and regio-specific sociological are

necessary to realize the true potential of a bioH2 economy.
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