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The global agricultural sector faces significant challenges due to increasing

demands from a growing population, limited arable land and the environmental

degradation caused by chemical inputs. As a potential solution, microbial

inoculants, particularly arbuscular mycorrhizal fungi (AMF), offer an eco-friendly

alternative to traditional fertilizers and pesticides. AMF enhance plant growth by

improving nutrient and water uptake while protecting against stressors, fostering

sustainable agriculture. This study explores the production, development, and

application of AMF bioformulations, emphasizing key requirements for their

effectiveness, including strain selection, genetic stability, environmental

compatibility, other beneficial microbial compatibility, and eco-friendly carriers.

Advances in production methods such as substrate-based systems, bioreactors,

and solid media are discussed, along with the role of synergistic microbial

combinations to enhance agricultural productivity. Additionally, challenges in the

stability, shelf-life, and quality control of AMF bioformulations are addressed, with a

focus on adjuvants, fillers, and storage methods. Risk evaluation and biosafety

concerns related to the use of novel microbial strains are examined, particularly in

the context of regulatory frameworks that classify bioformulations as biostimulants

or biopesticides. Barriers to widespread adoption, including farmer awareness,

product quality, and regulatory constraints, are identified. Despite these obstacles,

the potential of mycorrhizal inoculants for sustainable agricultural practices

remains high, provided that ongoing research, development, and collaboration

between stakeholders can address these challenges.
KEYWORDS

mycorrhizal inoculants, bioformulations, shelf-life, sustainable agriculture, genetic
stability, carrier materials, commercialization, arbuscular mycorrhizal fungi
1 Introduction

As of mid-November 2022, the global population reached 8 billion (United Nations,

2022), with 4,781 million hectares of agricultural land, including 1,573 million hectares for

cropland and 3,208 million hectares for meadows and pastures (Food and Agricultural

Organization of the United Nations, 2024). Agriculture relies on light, water, and fertile

soil, but the use of chemical fertilizers and pesticides damages these resources.
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In 2022, global fertilizer use was 185 million metric tons, with

nitrogen fertilizers making up 58%, phosphates 23%, and potash 18%

(Statista, 2024b). Pesticide use also increased to 3.69 million metric

tons, raising concerns due to their harmful effects on non-target

beneficial species and human health like cancer and endocrine

disruption (Statista, 2024a). Chemical fertilizers cause environmental

pollution, soil degradation, greenhouse gas emissions, and reduce crop

quality. They also contribute to water contamination and biodiversity

loss (Phillips, 2022; Das et al., 2023; Jote, 2023). Pesticides, including

herbicides, fungicides, insecticides, and rodenticides, harm beneficial

insects, birds, and aquatic life, and can lead to health issues (Statista,

2024b). Pesticide overuse, as seen in the case of Punjab’s Malwa region,

illustrates the severe health risks faced by farmers and their families,

with rising cancer rates as a stark example of the toll chemical

dependency can take on public health (Das, 2016). The fact that the

government had to intervene with a “cancer train” speaks to the scale of

the crisis and emphasizes the urgency of shifting away from harmful

agricultural chemicals. There is a growing consensus in the scientific

community and agricultural sectors about the necessity of transitioning

to practices that minimize chemical input reliance, focusing on

sustainable and safer alternatives such as integrated pest

management, organic farming, and the use of biological fertilizers

and inoculants. This transition is not only crucial for human health but

for the future viability of our agricultural systems and the environment

at large.

To tackle the environmental issues, eco-friendly solutions like

microbial inoculants provide a viable alternative to chemical inputs.

These inoculants, which act as biofertilizers, bioherbicides,

biopesticides, and biocontrol agents, enhance soil and crop health

while supporting effective pest management, ultimately benefiting

human health (Chaudhary et al., 2024). Microorganisms are known

to help reduce the reliance on fertilizers like nitrogen and

phosphorus by improving nutrient acquisition and breaking

down organic matter (Kumar and Dubey, 2020). Plants and soil

host millions of microorganisms that form the microbiome, which

enhances plant growth, nutrient efficiency, and pest management

(Ray et al., 2020). Additionally, these microbes bolster plant

resilience against various stresses (El-Sharoud, 2019). Research on

plant growth-promoting microorganisms, such as mycorrhizal

fungi, highlights their importance for plant success across diverse

crops and climates (Brundrett and Tedersoo, 2018). This approach

not only supports environmental sustainability but also contributes

to better human health outcomes by reducing the harmful effects of

chemical inputs.

AMF are soil-borne fungi that boost plant growth by enhancing

nutrient and water uptake while protecting against various stresses in

exchange for photosynthetic products (Sun et al., 2018; Basiru and

Hijri, 2022). They belong to the phylum Glomeromycota and form

mutualistic relationships with about 80% of terrestrial plants. AMF are

a sustainable alternative to chemical fertilizers, with their inoculants

containing spores, mycelium, or propagules used in agriculture to

enhance growth, health, and nutrient absorption, particularly

phosphorus and nitrogen, thereby boosting biomass and

photosynthesis (Willis et al., 2012; Berruti et al., 2016; Begum et al.,

2019). AMF improve plant resilience to drought, salinity, and heavy
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metal contamination, and strengthen plant defense mechanisms (Fall

et al., 2022; Wang et al., 2024). As a natural biofertilizers, they reduce

nutrient loss from soil and support plant establishment, making them

vital for sustainable nutrient management (Cavagnaro et al., 2015;

Berruti et al., 2016). They also act as phosphate solubilizers, making

phosphorus more accessible to plants (Seenivasagan and Babalola,

2021; Anand et al., 2022). AMF are cost-effective and efficient Plant

Growth Promoting Microorganisms (PGPM), aiding in nitrogen

fixation and plant hormone production (Allouzi et al., 2022;

Timofeeva et al., 2022). They serve as bioprotectors against diseases,

pests, and weeds by activating plant defense systems and inducing

systemic resistance (Nevalainen, 2020). Additionally, AMF enhance

plant performance under high salinity, temperature extremes, and

heavy metal exposure, making them useful for bioremediation in

areas like deserts and mines (Anand et al., 2022). They are

promising for improving crop resilience in the face of climate change

(Torres et al., 2018). Reintroducing these fungi into the soil, either alone

or with other microorganisms, can maximize their benefits. AMF

inoculation enhances plant growth and yield by increasing nutrient

uptake in Leguminosae crops. While Claroideoglomus boosted

colonization, Rhizophagus and Funneliformis contributed more to

yield. Soil and climate conditions influence the outcomes, with AMF

generally improving productivity based on species and environment (Li

et al., 2025). AMF application enhances crop resilience and

productivity under water deficiency, reducing yield losses. It

improves antioxidant activity, phenols, and ascorbate in tomatoes,

boosts soluble proteins and sugars in date palms, increases osmolyte

content and antioxidant defenses in quinoa, and raises proline levels in

soybeans. AMF promotes better water and nutrient uptake through

extended fungal hyphae, improving overall plant health (Lamaizi et al.,

2024). AMF inoculation can be used as an effective solution for low-P

conditions, improving nutrient acquisition, enhancing physiological

responses, and increasing plant dry biomass in low-fertility soils (Souza

et al., 2025). AMF inoculation significantly improves infection rates,

microbial activity, growth, and grain yield in maize and wheat, making

it a key strategy for enhancing salt tolerance and productivity in saline

soils (Ahammed & Hajiboland, 2024). AMF inoculation in barley

resulted in the highest values for plant height, spike length, spike

weight, number of grains/spikes, 1000-grain weight, and grain yield.

AMF-treated plants showed a 17.27% increase in grain yield,

demonstrating its effectiveness in boosting productivity, improving

drought tolerance, and supporting sustainable farming practices under

water scarcity (Alotaibi et al., 2024). AMF work synergistically with soil

microbiota, including Plant Growth-Promoting Rhizobacteria (PGPR)

such as Azospirillum, Bacillus, Pseudomonas, etc in amplifying plant

growth by promoting nutrient acquisition, producing phytohormones,

offering pathogen protection and stress resilience through a complex

rhizosphere interaction (Cortivo et al., 2017). PGPR improve AMF

colonization by releasing compounds like indole-3-acetic acid (IAA),

which stimulate root growth and increase the surface area for AMF

attachment. Pseudomonas species solubilize phosphate, benefiting both

plants and AMF, thereby supporting better nutrient acquisition and

stress tolerance. Some PGPR strains produce siderophores that chelate

iron, making it more accessible to plants and mitigating heavy metal

toxicity, such as cadmium (Cd) and lead (Pb) (Fatima et al., 2024).
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Therefore, AMF inoculation represents a viable, eco-friendly solution

to enhance agricultural productivity, soil health, and plant resilience,

ensuring more sustainable and climate-resilient food production

systems (Figure 1).

The global agricultural sector increasingly confronted with the dual

challenges of rising food demand and the environmental degradation

caused by conventional farming practices. In response, microbial

inoculants, particularly AMF, have emerged as a promising, eco-

friendly alternative to chemical fertilizers and pesticides. AMF

enhance plant growth by improving nutrient uptake, water

absorption, and stress resistance, making them central to the

development of sustainable agricultural practices. Recent advances in

the commercial formulation of AMF inoculants have focused on

optimizing production methods, including substrate-based systems,

bioreactors, and solidmedia, to ensure scalability and cost-effectiveness.

Furthermore, strain selection prioritized genetic stability and

environmental compatibility, enabling better performance across

diverse agricultural conditions. The potential of synergistic microbial

combinations, integrating AMFwith other beneficial microbes, has also

been explored to enhance agricultural productivity. Despite these

advancements, challenges remain in ensuring the stability, shelf-life,

and quality control of AMF bioformulations, with particular attention

to the role of adjuvants, fillers, and storage methods. Additionally, the

evolving regulatory frameworks for bioformulations, including their

classification as biostimulants or biopesticides, raise important

biosafety concerns. This study aims to highlight these recent

developments, emphasizing the innovative strides made to overcome

existing barriers and the need for continued research and collaboration

to realize the full potential of AMF-based inoculants in sustainable

agriculture ecosystem.
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2 Key requirements for producing
effective bioformulation of
mycorrhizal inoculants

Inoculants, or biofertilizers, are products containing beneficial

microorganisms in solid or liquid forms for agricultural use (Alladi

et al., 2017). Ensuring essential requirements are met can enhance the

effectiveness of AM inoculants in natural environments. Selecting the

right strains is essential for the effectiveness of AM bioinoculants, as

different strains have specific environmental needs for optimal

performance (Rojas-Sánchez et al., 2022). Bioinoculants must be

adapted to local conditions, including soil temperature, pH, salinity,

and microbiota, to perform effectively under environmental stressors

like UV radiation and extreme temperatures (Chaudhary et al., 2020).

Local adaptation of AMF strains is particularly important for

optimizing plant growth and biomass (Rúa et al., 2016). For

instance, Rhizophagus irregularis has been shown to aid in

bioremediation against Cd contamination (Etesami and Glick,

2023), reduce sodium ion content in roots (He et al., 2019), and is

more resistant to temperature fluctuations (Püschel et al., 2019). It can

also improve the saline-alkali tolerance of switchgrass (Wen

et al., 2024).

Co-inoculation with other beneficial microorganisms such as

bacteria, fungi, protozoa, or endophytes can further enhance plant

growth, yield, nutrient availability, soil health, and soil microbial

diversity compared to single microbial inoculants (Alladi et al., 2017;

Thirumal, 2017; Riaz et al., 2020; Singh et al., 2021; Kamath et al.,

2023). However, it is also crucial to maintain the genetic stability of

AMF strains to ensure their functional benefits remain consistent and
FIGURE 1

Global food security is threatened by various challenges, while arbuscular mycorrhizal bioformulations play a vital role in enhancing crop productivity
and promoting agricultural sustainability.
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effective over time. Studies show that genetic exchange in the

Rhizophagus intraradices, allowing nuclei from different strains to

mix negatively impact plant growth and alter fungal colonization

(Colard et al., 2011). Therefore, not only the right strain selection is

essential for addressing specific environmental challenges but ensuring

that the strains remain genetically stable and functionally effective

throughout their use is key in maximizing the potential of AMF

inoculants in agriculture ecosystem.

The choice of carrier material for AM bioinoculants is critical, as it

ensures microbial survival, stability, and effective distribution in the soil,

enhancing soil health by promoting nutrient cycling and microbial

diversity (Kumar et al., 2022; Poppeliers et al., 2023). The application

method—whether via spraying, irrigation, soil inoculation, or seed

application—should ensure even distribution and efficient interaction

with plant roots to maximize effectiveness. Proper storage conditions,

such as managing temperature and humidity, are necessary to preserve

microbial viability and extend shelf life (Thirumal, 2017). Quality

control during manufacturing ensures genetic stability and

prevents contamination.
3 Advances in production of
arbuscular mycorrhizal inoculants

AMF, as obligate biotrophs, need host plant roots to complete

their life cycle (Wipf et al., 2019), which is a significant challenge in

cultivating them. Several methods exist for producing AM
Frontiers in Industrial Microbiology 04
inoculants, but only a few have been commercially exploited, each

with its own pros and cons (Table 1).
3.1 Substrate- based production system

This conventional technique for mass-multiplication of AMF

involves setting up a trap culture using soil or rhizosphere soil

combined with root pieces and sterilized diluents to grow host

plants. These hosts promote AMF sporulation by providing a

favorable environment, though the process is labor-intensive and

prone to contamination with other biological materials (Sakha et al.,

2024). These limitations highlight the need for further optimization

to minimize contamination risks and improve efficiency,

particularly for large-scale production.

Recently, synthetic substrates have offered advantages such as

enhanced spore dispersal, higher survival rates, and greater

effectiveness. These substrates support AMF inoculum growth by

aiding the colonization of spores and mycelium in plant roots,

retaining essential nutrients like potassium and calcium, and

improving water retention and nutrient availability (Table 2). For

instance, perlite, vermiculite, and biochar in constructed wetlands

improved AMF colonization and wastewater treatment (Hu et al.,

2022). High-peat substrates benefited gardenia plants by improving

root growth and nutrient uptake (Papafotiou et al., 2021). Zeolite

combined with AMF and superabsorbent enhanced plant

establishment and biomass in arid environments (Azimi et al.,

2019). Sand, vermiculite, and vermicompost mixtures optimized
TABLE 1 Different techniques of production of arbuscular mycorrhizal fungus.

Technique Methodology Advantages Disadvantages

Substrate-Based
Production System

Trap culture setup using soil or
rhizosphere soil combined with root
pieces and sterilized diluents

• Simple technique
• Produces infective propagules with
increased survival rates and effectiveness
• Potential for large-scale production
• Natural colonization

• Labor-intensive
• Prone to contamination with other
biological materials like pathogens and
weeds
• Requires daily watering, and
constant monitoring

Synthetic Substrate System Use of synthetic substrates like perlite,
vermiculite, biochar, etc., to enhance
spore dispersal and survival

Bioreactor System Controlled environment for optimizing
AMF and plant root symbiosis by
regulating pH, temperature, and nutrients

• Controlled conditions ensure consistent
inoculum quality
• Can scale production if
properly optimized

• Liquid media not optimal for the
growth of AMF as it lacks aeration
• Algae contamination risk
• Complexity in operation and high costs
• Requires advanced engineering for
large-scale production

Conventional Method Using
Solid Medium (ROC)

Using root organ culture (ROC) in Petri
dishes with different host plants to
propagate AMF

• Ideal for producing high-quality, sterile
inoculum in large quantities
• Scalable, consistent and cost-effective
production methodology

• Requires skilled technicians and
laboratory equipment
• High maintenance and monitoring

Mycorrhizal Donor Plant
(MDP) System

Plantlets are placed in an actively growing
mycelial network derived from a
mycorrhizal donor plant

• Rapid and uniform mycorrhization
• Eliminates risks associated with
genetically modified roots

• Further investigation needed for large-
scale production feasibility
• Labor-intensive
• Space demanding

Half-closed AM-Plant (HAM-P)
In vitro System

Roots of micropropagated plantlets
associated with AMF under controlled
conditions, while shoots grow in open air

• Produces thousands of spores, extensive
mycelium, and abundant root
colonization
• Continuous cultivation potential

• Labor-intensive
• Requires significant space for
maintaining the entire plants
• Needs further optimization for
mass production
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AMF production and corn growth (Coelho et al., 2014). These

studies underscore the potential of synthetic substrates in

promoting AMF colonization and improving plant health in both

agriculture and environmental management.
3.2 Substrate-free production system

Substrate-free systems produce inoculum without substrates,

allowing for high-density infective propagules.

3.2.1 Bioreactor
Bioreactors provide a controlled environment that enhances the

symbiotic relationship between AMF and plant roots, optimizing

nutrient uptake and growth (Dewir et al., 2023). They optimize

AMF production by controlling pH, temperature, and nutrient

composition, ensuring consistent inoculum quality (Vassileva

et al., 2021). Various bioreactor types, such as stirred tank, airlift,

and packed bed reactors, offer different advantages depending on

scalability, cost, and AMF strain requirements but are prone to

algae contamination and affected spore production rates (Dubey

et al., 2013). Key factors for effective operation include aeration,

agitation, growth media, nutrient supplementation, and pH

regulation to achieve optimal biomass production (Singh et al.,

2019). Quality control throughout production is crucial, including

monitoring growth, viability, and genetic stability. As the demand

for AMF inoculants grows, scaling up production to industrial levels

will require advanced engineering solutions to meet both efficiency

and quality standards.

Various cultivation techniques have been developed to improve

gas exchange for AMF. These include using thin nutrient layers over

roots to address aeration issues in inclined channels (Mosse and

Thompson, 1980; Lee and George, 2005), aeroponics, which

enhances aeration by exposing roots of host plants and AMF
Frontiers in Industrial Microbiology 05
propagules to a nutrient fog and micro-droplets (Jarstfer et al.,

1998), and static systems where aerated nutrient solutions are

intermittently pumped to prevent oxygen deprivation in roots,

reduce nutrient solution flow, and avoid air bubbles damaging

delicate extraradical hyphae (Hawkins and George, 1997; IJdo et al.,

2010). Ultrasonic nebulizers were found to be more efficient method

than Atomizing disks (Mohammad et al., 2000). These

advancements point to the critical role in optimizing

environmental conditions to maximize AMF productivity and

their beneficial impacts on plant growth, yield and soil health.

Experiments with bioreactors using substrates like agar and

vermiculite achieved spore yields of 120,000 spores per liter (Fortin

et al., 1993). Airlift bioreactors and petri dish cultures with low-salt

M-medium yielded 20,000–30,000 spores per liter with 25%–75%

colonization and 0.13 g DW per liter biomass (Jolicœur et al., 1999).

A cost-effective, simple, and efficient novel gas-phase (mist)

bioreactor has been patented for large-scale aseptic production and

in vitro cultivation of AMF, involving growing fungal spores and

roots within a transformed plant’s hairy root. This system, featuring

a misting device, inoculation system, culture mesh, and nutrient

mist recycling, ensures optimal oxygen and nutrient distribution,

minimizing shear damage to sensitive transformed roots, resulting

in high-quality, contamination-free AMF spores (Adholeya and

Mukherjee, 2017). Evologic Technologies GmbH, a bioprocessing

company in Vienna, recently developed a novel AMF production

method that increases yield by 10–20% and improves stress

resistance. The company is scaling this process to be 30.000 times

larger than competing methods, aiming to offer an economically

feasible AMF product (Evologic Technologies GmbH – Wien,

Austria, 2025). The continued refinement of bioreactor

technologies holds promise for improving the cost-effectiveness

and scalability of AMF production, which could further enhance

their use in sustainable agricultural practices.
3.2.2 Conventional method using solid medium
using root organ culture

Various methods have been developed for cultivating AMF

using ROC, employing different techniques, substrates, media, and

inoculum types, with varying results in spore yield, biomass, and

colonization rates. The absence of unwanted microorganisms

makes this system ideal for producing high-quality AMF

inoculum in large quantities. However, constant monitoring and

regulation are required, making it labor-intensive and requiring

skilled technicians and laboratory equipment. While the use of ROC

for cultivating AMF offers a promising approach to producing high-

quality, sterile inoculum in large quantities, the method’s need for

skilled technicians and specialized laboratory equipment present

significant challenges. Despite these challenges, ROC remains a

valuable technique for research and niche applications where

quantity and sterility are paramount.

The ROC studies with various host plants have investigated the

production of spores from different AMF strains under diverse

culture conditions, emphasizing how host plants and methods affect

spore concentrations. For example, ROC with Trifolium

incarnatum and Arachis hypogaea yielded 2766 ± 1066 spores per
TABLE 2 Composition and characteristics of synthetic substrates for
AMF inoculation.

Synthetic
substrate

Composition Characteristics

Vermiculite A naturally occurring mineral
that retains water efficiently,
helping maintain moisture and
the viability of AMF inoculum

• Provides a stable
environment for AMF
colonization
• Supports symbiotic
relationships with
plant roots

Perlite A porous volcanic material that
improves air circulation and
drainage, ensuring oxygen
reaches plant roots while
preventing excess
water buildup

• Creates an optimal
environment for AMF
colonization
• Promotes healthy
root growth

Zeolite A synthetic material with
crystalline structure that
enables ion exchange

• Frequently used in AMF
inoculum for its ion-
exchanging properties

Peat Organic matter derived from
decaying plant material that
retains moisture effectively

• Acts as a carbon source,
fostering AMF growth
and activity
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liter for Rhizophagus and Gigaspora strains (Wood et al., 1985). A

study on Daucus carota produced 500,000 spores per liter (St-

Arnaud et al., 1996). Using petri dish cultures and bioreactors to

propagate Rhizophagus, Gigaspora, Scutellospora, and Sclerocystis

with hosts like Daucus carota and Trifolium pratense resulted in

spore concentrations ranging from 48,300 to 120,000 spores per

liter (Fortin et al., 1993). Airlift bioreactor and petri dish cultures of

R. intraradices with Daucus carota yielded 20,000 to 30,000 spores

per liter (Jolicœur et al., 1999). ROC in solid medium with

Rhizophagus and Daucus carota achieved 280,000 spores per liter

(Declerck et al., 2001). Inoculating Rhizophagus with Solanum

tuberosum produced around 400,000 spores per liter (Puri and

Adholeya, 2013). Finally, Schüßler (2018) used root organ liquid

(ROL)-based ROC with multiple AMF species, such as Acaulospora,

Rhizophagus, Scutellospora, and Funneliformis, and host plants like

chicory, clover, and bindweed, yielding spore concentrations

between 106 ppg and 300,000 spores per liter.

A recent study using a solid medium-based ROC with Daucus

carota with 0.23% gellan gum and M-medium achieved over 350,000

spores per liter and more than 2 million propagules per liter. It

demonstrated high biomass production (>2 g Dry Weight per liter)

and a colonization rate of 60–70% (Ghorui et al., 2023a), marking

significant advancement in AMF cultivation methods. The variability

in the spore yield, biomass, and colonization rates further suggests

that continuous optimization and careful management strategies are

essential for achieving consistent, high-quality yields. However, using

Ri-transformed roots for AMF propagation could lead to a loss of

resilience and effectiveness of AMF strains when applied in natural

environments. There is also a risk of gene transfer from genetically

modified roots containing AMF propagules to wild crops, potentially

causing ecological consequences. Additionally, this approach may

result in socio-economic impacts, such as public resistance and

market restrictions.

3.2.3 Mycorrhizal donor plant in vitro
cultivation system

This technique developed by Voets et al. (2009) involved

placing the Medicago truncatula plantlets into an actively growing

mycelial network derived from a mycorrhizal donor plant. While

this technique enables rapid and uniform mycorrhization and

eliminates the risks associated with using genetically modified

roots, its suitability for large-scale production still requires

further investigation.

3.2.4 Half-closed arbuscular mycorrhizal plant: in
vitro culture systems

An autotrophic culture system was developed for in vitro

mycorrhization of plantlets of different hosts like Potato,

Strawberry, Trifolium, etc, where roots of micro propagated

plantlets were associated with arbuscular mycorrhizal fungi under

controlled conditions, while shoots grew in open air. The system

resulted in the production of thousands of spores, extensive

extraradical mycelium, and abundant root colonization (Voets

et al., 2005). These spores were able to colonize new plantlets

under the same conditions. An advancement to the above technique
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is the in vitro Mycorrhizal Donor Plant (MDP) system enables fast,

uniform colonization of a wide variety of photosynthetically active

plants, with applications in both basic research and mass

production (Lalaymia and Declerck, 2020). This system

demonstrates the potential for continuous cultivation of AMF,

offering a valuable tool for studying the symbiosis, especially

where a source–sink relationship and photosynthetically active

tissues are required. The feasibility of this technique for mass

cultivation needs further evaluation, as it is labor-intensive and

demands significant space for maintaining the entire plants.
4 Development of arbuscular
mycorrhizal inoculant bioformulation

Although research on AMF bioformulation development is

limited, the global mycorrhizal market is expanding due to the

benefits of mycorrhizal bioinoculants, such as enhanced plant

growth, improved nutrient uptake, and increased pathogen

resistance. Developing effective AM bioinoculants requires

selecting the right beneficial microbes, carriers, adjuvants,

application methods, and the ability of microbes to thrive in the

soil and plant environment (Bargaz et al., 2018; Aamir et al., 2020)

such as the ones which are commercially available (Table 3).

Desirable traits for bioinoculants include effective host plant

colonization, adaptability to the host environment, resilience

under harsh conditions, genetic stability, long shelf life, and non-

pathogenicity (Chakraborty, 2020). Although challenges remain,

the growing recognition of the potential of AM bioinoculants

underscores the need for continued research to drive sustainable

agricultural practices (Figure 2).
4.1 Identifying the potential mycorrhizal
strains and compatible
microbial candidates

AMF, both as a sole microorganism or used in combination

with other microorganisms have proved to be beneficial for the

agriculture (Benami et al., 2020; Yadav et al., 2020; Santoyo et al.,

2021). Selecting the right AMF strain and compatible microbes is

crucial for creating effective bioinoculants. These strains should suit

the host plant species, environmental conditions, native microbiota,

and intended purpose. Besides AMF, other compatible microbial

candidates like beneficial bacteria as nitrogen fixers, phosphorus

solubilizers, and disease suppressors should be identified to work

synergistically with mycorrhizal fungi (Benami et al., 2020; Yadav

et al., 2020; Santoyo et al., 2021). Developing efficient bioinoculants,

therefore, requires a holistic approach that considers the complex

interactions between these microorganisms.

Key factors in primary selection include plant growth

promotion abilities, degradation potential, and compatibility

properties like synergistic and antagonistic effects (Wong et al.,

2019; Singh et al., 2020). spp. Commonly associated bacteria with

AMF include Rhizobium meliloti, Bradyrhizobium japonicum,
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Pseudomonas fluorescens, Bacillus licheniformis, Azospirillum, and

B. subtilis (Srivastava et al., 2021). Co-inoculations with endophytic

filamentous fungi (EFF) like Trichoderma viride, T. harzanium,

Piriformospora indica, Umbelopsis nana, Mortierella sp., Fusarium
Frontiers in Industrial Microbiology 07
oxysporum, and Penicillium pinophilum often enhance each other’s

effects (Dıáz-Urbano et al., 2023). These microorganisms can be

isolated from soil and plant roots, tested for plant growth

promotion, and biocontrol properties, and evaluated through in
TABLE 3 Commercially available mycorrhizal bioformulations.

Manufacturer Commercial
name

Country Microorganisms Others/
carriers

Reference

Biofábrica Ctospor Mexico Glomus intraradices, Pisolithus tinctorius, Rhizopogon,
amylopogon, R. bilosuli, R. fulvigleba, R. luteolus, Lacaria
bicolor, L. laccata, Scleroderma citrini, S. cepa, Trichoderma
harzianum, T. reesei, Azospirillum brasiliense, Azobacter
chroococcum, Bacillus megaterium, Pseudomonas flourescens

Cardenas et al., 2021

INIFAP Rhizofer
Micorrizafer
Ferbiliq, Ectomic
Azospirillum
Endomaz
Rhizbio
Rhizbio m+

Mexico Glomus intraradices, G. mosseae,
G. brasilianum, G. clarum, G. deserticola, G. etunicatum,
Gigaspora margarita, Trichoderma harzianum, T. reesei, T.
viride, Gliocladium virens Glomus intraradices, G. mosseae,
G. brasilianum, G. clarum, G. deserticola, G. etunicatum,
Gigaspora margarita

Cardenas et al., 2021

CCS (Centro
Colture
Sperimentali)

Micosat F Italy AMF (Glomus coronatum, Glomus caledonium, Glomus
intraradices, Glomus mosseae, Glomus viscosum) and helper
bacteria (Pseudomonas spp., Bacillus spp., Actinobacteria
Streptomyces spp. and the saprophytic fungi
Trichoderma spp.)

CCS Fertilizzanti
Micosat F®, 2022

India Azotobacter chroococcum, Bacillus megaterium,
Pseudomonas monteilii, Glomus intraradices

Khan et al., 2023

India Azotobacter, Azospirillum, Rhizobium, Arbuscular
Mycorrhizal Fungus, Acetobactor

Sruthilaxmi and
Babu, 2017

Symbio Ltd UK Bacteria, Mycorrhizal Fungi, Trichoderma Rumble and
Gange, 2017

Premier Tech
Biotechnologies

Myke Pro SG2 Canada Glomus intraradices Owen et al., 2014

Myke Pro Ivory Coast Rhizophagus intraradices Kouadio et al., 2017

Dynamyco G. intradices, G. mosseae Contains non-plant
food ingredients.

Ghorui et al., 2023b

Mykos R.intraradices, Ectomycorrhizal Fungi Ghorui et al., 2023b

Mycoapply G. intraradices, G. mosseae, G. aggregatum, G. etunicatum Contains non-plant
food ingredients.

Ghorui et al., 2023b

Big Foot G. aggregatum, G. etunicatum, G. intraradices, G. mosseae,
Ectomycorrhiza Bacteria

29.51% Humic acids
derived
from leonardite

Ghorui et al., 2023b

Plant Success G. etunicatum, G. intraradices, G. mosseae, G. aggregatum,
G. clarum, G. deserticola, G. monosporum, Gi. margarita,
P. brazilianum

Hydrolyzed feather
meal, meat meal,
bone meal, poultry
meal, blood meal,
fish meal)
and langbenite.

Ghorui et al., 2023b

EndoPrime G. intraradices, G. mosseae, G. aggregatum, G. etunicatum Total active
Ingredients – 21.6%
Total Inert
Ingredients
(Other) – 78.4%

Ghorui et al., 2023b

Endomaxx Total active
Ingredients – 6%
Total Inert
Ingredients
(Other) – 93.4%

Ghorui et al., 2023b
frontiersin.org

https://doi.org/10.3389/finmi.2025.1553472
https://www.frontiersin.org/journals/industrial-microbiology
https://www.frontiersin.org


Ghorui et al. 10.3389/finmi.2025.1553472
planta trials to ensure effective colonization and growth

enhancement. This helps create robust bioinoculants that offer

multiple benefits in agriculture.

Mycorrhiza helper bacteria (MHB) enhance the symbiotic

relationship between AMF and plant roots which promote AMF

spore germination, mycelial growth, and root colonization,

improving the fungal ability to access and transfer nutrients to

plants (Sangwan and Prasanna, 2021; Yang et al., 2023; Guarnizo

et al., 2023). This, in turn, boosts plant growth, nutrient uptake, and

resilience to abiotic stresses like drought. MHB achieve this by

producing plant growth hormones, solubilizing soil nutrients, or

creating a favorable environment for AMF development

(Nasslahsen et al., 2022). Dual inoculation with AMF and Bacillus

spp. under field conditions showed that reducing NPK fertilizers by

50% had no negative impact on crop growth, nutrition, or yield

(Nanjundappa et al., 2019).
4.2 Choosing the inert carrier or bulking
agent, adjuvant and fillers

4.2.1 Inert carrier or bulking agent
A suitable carrier serves as a delivery medium for live microbial

strains, facilitating their transition from the lab to the field (Sohaib

et al., 2019; Singh et al., 2020; Rojas-Sánchez et al., 2022). Ideal

carriers for mycorrhizal bioformulations should:
Fron
i. provide a favorable micro-environment for microbial

multiplication and survival during storage and planting,

ii. be compatible with microorganisms based on physico-

chemical properties,

iii. be non-toxic to both microbes and plants,
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iv. ensure success ful re lease of microorganisms

after application.

v. reduce losses from micro-fauna degradation in the soil,

vi. support competition with native soil microorganisms,

vii. be chemically stable,

viii. have small particle size for faster dispersibility,

ix. retain high nutrient and moisture (carriers with low C:

N ratio),

x. have a neutral pH of 7,

xi. be compatible with the intended delivery method,

xii. be cost-effective and ecologically friendly for

commercial production,

xiii. be easy to process and scalable.
Different carriers have varying capacities to hold infective

propagules and may affect plants differently. For example,

vermiculite was most effective for soybean but negatively

impacted corn, whereas phosphorus-enriched peat improved corn

growth (Barazetti et al., 2019).

Different types of carriers are used for formulating mycorrhizal

inoculants which serve as support materials for the fungi, helping to

protect and deliver them to plants in agricultural applications

(Table 4). The different commercial formulations of arbuscular

mycorrhizal inoculants include solid, liquid, encapsulated, and

nanofiber-based forms. Solid formulations are easy to handle and

store but may have a short shelf life. Liquid formulations are simple to

mix and distribute but can pose inhalation hazards. Encapsulated

forms protect microorganisms and provide controlled release, though

they are more expensive. Nanofiber formulations offer enhanced

stability and targeted delivery but face challenges with scalability.

Each formulation type has unique advantages and limitations

depending on storage, application, and effectiveness (Table 5).
FIGURE 2

Development of arbuscular mycorrhizal (AM) inoculant bioformulation.
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4.2.2 Adjuvants/adhesives and fillers
Adjuvants consist of polysaccharides, polyalcohol derivatives,

natural or synthetic polymers, or caseinate salts that enhance

microbial stability, adhesion, handling, and mixing, reduce dust,

and prevent inoculant dispersion during sowing (Jambhulkar

et al., 2016; Pedrini et al., 2016). Common adjuvants used in

solid bioformulation include carboxymethyl cellulose (CMC),

methyl cellulose, gum arabic, skim milk, humic acids, PVP,

glycerol, and trehalose. CMC improves shelf life and efficacy

(Zhou et al., 2017), gum arabic protects microbes from

desiccation (Wani et al., 2007), and skim milk boosts cell

viability and release into soil (Bashan et al., 2002). Humic acids

support microbial growth and plant development (Young et al.,

2006), PVP helps microbes survive desiccation and toxins

(Singleton et al., 2002), and starch improves survival and

rhizosphere colonization (Bashan et al., 2002). Chitosan, with

antibacterial properties, enhances microbial biocontrol and

storage (Muxika et al., 2017), while sugars like trehalose protect

microbes during drying (Schoebitz et al., 2013). Protein

hydrolysates stimulate microbial activity (Colla et al., 2017),

with glycerol, s i l icon, and poly-lactic acid improving

microbial viability (Vassilev et al., 2017). Liquid adjuvants like

glycerol increases shelf life and stress tolerance in microbes,

improving water retention and resistance to high temperature

and desiccation (Taurian et al., 2009). PVP also protects microbes

in stressful conditions through its water retention capacity

(Gopal & Baby, 2016). Therefore, glycerol, PVP, or trehalose-

based liquid bioformulations are highly promising for

agricultural use.

Fillers are added to bioformulations to enhance properties like

stability, microbial survival, and controlled release. Materials such

as bentonite, kaolin, and perlite improve the mechanical strength of

carriers, protect microbial cells or spores, and regulate their soil

release for sustained effectiveness. These fillers also increase carrier

porosity, promoting better water retention and nutrient exchange,

ultimately supporting microbial colonization in the rhizosphere and

enhancing bioformulation performance.
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4.3 Enhancing the stability and extending
shelf-life of AMF bioformulation

The microbial stability of bioinoculants should ideally range

from 6 to 12 months or longer (Berninger et al., 2017). Key factors

for enhancing shelf-life and microbial stability include additives and

low-temperature storage to protect microbes from harsh

environmental conditions such as variations in soil pH, nutrient

limitations, and temperature fluctuations (Liu et al., 2014). Methods

like freeze-drying, vacuum-drying, spray-drying, fluidized bed-

drying, and air-drying, as well as the addition of external

protectants, stress adaptation, promoting exopolysaccharide

production, and using “helper” microbial strains, enhance shelf-

life (Berninger et al., 2017). Trehalose acts as a protectant during

desiccation (Garcıá, 2011). Drying is a well-established method for

long-term storage, as the right drying conditions can improve both

product quality and shelf-life. Proper encapsulation materials,

temperatures, and packaging are used to maintain microbial

activity and control humidity.
4.4 Choosing the delivery method

Each bioformulation type is associated with specific delivery

methods to ensure effective application, considering factors like the

bioformulation’s nature, target environment, and intended

use (Table 6).
4.5 Quality control

Quality control is essential to ensure the efficacy and safety of

AMF bioformulations, building confidence among farmers and

consumers. Strong standards are required to address challenges in

consistent production, formulation, and maintaining viable

microorganisms. Considerations include ecological risks of non-

native strains and the need for long-term research on the

persistence and effectiveness of AM inoculants. QC starts with

evaluating AM inoculants, microbial strains, carriers, and the final

product, followed by proper labelling and commercialization.

AMF species or strains must be identified before mass

cultivation. The culture should be sterile with high viability, and

germination capacity. Regulations, such as those in India and the

EU, specify minimum viable spores and acceptable variation in

microorganism concentrations (Ghorui et al., 2024). During pre-

fermentation and fermentation, the identity and purity of microbial

strains must be carefully controlled to prevent contamination.

Initially, the flask inoculum’s quality is verified using lab tests like

inoculating a Petri dish with PDA medium. Only the intended

strain should grow; otherwise, it’s discarded. At the end of the

strain’s growth, a sample is taken for microscopic examination to

confirm identity and check for contamination. pH, sugars, and

PMW levels are also monitored (Volpato, 2020). During

fermentation, microorganisms multiply in a bioreactor with

controlled parameters like air, temperature, pH, and pressure.
TABLE 4 Composition of carrier for formulating AMF Inoculants.

Carrier Composition Applications

Vermiculite Non-abrasive, odorless, and inert,
with a high liquid absorption capacity

It is versatile and used in
hydroponics and soil
conditioning (US
Geological Survey, 2024)

Peat A highly porous material with strong
adsorption capacity for transition
metals and polar organic molecules

It contains humic and
fulvic acids derived
from organic matter
(Orru et al., 2011)

Rock
Phosphate

A textured material of silica, iron
oxide, carbonate, and/or aluminum. It
is available in the fertilizer market as
reactive natural phosphate

It is suitable for direct
application in
agriculture
(Hammond, 1977)
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Post-growth, an aliquot is tested in the lab. Serial dilutions are

plated on selective media, and living cells are counted using spread

or drop plate methods. Different media are used for various strains.

If no contamination is found and cell concentrations are acceptable,

the product proceeds; otherwise, the process restarts (Volpato,

2020). Carriers must be checked for contamination, microbial

compatibility, required pH, etc.

The final product must meet specific requirements for

microorganism presence (as declared on the label), microbial

load, relative humidity, particle size, pH, and absence of
Frontiers in Industrial Microbiology 10
contaminants. Samples from each lot are tested for these factors.

Granulometry is assessed using a ro-tap sifter, and relative humidity

is measured with a humidity analyzer balance. CFU counts check

the presence and proportion of microorganisms, ensuring they meet

or exceed the labeled microbial counts throughout the product’s

shelf life (Volpato, 2020).

Labels must comply with regulations of the country where it is

intended to sell, accurately reflect contents, and include the lot

number and production date. Verification occurs during label

creation and post-packaging.
TABLE 5 Types of commercial formulation of arbuscular mycorrhizal inoculants.

Carrier
physical
form

Solid Liquid

Encapsulated
formulations

Nanofibers as
a delivery
system

Granular
formulation

Wettable
powdered

(WP)
formulation

Wettable/
water-

dispersible
granular

formulation

Liquid
formulations

Composition

Dry particles
containing 5–20%
active ingredients, a
binder, and coarse
carrier particles (100–
1000 µm) (Brar
et al., 2005)

Powder composed of
50–80% powder, 15–
45% filler, 1–10%
dispersant, and 3–5%
surfactant (Brar
et al., 2005)

Solid, free-flowing,
non-dusty with
dispersible agents

Aqueous suspensions
of biomass containing
10–40%
microorganisms, 1–
3% suspender, 1–5%
dispersant, 3–8%
surfactant, and 35–
65% carrier liquid
(Schisler et al., 2004;
Brar et al., 2005)

Microbial cells coated
with polymeric
material to form
permeable beads,
maintaining cell
viability (John
et al., 2010)

Composed of Uses
polyethylene oxide
(PEO) nanofibers
(Campaña and
Arias, 2020)

Advantages

• Easier to handle,
storage and transport.
Reduced chances of
contamination
• Enhances storage
efficiency
• Superior to peat and
liquid carriers for total
biomass, nitrogen
fixation, and nodule
formation under stress
conditions (Hartley
et al., 2004; Zaidi
et al., 2017)

• Readily miscible
with water
• Extended shelf life
(up to 18 months)
• Uniform
distribution
• Residual control
• High holding of
active gradients,
without sedimentation
issues
• Fewer skin hazards

• Eco-friendly
• Easily miscible with
water
• Easy to handle,
transport, and mix
• Seldom clog nozzles,
and reduced
applicator exposure
during mixing
and loading

• Stabilizes organisms
during production,
distribution, and
storage
• Improve cell-
suspension viscosity,
stability, dispersion
capacity
• Protects from
environmental stress
• Increases persistence

• Improves storage
and viability
• Offers controlled
release of
microorganisms and
metabolites
• Enhancing soil
microflora and
supporting sustainable
agriculture (Wong
et al., 2019; Vassilev
et al., 2020; Wu
et al., 2020)

• Enhanced stability
• No chances of
contamination
• Controlled release
• Improved protection
against environmental
stress
• Increased
bioavailability
• Targeted delivery

Disadvantages

• Active constituents
may be inactivated by
ultraviolet light
exposure
• Typically have low
shelf life
• Struggle to retain
bacterial load during
the crop cycle
(Chaudhary
et al., 2020)

• Can be hazardous if
inhaled
• Requiring
precautions during
mixing
• Difficult to mix in
hard or alkaline water
• May clog nozzles
and screens

• Can be abrasive to
sprayers
• Leaves residue in
containers
• Requires
moderate agitation

• Chances
of contamination

• Higher production
costs
• Complexity
in formulation

• Limited scalability
• Potential for uneven
distribution in large-
scale applications

Examples

• Soil-derived: plant soil, coal, clays, lime (Hartley et al., 2004)
• Organic materials: saw-dust, composts, wheat, oat bran, soy, sewage
sludge, cork compost, animal manure (Bashan et al., 2002; Power et al.,
2011)
• Inorganic materials: talc, perlite, peat, vermiculite, bentonite, kaolin,
bentonite, kaolin, silicates, polyacrylamide beads (Smith, 1992)

Water, oil or
polymers, broth
medium,
carbohydrate, mineral
or organic oil,
emulsions and
microbial suspensions
(Malusá and
Vassilev, 2014)

Vermiculite, Bentonite Talc, Charcoal,
Maltodextrin,
Dextrose
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Once AMF bioformulations pass all quality control checks and

validation trials, they move to commercialization, ensuring

regulatory compliance and market readiness. This involves

developing compliant labels, establishing efficient distribution

channels, and educating farmers on the proper use of

bioformulations. Additionally, post-market surveillance and

ongoing research are crucial for maintaining product effectiveness

and safety. Listening to customer feedback and making necessary

improvements help build long-term relationships with users,

ensuring the bioformulations meet their needs and contribute to

sustainable agricultural practices. Post market control involving

random sampling of boxes sold to distributors (but not yet to

final consumers) can verify that the product quality remains

consistent from the company to the farmer. This process also

allows assessment of transport and storage conditions in dealers’

warehouses to ensure they maintain the product’s quality and

identify any special precautions distributors might need.

In planta trials encompass both greenhouse and field studies to

assess the real-world agricultural performance of AMF

bioformulations. To ensure the high quality of a microbial

consortium, it must be initially tested in soil with reference plants

and crops through greenhouse trials. Small-scale testing is necessary

to verify its effectiveness and economic viability. This involves
Frontiers in Industrial Microbiology 11
comparing treated plants with untreated controls to observe

performance differences. Laboratory-proven effectiveness must

translate into tangible improvements in crop productivity in real-

field conditions. For farmers to adopt and continue using microbial

consortia, they must demonstrate efficacy, durability, and

consistency, matching the claims on their labels.

After a bioformulation is developed and successfully field-

tested, it goes through a verification process for validation. This

involves conducting field trials at multiple locations to assess the

formulation’s performance. Upon successful validation, the

bioformulation must be registered, which includes obtaining a

patent and necessary safety and risk approvals before

commercial release.
5 Bioformulations with
arbuscular mycorrhiza

5.1 Mixed biofertilizer

Although various microorganisms can be combined with AMF

to create mixed biofertilizers, the following are the two primary

microbial partners of AMF.
TABLE 6 Delivery methods of AMF bioformulations.

Soil treatment Plant treatment Seed inoculation

Bioformulation • Granular forms (e.g., peat, charcoal,
perlite or other soil derivatives)
• Powders
• Slurries
• Liquids

• Wettable or liquid bio-formulations (foliar
spray)
• Talc-based bioformulation (root dipping)

• Carrier-based bioformulation slurry (with or
without adjuvants)
• Liquid bioformulations applied to seeds, followed
by drying
• Nanofibers may offer a promising alternative for
seed coating (Campaña and Arias, 2020)

Application
methodology

• Applied to moist topsoil before sowing
using granular applicators, hand, or
mechanical sprayers

• Root dipping or foliar spraying • Seed soaking
• Seed coating (seed dressing, pelleting/encrusting,
film coating, slurry coating)
• Bio-priming, based on the size, shape, weight of
treated seed and equipment availability (Joshi et al.,
2019; Rocha et al., 2019)

Advantages • Efficient for large areas
• Protects fragile seeds
• Boosts inoculant interaction with the
rhizosphere, enhancing plant growth

• Foliar spray on plant leaves using various
sprayers, targeting above-ground pathogens and
providing nutrition
• Root dipping before transplantation can reduce
disease by promoting inoculant colonization in
the rhizosphere, preventing host-
pathogen interactions

• This method uses a small amount of
bioformulation, is cost-effective, fast, ready to use
product and is commonly applied to cereals, legumes
(Woomer et al., 2014)
• Seed inoculation also helps modify seed
characteristics (e.g., shape, size, weight), making
sowing easier and ensuring effective bio-inoculant
delivery (Halmer, 2008)
• Seed coating using nanofibers are easy-to-apply and
economically viable technology (Campaña and
Arias, 2020)

Disadvantage • Costly, requires a large quantity of
inoculants due to extensive application
areas, and specific equipment (Vosátka
et al., 2012)
• Although it can be done on standing
crops, uniform distribution of
bioinoculants is challenging

• Foliar spraying requires large amounts of
inoculant, which can be expensive and labor-
intensive
• It is also limited by specific environmental
conditions such as low temperatures, high
humidity, and turgid leaves (Bejarano and
Puopolo, 2020)
• The root dipping method is laborious and
time-consuming, requiring nursery preparation
(Adholeya et al., 2005)

• Poor microbe survival
• Reduced shelf life
• Difficulty in coating small seeds
• Seeds may be damaged during inoculation, affecting
germination
• Seed coats may be displaced during germination,
killing the microbe
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5.1.1 Nitrogen-fixing bacteria
The AMF-legume-rhizobia complex communicates through

shared signaling pathways, resulting in synergistic, neutral, or

antagonistic effects on colonization and resource uptake (Saxena

et al., 1997; Chalk et al., 2006; Larimer et al., 2013; Primieri et al.,

2021). Tripartite mutualism among AMF, FLNF, and plants is

driven by nutrient exchange. Co-inoculation with AMF boosts

FLNF abundance, likely due to improved P availability via AMF

extraradical mycelia (Bagyaraj and Menge, 1978; Mishra et al.,

2008). AMF scavenge solubilized P beyond the rhizosphere

(Ezawa et al., 2002), which may also support rhizobacteria

through hyphal exudation or biofilm transport (Jiang et al., 2021).

Meanwhile, FLNF fix atmospheric N2 into bioavailable NH₄+,

enhancing plant N uptake. This reciprocal nutrient exchange

allows AMF and Free-Living Nitrogen Fixers (FLNF) to supply

plants with essential nutrients in return for carbon. Certain FLNF

genera, such as Azospirillum and Azotobacter, thrive under co-

inoculation, indicating taxon-specific interactions with AMF

(Figure 3) (Miyauchi et al., 2008; Welsh et al., 2009; Kasanke

et al., 2024). The variability in responses underscores the need for

a deeper understanding of species-specific interactions,

environmental influences, and mechanistic pathways to optimize

their application in field conditions.

In the rhizosphere, interactions between AMF and FLNF influence

soil processes, plant nutrient uptake, and growth. Both nodulating and

non-nodulating plants exhibit tripartite mutualism with AMF and
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FLNF, though responses vary significantly, ranging from a 255%

increase in total biomass to a 94% reduction in shoot biomass.

These effects are highly context-dependent, with FLNF enhancing

AMF colonization and AMF promoting FLNF abundance. Key factors

influencing outcomes include plant phenology, soil type, nutrient

availability, and microbial pairings (Kasanke et al., 2024).

Harnessing these interactions could improve soil health and crop

productivity. AMF and N2-fixing bacteria complement each other in

plant nutrition, jointly influencing plant communities by affecting

community structure and function. While AMF enhance species

diversity and productivity, N2-fixers tend to reduce productivity.

Both microbial groups impact species abundance (Bauer et al.,

2012). The impact of AMF-nitrogen fixer interactions on plants

varies, with some studies showing positive effects, while others

report weak or even negative outcomes under dual inoculation,

highlighting inconsistent synergy (Table 7) (Saxena et al., 1997).

These variations suggest that AMF and rhizobia may compete for

root colonization sites, potentially reducing symbiotic efficiency (Chalk

et al., 2006). The efficacy of microbial inoculants is site dependent. In

dryland environments, plants exhibited greater reliance on AMF

+Rhizobium co-inoculation than on single inoculations. However,

microbial inoculants proved less effective in high-fertility soils, low

organic matter conditions, and acidic environments (Calderon and

Dangi, 2024). These findings emphasize the complex and context-

dependent nature of AMF-FLNF-plant interactions, highlighting their

potential for sustainable agriculture.
FIGURE 3

Tripartite interaction between plant-AMF-nitrogen fixers.
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5.1.2 Phosphate-solubilizing bacteria
Co-inoculation of AMF and PSB enhances plant growth more

effectively than single inoculation, as AMF within plant cells

facilitate P uptake from soluble P released by PSB in the

rhizosphere. AMF influences PSB, by creating a specialized niche

through their hyphal network (Agnolucci et al., 2015; Taktek et al.,

2015). Bacterial colonization of AMF hyphae and spores confirms a

mutualistic relationship (Toljander et al., 2007; Bharadwaj et al.,

2011; Scheublin et al., 2010). AMF enhance PSB activity by

transferring plant-derived carbon underground, supporting

microbial growth and altering soil bacterial communities

(Toljander et al., 2007; Drigo et al., 2010; Zhang et al., 2016).

AMF-driven carbon flux alleviates organic carbon limitations,

improving microbial P solubilization (Hameeda et al., 2006; Patel

et al., 2007; Brucker and Spohn, 2019). Similarly, PSB utilize AMF

hyphae to access insoluble P sources and migrate toward the

rhizosphere (Gahan and Schmalenberger, 2015; Ordoñez et al.,

2016). PSB enhance AMF fitness and ecological functions by

promoting AMF establishment, growth, and spore germination,

leading to improved plant growth parameters (Scheublin et al.,

2010; Ordoñez et al., 2016). They stimulate extraradical hyphal

growth, increasing nutrient acquisition by expanding the

mycorrhizosphere. Root exudates induced by PSB release

enzymes that mineralize phosphorus and decompose organic

matter, making nutrients available for AMF and plants (Canarini

et al., 2019). Flavonoids in root exudates further facilitate AM

formation by influencing hyphal growth and root colonization

(Schrey et al., 2014). PSB attachment to AMF hyphae ensures

localized P solubilization, optimizing fungal and plant nutrient

uptake (Artursson et al., 2005). They also facilitate PSB dispersal,

reinforcing their synergistic interaction in nutrient cycling and

plant growth (Linderman, 2013; Hodge, 2014). Studies have

demonstrated this synergy in maize (Wahid et al., 2016), tomato

(Kavatagi and Lakshman, 2014), finger millet (Patil and Lakshman,

2011), linseed (Rahimzadeh and Pirzad, 2017), wheat (Yousefi et al.,

2011), carrot, potato (Ordoñez et al., 2016), and broad beans

(Nadagouda and Lakshman, 2010). AMF and PSB co-inoculation

increased root colonization, plant height, biomass, and leaf area in
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both pot and field trials, with PSB population and AMF spore

density showing a stronger correlation with growth parameters than

plant nutrient levels (Nacoon et al., 2021). AMF and PSB reshape

microbial communities involved in N and P cycling, enhancing

nutrient uptake, altering C:N:P stoichiometry, and influencing

ginsenoside composition (Mu et al., 2024). Thus, the synergistic

interaction between AMF and PSB enhances plant growth, nutrient

acquisition, and soil microbial dynamics, making co-inoculation a

promising strategy for sustainable agriculture and improved crop

productivity (Table 8).

5.1.3 AMF-PSB-nitrogen fixers
Rhizobium spp. produce carboxylic acids that solubilize P from

iron, aluminium, and calcium complexes (Guimarães et al., 2022).

By promoting PSB and nitrogen-fixing bacteria, AMF improve

plant nutrient acquisition and stress resistance (Mohammad &

Mittra, 2011). Rhizobium Sinorhizobium fixes atmospheric N into

ammonium, improving plant N absorption. Farmers have

traditionally used single or mixed beneficial strains as

biofertilizers to support sustainable crop growth. However, their

effectiveness is often limited by competition with native soil and

plant microflora, making establishment in the rhizosphere or

endosphere challenging.
5.2 Nano-biofertilizers

Biofertilizers encounter several challenges, such as short shelf

life, instability under field conditions, inconsistent performance in

fluctuating climates, and the requirement for high application rates

(Das, 2023). The integration of nanotechnology with biotechnology

has paved the way for innovative solutions in agriculture ecosystem.

NBFs, which combine biofertilizers with nanoparticles (NPs),

offer an environmentally friendly and cost-effective alternative due

to the distinctive properties of NPs, including high surface area,

improved solubility, lightweight nature, and versatile application

methods (Kah et al., 2019). NBFs are synthesized by encapsulating

biofertilizers within nanomaterial coatings, producing nanoscale
TABLE 7 Mixed biofertilizer of arbuscular mycorrhiza and nitrogen fixers.

AMF
Nitrogen
fixers

Crop Benefits/limitations References

Paraglomus occultum
Rhizobium
leguminosarum
bv. trifolii

White clover
• Enhances nitrogen storage via glomalin-related soil protein (GRSP)
• Releases nitrogen through root nodule decomposition

Xie et al., 2020;
Ledermann et al., 2021;
Liu et al., 2022

AMF Rhizobia Legumes
• AMF supply phosphorus for nodule formation, while rhizobia
contribute nitrogen, boosting nitrogen fixation, nodulation, and
plant growth

Xie et al., 2020

Funneliformis mosseae
& Glomus fasciculatum

Nitrogen fixers Green gram • Promotes nodulation Saxena et al., 1997

Glomus versiforme &
Glomus macrocarpum

Nitrogen fixers Green gram • Inhibits nodulation Saxena et al., 1997

AMF Nitrogen fixers Phaseolus vulgaris • Suppresses plant growth Franzini et al., 2009

AMF Nitrogen fixers Melilotus alba • No significant effect on nitrogen content or fixation Hack et al., 2018
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particles ranging from 1 to 100 nm (Marchiol, 2019). These

formulations provide multiple benefits by triggering various

biochemical and physiological changes in plant metabolic

pathways. Advantages include the controlled and sustained

release of nutrients, reduced nutrient loss, enhanced nutrient use

efficiency, enrichment of beneficial soil microorganisms, improved

crop resistance to diseases, large-scale production feasibility, cost-

effectiveness, renewable fertilization, and prolonged shelf life

(Sharma et al., 2022). However, despite their considerable

potential, NBFs remain underutilized.

The major steps of development of NBFs involves three key

steps: (a) cultivation of AMF, (b) encapsulation with nanoparticles,

(c) performance evaluation, including assessment of quality, purity,

and shelf life (Bairwa et al., 2023). The bioformulation of NBFs

primarily follows either a top-down or bottom-up approach

(Figures 4A, B). In the top-down method, large raw materials are

broken down into nanoscale components using various mechano-

physical techniques such as mechanical grinding, ball milling,

etching, co-precipitation, sputtering, lithography, phytochemical

reduction, laser ablation, and electro-explosion. Conversely, the

bottom-up approach involves synthesizing nanoparticles from

atoms, molecules, or smaller particles through chemical and

biological processes. These include supercritical fluid synthesis,

evaporation-condensation, sol-gel processing, spray pyrolysis,

laser pyrolysis, electrospinning, and chemical vapor deposition

(Jamkhande et al., 2019).

For AMF-based NBFs, application methods include soil

application and seed priming (Figure 4C). Soil application

enhances plant growth and helps restore soil fertility, while seed

priming—a pre-sowing technique—entails soaking seeds in NBFs to

promote faster germination, improve seedling establishment, and

reduce fertilizer dependency (Table 9). This process stimulates plant

growth-promoting hormones and activates stress-resistance genes.

Upon contact with roots and seed surfaces, nanoparticles adhere to

plant surfaces through electrostatic interactions, hydrophobic

forces, and Van der Waals forces. Root uptake of NPs primarily

occurs via physiologically active lateral roots and root hairs, with

upward transport occurring through the xylem. NPs can penetrate

plant cells and move intercellularly through multiple mechanisms,

including cell wall pores, endocytosis, plasmodesmata, aquaporins,
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and ion transporters. The uptake process is influenced by the

chemical composition, size, shape, and aggregation state of the

NPs, as well as by plant species, since receptor structures vary across

different plants (Bairwa et al., 2023).

Nano-enabled agriculture presents several potential limitations,

including concerns related to toxicity, environmental impact, and

regulatory challenges. In terms of toxicity, nano-based pesticides

may pose risks to non-target organisms, such as pollinators and

aquatic life. Additionally, NPs can negatively affect seedlings by

reducing germination rates and causing phytotoxicity. There are

also potential health risks for farm workers and consumers due to

exposure to NPs. From an environmental perspective, the behavior

of newly developed NPs can be unpredictable, making their

monitoring and management challenging. Furthermore, NBFs can

undergo physical, chemical, and biological transformations in the

environment, potentially altering their effects and interactions

within ecosystems (Okeke et al., 2021; Rajput et al., 2021;

Muzammil et al., 2023; Ali, 2025).

Despite the promising potential of NBFs in enhancing

agricultural sustainability, their widespread adoption remains

limited due to concerns surrounding toxicity, environmental

interactions, and regulatory challenges. Future research should

focus on optimizing NBF formulations to maximize benefits while

minimizing ecological and health risks. Advanced studies on

nanoparticle behavior in diverse soil and climatic conditions, as

well as long-term assessments of their impact on plant-microbe

interactions, will be crucial. Additionally, integrating precision

agriculture techniques with NBF applications could enhance their

efficiency, reducing resource wastage and ensuring targeted nutrient

delivery. Collaborative efforts between researchers, policymakers,

and industry stakeholders are essential to establish standardized

safety protocols and regulatory frameworks, paving the way for the

responsible and large-scale implementation of NBFs in

modern agriculture.
5.3 Biofilm biofertilizers

Farmers traditionally use single or mixed beneficial strains as

biofertilizers to support sustainable crop growth. However, their
TABLE 8 Mixed biofertilizer of arbuscular mycorrhiza and phosphate solubilizers.

AMF
Phosphate
solubilizers

Crop Benefit/negative effects References

Rhizophagus
intraradices

Klebsiella variicola Sunchoke
• Enhanced growth and tuber quality, particularly increasing
inulin content

Nacoon et al., 2020

AMF
Pseudomonas
thivervalensis

Ginseng • Increased total saponin content Liu et al., 2024

AMF Pseudomonas spp. —

• Aided recruitment of phosphate-solubilizing bacteria, dissolving
insoluble P via organic acids
• Secreting phosphatase to mineralize organic P, improving
P utilization

Rawat et al., 2020; Jiang et al., 2021;
Luo et al., 2022

AMF
Bacillus megaterium,
Bacillus
amyloliquefaciens

— • Promoted P mineralization and phosphate release Jiang et al., 2020
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effectiveness is often limited by competition with native soil and

plant microflora, leading to inconsistent results (Zakeel and

Safeena, 2019). Biofilm biofertilizers offer a solution by forming

microbial biofilms embedded in extracellular polymeric substances

(EPS). These biofilms adhere to surfaces and provide enhanced

protection against environmental stress (Rana et al., 2020). Biofilm-

forming microbes, including bacteria, fungi, and algae,

communicate via quorum sensing, allowing them to function as
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cohesive units (Li and Tian, 2012). Compared to single-strain

biofertilizers, biofilm-based biofertilizers have demonstrated

superior crop productivity (Seneviratne and Jayasinghearachchi,

2003). Multi-strain biofilms are more resilient and sustainable than

single-species biofilms, providing microbial protection against

biotic and abiotic stresses (Parween et al., 2017; Turhan et al.,

2019). Biofilm biofertilizers have shown effectiveness in crops like

rice, maize, tea, rubber, and vegetables, reducing chemical fertilizer
TABLE 9 Arbuscular mycorrhiza-based nano-biofertilizers.

AMF
species

Nanoparticle
type

Crop
Application
method

Benefits Reference

Funneliformis
mosseae

Zinc oxide
nanoparticles
(ZnO-NPs)

Moldavian balm (Dracocephalum
moldavica) under salinity stress

Soil application
• Alleviated salinity stress
• Increased dry biomass, chlorophyll content, and
yield-related traits in non-saline conditions

Yaichi
et al., 2025

AMF
Zinc ferrite
nanoparticles
(ZnFe2O₄-NPs)

Pea (Pisum sativum L.) Soil application

• Promoted shoot height and root length
• Enhanced accumulation of primary metabolites
(proteins, carbohydrates, amino acids)
• Slightly reduced mycorrhizal root colonization

Metwally and
Abdelhameed,
2023

Glomus
intraradices

Iron nanoparticles

Wheat (Triticum aestivum L.)
under drought stress (30% FWC)
and well-watered conditions
(80% FWC)

Seed priming

• Nanoparticles penetrated seeds and translocated
to roots (confirmed via TEM and EDX analyses);
significantly enhanced growth and
drought tolerance

Naseer
et al., 2021

AMF

Iron oxide
nanoparticles (FeO-
NPs) and silver
nanoparticles (AgNPs)

Clover Soil application
• Improved plant growth
• Enhanced ecological functions of
mycorrhizal clover

Feng
et al., 2013

AMF
Metallic
copper nanoparticles

Iris pseudacorus and
Phragmites australis

Soil application
• Mitigated metal stress by converting cationic
copper into metallic nanoparticles

Manceau
et al., 2008
a.

FIGURE 4

Synthesis of nanoparticles (a), synthesis of nano-biofertilizer of AMF (b), and application of AMF-based biofertilizer (c).
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usage by up to 50% (Seneviratne and Kulasooriya, 2012). Soil

microbial biofilms include bacterial, fungal, and fungal-bacterial

biofilms (FBBs), each adapting to different surfaces improve

nutrient uptake and stress tolerance (Seneviratne et al., 2007).

BFBFs contribute to ecosystem sustainability by promoting soil

fertility and plant resilience under stress (Vlamakis et al., 2013).

Mycorrhizal roots with bacterial-fungal biofilms boost P nutrition

(Jayasinghearachchi and Seneviratne, 2005), while fungal-rhizobial

BFBFs improve nitrogen use efficiency in Zea mays under drought

conditions (Pereira et al., 2020). Mycorrhiza-associated bacteria

enhance nutrient availability, produce growth-promoting

compounds, and improve resistance to fungal pathogens

(Table 10) (Agnolucci et al., 2015).

Biofilm-based biofertilizers represent a significant advancement

in sustainable agriculture, offering improved nutrient availability,

stress resilience, and reduced dependency on chemical fertilizers.

While extensive research exists on bacterial and fungal biofilms,

studies on biofilms based on AMF remain limited. Further research

is needed to explore their potential in enhancing plant–microbe

interactions and promoting soil health.

6 Risk evaluation of mycorrhizal
bioformulations and
biosafety concerns

In advancing research, the beneficial traits of microbial isolates

often overshadow the need to assess their pathogenicity at the

species level before large-scale applications. There is an assumption
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that bacteria from natural sources like soil and water are non-

pathogenic. However, many biofertilizers are derived from bacteria

classified as BSL-2 or higher biohazard groups. These

microorganisms, classified as BSL-2, can act as opportunistic

pathogens, potentially impacting non-target plants and reducing

local biodiversity (Kardol et al., 2007).

The quest for new biofertilizers has identified novel species, but

the lack of reference strains for pathogenicity comparison and the

presence of similar strains in hospital environments raise safety

concerns for commercial use (Uzcátegui-Negrón et al., 2011).

Microbial activities of opportunistic pathogens, such as producing

antibiotics or growth-regulatory substances, can alter local

microbial communities, disrupt nutrient cycles, and change plant

biodiversity. Some actinobacteria are linked to serious diseases,

necessitating careful use in agriculture (Gneiding et al., 2008).

Therefore, it is crucial to conduct thorough pathogenicity

assessments of microbial isolates to ensure their safety and

prevent unintended ecological consequences when applied in

agricultural ecosystem.

Inoculation, which introduces high densities of viable microbes

to the host rhizosphere disrupt temporarily the soil microbial

community equilibrium (Trabelsi and Mhamdi, 2013). While

changes in microbial composition could be undesirable if

important native species are lost, ecosystem resilience, driven by

plant–soil–biota diversity and interactions, may buffer these effects

(Kennedy, 1999). Furthermore, bacterial redundancy, where

different species perform the same functions, may ensure system

functionality despite species loss (Nannipieri et al., 2003). Recent

studies have highlighted that even unsuccessful microbial
TABLE 10 Arbuscular mycorrhizal biofilm biofertilizers.

AMF Microbe Crop Benefits/limitations References

AMF Endobacteria –
• Enhanced nutrient biodynamics (P solubilization, nitrogenase activity),
ethylene production, pathogen protection, and AMF hyphal growth

Cruz and Ishii, 2011

AMF
Enterobacter sp. (Mycorrhizal Helper
Bacteria – MHB)

Banana

• Increased mycorrhizal proliferation (4-fold), plant height, stem diameter
• Improved leaf carbohydrate, protein, chlorophyll, phenol, and proline
content (10-fold)
• Enhanced phosphate content (5-fold), mycorrhizal colonization, and
spore number
• Improved soil organic carbon, nitrogen, phosphorus, and potassium

Shah et al., 2022

Gigaspora
margarita

Bacillus megatarium – • Enhances mycorrhization Budi et al., 2012

Glomus
intraradices

Paenibacillus validus – • Increases fungal growth Hildebrandt et al., 2005

Glomus
intraradices

Pseudomonas fluorescens Carrot • Forms biofilm on extraradical mycelia, enhancing plant growth Bianciotto et al., 1996

G. margarita
Bacillus sp., B. thuringiensis,
Paenibacillus rhizospherae

Maize
• Forms biofilms on spore surfaces, solubilizes phosphorus, and
suppresses soil-borne pathogens

Cruz and Ishii, 2011

Rhizoglomus
irregulare

Rhizobium miluonense,
Burkholderia anthina

– • Strong attachment to AMF surface, phosphate solubilization Taktek et al., 2016

AMF
Sphingomonas sp., Pseudomonas sp.,
Massilia sp., Methylobacterium sp.

– • Forms biofilms with AMF propagules in polluted soils Iffis et al., 2014

AMF
Bacterial biofilms
in mycorrhizosphere

Maize • Phosphorus solubilization, enhanced plant growth
Magallon-Servı́ n
et al., 2019
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inoculation can significantly impact native soil microbiota by

triggering microbial invasions (Liu et al., 2022). Inoculants, as

microbial invaders, can alter native species diversity and

community composition, reshaping soil functionality, such as

carbon sequestrations (Bannar-Martin et al., 2017; Amor et al.,

2020). Microbial inoculations can lead to significant and unforeseen

changes in soil microbial communities by initiating secondary

succession (Horn, 1974), which in turn can have cascading

impacts on the funct ions and serv ices provided by

agroecosystems. The survival of inoculants in soil determines

their impact, with longer survival leading to more significant

effects (Xing et al., 2020a). Both abiotic factors, like pH and

temperature, and biotic factors, such as competition or

mutualism, influence inoculant survival (Trexler and Bell, 2019).

Microbial communities with higher phylogenetic diversity are more

resistant to invasions (Mallon et al., 2018). Additionally, even poor

survivors can leave a lasting footprint on native communities (Xing

et al., 2020; Reynolds et al., 2017). Inoculation reshapes interspecies

interactions through synergism or antagonism or competition or

predation and triggers secondary succession in microbial

communities by facilitation, tolerance, or inhibition, depending

on the suitability of the invaders to the native community

(Connell and Slatyer, 1977).

Studies on the potential risks of non-native AMF strains

disrupting soil microbiomes have yielded conflicting results. No

significant differences were observed in the microbiome of plants

exposed to native AMF communities versus those treated with

commercial AMF bioinoculants alongside native AMF.

Nevertheless, inoculation led to favorable changes in root traits,

as well as increased AMF colonization, plant biomass, and leaf

nitrogen (Berdeja et al., 2025). In native grassland soils with healthy

AMF communities, the use of commercial AMF products was

mostly ineffective, and in some cases, led to reduced biomass

production and decreased AM fungal root colonization. This

suggested that commercial strains could disrupt plant-fungal

symbiosis (Duell et al., 2022). Exotic AMF inoculants have been

linked to potential disruptions in soil microbial composition and

structure (Mummey et al., 2009; Faye et al., 2009). Native AMF

species are often considered more mutualistic than non-native

strains. Studies comparing local and commercial AMF inoculants

found great variability in performance, with some commercial

strains failing to form mycorrhizal associations due to poor

adaptation to local soil conditions (Corkidi et al., 2004; Rowe

et al., 2007; Faye et al., 2013; Salomon et al., 2022)

New EU regulations include only four microorganisms

(Azotobacter spp., Mycorrhizal fungi, Rhizobium spp. ,

Azospirillum spp.) under the plant biostimulant category PFC 6

(A) (EU Regulation, 2019). Furthermore, the fact that no pathogen

has been identified in the above-mentioned 4 species to date does

not guarantee that they do not exist. However, safety is not fully

guaranteed, as these regulations are based on taxonomic criteria,

and genetic variations within species can include both pathogens

and harmless strains. The Environmental Hazard Safety Index

(EHSI) system, which assesses the safety of microorganisms

intended for environmental release, is an improvement over the
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taxonomic approach but still has shortcomings for fungi,

particularly mycorrhizal fungi (Barros-Rodrıǵuez et al., 2020). To

ensure the safe and effective selection of PGPR strains for

inoculants, advanced and comprehensive methods, such as whole

genome sequencing should be used. Environmental and Human

Safety Index (EHSI) can help compare isolates with known PGPRs,

aiding in the selection process and minimizing risks to the

environment and human health (Vı ́lchez et al. , 2016).

Standardizing these methods will enable more reliable and

responsible use of beneficial microorganisms in agriculture.

7 Regulations related to
bioformulation of
mycorrhizal inoculants

While the combination of beneficial properties in microbial

products is appealing to researchers and end-users, it poses

challenges for regulatory authorities. These authorities apply

similar regulatory frameworks to agricultural microbial products

as they do to chemical products, distinguishing Plant Protection

Products (PPPs) and fertilizers. Consequently, microbial inoculants

are currently classified only as either biopesticides or biostimulants/

plant strengtheners/biofertilizers. This classification is crucial for

the registration and market placement of these products, as the

procedures differ significantly.

The global agricultural microbials market size was valued at

USD 6.17 billion in 2023 and is projected to grow from USD 6.85

billion in 2024 to USD 16.02 billion by 2032, exhibiting a CAGR of

11.21% during the forecast period (Agricultural Microbials Market

Size, Share | Global Report [2032], 2024). Despite such market size

of the mycorrhizae-based biofertilizers market, regulatory

frameworks may hinder sector growth, particularly during

formulation stages.

The new EU regulations introduced in 2019 restrict the marketing

of biofertilizers to four types: those that provide nitrogen (symbiotic

Rhizobium spp., free-living Azotobacter spp., and Azospirillum spp.)

and those that enhance phosphorus nutrition (mycorrhizal fungi).

Additionally, only drying or freeze-drying methods are permitted for

product formulation, limiting the use of other available technologies

(EU Regulation, 2019). In India, mycorrhizal biofertilizers are under

the Fertilizer (Organic) (Control) Fifth Amendment Order, 2021, with

a spore count of 10 viable spores per gram and a pH range of 5.0–7.0.

In Japan, the Ministry of Agriculture, Forestry, and Fisheries oversees

soil conditioners under the Soil Productivity Improvement Act (2019),

with a spore count of 25 per gram and a pH range of 4.5–8.0 (MAFF,

2019). Indonesia follows the Law No. 22 of 2019 for biological

fertilizers, setting a standard of 2,300 infective propagules per gram

for root inoculants. Thailand’s regulations under Fertilizer Act B.E.

2550 (2007) require a spore count of 25 per gram for solid inoculants

and 2,300 infective propagules per gram for root inoculants, with pH

suitable for both microorganisms and plants. The Philippines enforces

regulations under the Fertilizer Act B.E. 2550 (2007), specifying a

spore count of 10 per gram for solid inoculants. In the European

Union, microbial plant stimulants are governed by Regulation 2019/
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1009, with specific testing requirements for quality assurance, efficacy

trials, and contamination controls, ensuring compliance with heavy

metal and pathogen limits (Ghorui et al., 2024).

It is crucial to establish standardized regulations for the control

of microbial inoculants, especially biostimulants like AMF. First,

they improve global trade and eases market access as producers can

adhere to uniform regulatory requirements in several nations,

which lowers complexity and expenses. Harmonized regulations

may improve product development and result in more dependable

product efficacy Additionally, standardizing safety and quality

controls can guarantee product reliability, promoting broader

adoption by farmers. Such harmonizations can promote the

creation of more efficient microbial products suited to particular

agricultural requirements by offering defined avenues for

innovation. Lastly, by guaranteeing that only safe, non-pathogenic

strains are utilized, harmonization would reduce hazards to

ecosystems and advance environmental protection.
8 Obstacles and constraints in the
adoption of mycorrhizal formulations

8.1 Production

The primary difficulty in producing AMF inoculum stems from

their obligate symbiotic nature, which requires a host plant for

growth and life cycle completion, making the cultivation process

time- and space-intensive.
8.2 Formulations

It is often assumed that multi-species inoculants are more

effective in handling multiple stress conditions, but in contrast,

single-species inoculation has been found to more effectively

increase shoot biomass (Berruti et al., 2016). Some studies suggest

that the composition of species, rather than their diversity, plays a

more critical role in determining plant function (Gosling et al.,

2015; Wagg et al., 2015). Widely used AMF species such as

Rhizophagus intraradices, Funneliformis mosseae, and R.

irregularis are versatile generalists, capable of colonizing various

host plants and easily propagated for inoculation (Öpik et al., 2010).

Moreover, variations in plant responses are typically attributed to

differences between isolates of the same species rather than

differences between species (Munkvold et al., 2004; Gai et al.,

2006; Angelard et al., 2010). This suggests that genetic variability

within species might be more influential than species diversity itself.
8.3 Quality control

The market is plagued by counterfeit and low-quality products,

particularly in areas with inadequate regulations, which undermines

trust and slows growth. Salomon et al. (2022) evaluated 28

commercial AMF inoculants across Australia, Europe, and North
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America. Greenhouse trials in non-sterile soils showed that most

inoculants did not enhance mycorrhizal colonization or plant

biomass while 84% failed to colonize roots in sterilized soil.

Rhizophagus irregularis cultures showed significant colonization.

In North America field trials, metagenomic analysis revealed

changes in the mycorrhizal community, with one inoculant

increasing biomass. Koziol et al. (2024) conducted a meta-analysis

of commercial AMF inoculants over 20 years, finding that 84%

resulted in <5% root colonization. In 10 cases, the inoculants caused

crop mortality. They estimated that ineffective AMF products waste

$876 million USD globally. These varying results raises concerns

about the reliability of some commercial inoculants. Rigorous

quality control is crucial, as contamination is common, with

many commercial biofertilizers failing to meet purity standards

(Herrmann and Lesueur, 2013). Inadequate storage facilities and

unsuitable carriers can lead to contamination and decreased

efficacy. Proper labelling, including expiration dates and clear

microorganism identification, is often lacking, undermining

credibility (Salomon et al., 2022; Ghorui et al., 2023b; 2024).

Absence of clear guidelines on sampling and testing protocols

along with no established standards on viability, and infectivity,

results in the production of low-quality inoculants.
8.4 Application

Although the benefits of AMF in sustainable agriculture are

well-established, there are still gaps in understanding their

effectiveness and optimal application methods. Some field trials

report positive effects, while others present mixed or conflicting

results. Berruti et al. (2016) reported that out of 164 inoculation

experiments, with 65% conducted in greenhouses and 24% in open-

field conditions, the effectiveness of AMF inoculation on shoot

biomass, yield, and plant nutrition was consistent across both

environments, showing equal success in both greenhouse and

field conditions. Hijri (2015) analyzed 231 field trials over four

years across North America and Europe, finding a 9.5% increase in

marketable potato yield with Rhizophagus irregularis DAOM

197198 inoculation, making it profitable under field conditions.

Contradictorily, in native grassland soils with healthy AMF

communities, commercial AMF products were mostly ineffective

and sometimes reduced biomass and fungal root colonization,

indicating potential disruption of plant–fungal symbiosis (Duell

et al., 2022). This underscores the importance of additional research

to identify the factors contributing to varying results in

AMF effectiveness.
8.5 Environmental factors

The success of commercial AMF formulants in field soil depends

on factors like complex interactions with native soil microbes, soil

properties (soil texture, pH, organic matter, nutrients, and water

retention), environmental conditions, crop types, location,

topography, anthropogenic activities, and limited knowledge
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among end-users about proper application. Additionally, some

studies advocate for single inoculation (Li et al., 2025), while others

suggest that using diverse AMF communities may yield better results

in the field (Madawala, 2021). Loose soils like sand exhibit low

biological activity and AMF populations, while compacted soils like

clay hinder root penetration and AMF symbiosis (Aziz and Sylvia,

1992; Camel et al., 1991). Soil pH plays a crucial role in composition

of rhizosphere microorganisms, including AMF. Neutral soils (pH

6.5) support AMF diversity and promotes AMF growth, while acidic

soils (pH < 4.5) reduce spore numbers and activity (Tahat and Sijam,

2012; Guo et al., 2012). Additionally, a negative correlation has been

observed between root colonization and organic matter or

phosphorus content in the soil. Climatic factors, such as

temperature and rainfall, have more variable impacts on AMF than

elevated CO2 levels (Bennett and Classen, 2020). AMF species have

specific temperature requirements, with extreme temperatures

reducing their population. Optimal temperatures for AMF activity

align with those of plant vegetation, but different AMF species exhibit

varying temperature preferences for spore germination, hyphal

infectivity, and sporulation (Lekberg and Koide, 2008). AMF from

tropical regions is more resilient to high storage temperatures

compared to those from temperate climates (Al-Karaki et al.,

2003). Light influences mycorrhizal activity indirectly by regulating

photosynthesis, which provides carbohydrates to the roots (Saia et al.,

2015). High light intensity enhances root colonization and spore

production, while low light can disrupt the nutrient balance and

reduce root colonization (Lahrmann et al., 2013). The

mycorrhization efficiency fluctuates in annual and winter crops in

response to the seasonal changes. Topography also affects the AMF

spore populations, linked to nutrient content and water migration

(Oehl et al., 2004). AMF species richness is higher in grasslands than

in croplands, with species richness increasing with altitude in

croplands (Oehl et al., 2017). The distribution of AMF spores is

concentrated in the top 15 cm of soil, with populations declining

significantly below 30 cm and generally absent below 70 cm (Oehl

et al., 2004). However, symbiotic systems can still be present deeper in

barren and air-drained soils (Guo et al., 2012). Water availability

influences AMF colonization, with excessive water adversely affecting

AMF due to a lack of oxygen. AMF spores are seldom found in soils

that are periodically flooded (Solaiman and Hirata, 1996). Water

deficit, however, leads to smaller biomass losses in mycorrhizal plants

compared to non-mycorrhizal ones, along with higher

photosynthetic activity and nitrogen assimilation, especially in

plants with dual symbiosis (Rhizobium sp. + AMF). Agricultural

practices, such as mechanical cultivation and tilling, can damage

AMF spores, disrupting mycorrhizal networks and reducing root

colonization potential. Frequent cultivation practices that compress

the topsoil can lead to a reduction in AMF colonization of plant roots.

The season significantly influences AMF spore density and root

colonization, with higher spore densities and colonization rates

seen in summer, and lower levels during the winter (Sivakumar,

2012). The efficiency of AMF inoculants is also highly dependent on

competition with indigenous strains (Jefwa et al., 2010; Tarbell and

Koske, 2007). The lack of the optimal factors mentioned above can

lead to reduced effectiveness in AMF performance.
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8.6 Cost–benefit analysis

While direct comparisons between crop productivity from AMF

inoculation and synthetic fertilizers are limited, some studies

suggest that AMF can reduce the reliance on chemical fertilizers.

One study showed that the combination of AMF and Bacillus sp.

formed an effective microbial consortium that significantly

enhanced wheat biofortification, grain yield, and soil fertility

compared to chemical fertilizers (Yadav et al., 2021). Another

study demonstrated that Funneliformis mosseae and Bacillus

sonorensis had synergistic effects on plant growth, shoot dry

weight, fruit yield, and nutrient content in Chilly. Their large-

scale field trial showed that inoculation allowed a 50% reduction in

NPK fertilizer without negatively impacting growth, improving soil

enzyme activity and organic carbon (Thilagar et al., 2015).

Similarly, AMF inoculation improved root colonization and corn

yield, with these effects negatively correlated with phosphorus

fertilization. The results suggested that phosphorus levels

influence native AMF community composition, and that yield

benefits from AMF are most prominent when root colonization is

low and AMF communities are underdeveloped, providing a

potential advantage over chemical fertilizers in such conditions

(Bender et al., 2018). Another study found that oil palm seedlings

inoculated with AMF responded better to a 500 mg polybag−1

fertilizer dose, while those without AMF required 1000 mg

polybag−1, indicating that AMF reduced the necessary fertilizer by

50% (Rini et al., 2022). Furthermore, AMF inoculation with

chemical fertilizers improved plant height, dry biomass, total

yield, and the number of fruits per plant compared to those solely

fertilized with chemicals (Ziane et al., 2021). Mycorrhizal plants

with 50% fertilization showed significantly higher fruit mass and

organoleptic qualities compared to non-inoculated controls and

treatments with varying chemical fertilizer doses (0%, 25%, 75%,

100%). Inoculating with mycorrhizal fungi in the field can reduce

chemical fertilizer by 50% without yield loss, while improving fruit

quality (Trejo et al., 2021). For commercial AMF inoculants to be

adopted by farmers and end-users, they need to outperform

chemical fertilizers in both crop yield and cost efficiency.
8.7 Lack of knowledge

Farmers often lack awareness and knowledge about the benefits

due to limited access to information, socio-economic barriers, and

insufficient resources. The other factors include inconsistent

performance under varying environmental conditions, limited

understanding of their benefits compared to traditional fertilizers,

and the need for proper management to optimize their effectiveness.

To increase AMF adoption among end-users, it is crucial to focus

on effective education and outreach. Organizing training workshops

and hands-on demonstrations can help farmers understand AMF’s

benefits. Strengthening agricultural extension services will ensure

that farmers receive guidance on best practices. Farmer-to-farmer

networks can also foster peer learning, allowing early adopters to

share their experiences. Additionally, collaborative research and
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local field trials will showcase AMF’s practical benefits, helping

build confidence among farmers to adopt these practices.
8.8 Ethical concerns

Ethical concerns arise from using genetically modified or non-

native species. Existing native soil populations may hinder the

effectiveness of introduced microbial inoculants. Continuous

research, development, and collaboration among scientists,

farmers, and policymakers are necessary to address these

challenges and advance sustainable agriculture.
9 Conclusion and future prospects

The mycorrhizae-based bioformulations are environmentally

friendly and sustainable. The commercialization of AMF inoculants

has seen a significant advancement, including improvements in

production methods, strain selection, and bioformulation strategies

with enhanced stability, efficacy, and scalability of AMF-based products.

The market faces several challenges that may hinder its growth.

High production costs limit large-scale adoption, necessitating cost

reductions for global accessibility. Despite being time-consuming and

expensive, thorough studies should be integrated into the strain

acquisition process to support registration. Optimizing and

controlling production, along with field validation, are essential for

ensuring the effectiveness of microbial consortia. Regular feedback

from agronomic technicians can help identify strengths and areas for

improvement. The presence of counterfeit and substandard products,

especially in regions with weak regulations, undermine consumer trust

and slows market growth. Performance inconsistencies across different

environments, limited knowledge of optimal application methods, and

competition with native soil microbes further complicate the reliable

benefits of AMF inoculation. Additionally, a major barrier is the lack of

farmer awareness regarding biofertilizers, driven by restricted access to

information, resources, and socio-economic constraints, limiting

widespread adoption. Ensuring genetic stability, quality control, and

regulatory consistency remains a key environmental challenge. The

potential ecological risks posed by non-native AMF strains require

strict biosafety assessments and standardized evaluation methods.

Overcoming these obstacles is crucial for the expansion of the market.

Companies must prioritize high-quality production, ensuring

superior microbial strains, optimized processes, and effective

consortia, while maintaining strict quality control to meet farmers’

needs. Developing improved biofertilizer formulations is crucial for

enhancing microbial stability, increasing inoculation potential, and

sustaining long-term activity in the soil. To overcome current

challenges, further research should focus on optimizing inoculant

formulations, refining field management strategies, and improving

farmer awareness of their benefits. New technologies like whole

genome sequencing (WGS) or next-generation sequencing (NGS),

offer valuable insights into AMF interactions with native microbes

and aid in screening beneficial microbial candidates. Additionally,
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classifying diverse AMF species based on host and environmental

preferences can help define the most suitable inocula for various crops

and climatic conditions. In crops where inoculum compatibility with

the host is uncertain, commercial inoculants should prioritize generalist

AMF species.

With ongoing advancements, AMF inoculants can contribute

significantly to sustainable and cost-effective agriculture, particularly

in tropical regions facing high fertilizer costs, environmental risks,

and climate change impacts. Strengthening collaboration between

researchers and companies, implementing best practices, and

improving commercial inoculum functionality will be key to

advancing the AMF market and ensuring its long-term success.

Despite the existing challenges, the future of mycorrhizae-based

bioformulations appears promising, with increasing global focus on

environmental sustainability driving demand. The mycorrhizae-based

biofertilizer market is expected to grow at a CAGR of 14.3%, reaching

USD 1.087 billion by 2027. This expansion is supported by government

and organizational initiatives that promote sustainable farming

through stronger regulations and incentives for biofertilizer adoption.

Ongoing advancements in research and technology will enhance

the efficacy, shelf life, and affordability of AMF inoculants, making

them more accessible to farmers worldwide. Growing interest from

agricultural stakeholders highlights their potential to improve soil

health, crop productivity, and overall sustainability. With continued

efforts to address existing barriers and improve product quality,

mycorrhizae-based bioformulations are poised for significant growth,

contributing to a more resilient and eco-friendly agricultural future.
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