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Insects are integral to terrestrial life and provide essential ecosystem functions such as

pollination and nutrient cycling. Due tomassive declines in insect biomass, abundance, or

species richness in recent years, the focus has turned to find their causes. Anthropogenic

pollution is among the main drivers of insect declines. Research addressing the effects

of pollutants concentrates on aquatic insects and pollinators, despite the apparent

risk of contaminated soils. Pollutants accumulating in the soil might pose a significant

threat because concentrations tend to be high and different pollutants are present

simultaneously. Here, we exposed queens of the black garden ant Lasius niger at the

colony founding stage to different concentrations and combinations of pollutants (brake

dust, soot, microplastic particles and fibers, manure) to determine dose-dependent

effects and interactions between stressors. As proxies for colony founding success,

we measured queen survival, the development time of the different life stages, the

brood weight, and the number of offspring. Over the course of the experiment queen

mortality was very low and similar across treatments. Only high manure concentrations

affected the colony founding success. Eggs from queens exposed to high manure

concentrations took longer to hatch, which resulted in a delayed emergence of workers.

Also, fewer pupae andworkers were raised by those queens. Brake dust, soot and plastic

particles did not visibly affect colony founding success, neither as single nor as multiple

stressors. The application of manure, however, affected colony founding in L. niger

negatively underlining the issue of excessivemanure application to our environment. Even

though anthropogenic soil pollutants seem to have little short-term effects on ant colony

founding, studies will have to elucidate potential long-term effects as a colony grows.

Keywords: multiple stressors, soil pollution, insect decline, claustral colony founding, particulate matter,

microplastic

INTRODUCTION

The loss of biodiversity worldwide poses one of the biggest threats to ecosystem functioning and
consequently to human well-being in the Twenty-first century (1–3). Human-induced vertebrate
declines and species extinctions are well-documented and have long captured the attention of
scientists and the broader public (4). Due to an increasing number of studies showing massive
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declines in insect biomass, abundance, or species richness over
the last decades [(3, 5–7), but see: (8, 9)], the focus has recently
turned to understanding the mechanisms behind insect declines.

Insects are an integral part of terrestrial and aquatic food webs
as consumers and by linking primary producers with consumers
of higher trophic levels. They provide many essential ecosystem
functions such as pollination, regulation of herbivores and plants,
or nutrient cycling through the decomposition of leaf litter and
dead wood, or removal of dung (10). Consequently, further losses
in insect diversity and biomass will result in a highly uncertain
development of ecological processes potentially affecting human
living as we know it.

One of the main drivers of insect declines, besides habitat
conversion, land-use intensification, climate change, and
biological factors, is anthropogenic pollution (7, 11, 12).
Pollutants can originate from traffic, industrial production
and agriculture, including pesticides (13). They enter the
environment via deliberate application or leakage and poor waste
management (14). Because agricultural intensification is one of
the most apparent reasons for the observed declines in insects,
research has strongly focused on the effects of pesticides and
fertilizer application on insect health and fitness (12). However,
especially in or close to urban areas, industrial pollution from
heavy metals, airborne particulate matter, or plastic waste may
also adversely affect insect populations (15, 16). A potential
sink for such pollutants is soil, as contaminants can accumulate
therein over centuries (13, 17). As a result, soils may contain
mixtures of pollutants originating from various anthropogenic
activities over the years. For soil-dwelling insects, such as
ants nesting in soil, springtails, or beetles, this could be very
problematic (18, 19).

Despite the apparent risk of contaminated soils, research
addressing the effects of pollutants on insects concentrates on
aquatic insects and pollinators (12). The focus on pollinators is
evident, not only due to their ecological and economic value but
also because many of them are eusocial insects. Social insects may
be especially threatened by pollution for several reasons. They
often have large foraging areas and transport food to their nest as
a central storage place. The storage of food also likely accumulates
pollutants in the nest. Such an accumulation may lead to chronic
exposure to a mixture of pollutants to adults and their offspring
(16). For example, in different compartments of honeybee hives,
heavy metals and pesticides have been identified and shown to
have negative effects on individual bees and colony development,
primarily affecting brood stages negatively (20–24).

The effect of multiple stressors on insects has recently come
into focus, and experiments with two or more stressors gain
momentum (25, 26). Currently, many studies focus on the
interplay of two or more pesticides (27, 28) or the interplay of
pesticides with another stressor, such as climate change (29, 30),
or pathogens (31–33). Many insects will likely be confronted with
multiple-stressor scenarios under natural conditions in human-
altered landscapes. The outcomes of these studies show different
interactive effects. Some stressors interact antagonistically such
as temperature diminishing adverse effects of pesticides (29, 34).
Other studies found evidence for synergistic effects because
exposure to multiple stressors increased negative effects in a

non-additive way [overview in (16, 35)]. However, we still largely
lack data investigating potential interactions between stressors
and the form of the interaction in soil insects. Research in aquatic
environments and in bees show that non-additive effects are
quite common (36, 37). Understanding these interactive effects
between multiple stressors in insects is vital when trying to
unravel the complexity of insect declines and to predict how a
combination of particular stressors will impact insects.

Ants are a prominent insect group in most terrestrial
ecosystems with regard to species diversity and biomass (38).
They are important ecosystem engineers due to their functions
in soil perturbation, nutrient cycling, seed dispersal and as pest
controllers (39–42). Even though many reports on the decline of
Hymenoptera such as wild bees exist, the evidence for ant species
declines is still sparse (12, 43). Increasing land-use intensity in
temperate grasslands has been shown to result in a decrease
in ant species richness and abundance (44–46). The drivers of
this decrease were a higher frequency of mowing or fertilization
(45). In agricultural land or other strongly human-impacted
habitats, such as urban parks, roadside habitats or surroundings
of industrial sites, ant species richness and abundance decrease
[(47), overview in (48)]. Here, habitat fragmentation, habitat loss
and soil pollution may drive the decline of ant diversity and
abundance (47–50). In addition, neonicotinoid insecticides that
are widely used in agriculture have been shown to lower colony
growth-rate of ants (51).

As long-lived organisms and central place foragers, ants
can be negatively affected by pollutants in their environment.
Pollutants may accumulate in their bodies (49, 52) with adverse
effects on individual and thus colony-level fitness [(49), overview
in (16, 51, 53)]. Some ants, such as the black garden ant
Lasius niger, live in a variety of different habitats, including
agricultural and urban areas (54). The soil in such areas may
be contaminated with a mixture of anthropogenic pollutants,
such as microplastic deriving from degradation of larger plastic
litter, airborne particulate matter from traffic and industrial
processes such as brake dust or soot, or manure as fertilizer that is
commonly applied to arable land and grasslands. The number of
microplastic particles in the soil varies widely between sites, with
concentrations of up to 6.7% (w/w) in industrial areas (55, 56).
Identifying and quantifying airborne particulate matter in soil
is complicated as the elemental composition may overlap with
natural soil components. However, unnaturally high amounts of
metals can be attributed to external sources such as brake dust
(57, 58). Isotopic analyses revealed up to 0.54% (w/w) of urban
soils in Arizona as soot carbon black (59). As for manure, the
European law allows application of up to 35 tons per year per
hectare, resulting in large quantities on agricultural fields and
grasslands (60).

In many ant species, like Lasius niger, queens found new
colonies during a claustral phase. They build a nest in the
soil and raise their first brood by metabolizing stored body
reserves by histolysis of their flight muscles (38, 61). Only
a minority of young queens successfully manages to found a
colony. Predators catch many queens during their nuptial flight
and subsequent search for a suitable nest site (38, 62). Nesting
in soil, queens potentially encounter many pollutants during the
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claustral phase of colony founding, affecting the queen’s fitness
and the development of their brood. Negative effects of pollutants
in the soil may therefore further diminish the ratio of queens
successfully founding a colony.

To test this hypothesis, we exposed Lasius niger queens at
the claustral colony founding stage to five pollutants in two
concentrations to reveal the potential effects of different soil
pollutants on ants. We simulated different soil contaminations
by mixing soil with brake dust, soot, microplastic particles,
microplastic fibers, and manure. We compared the effects of
each pollutant alone to multiple stressor environments with
combined pollutants. Finally, wemeasured the development time
of the different life stages and queen survival. Once workers
were present, we measured the brood weight and the number
of offspring as a proxy for colony founding success. Except for
water, the queens do not take up any food during claustral colony
foundation. Therefore, we do expect marginal lethal effects of
the pollutants on the queens themselves, as toxic effects would
mostly be exerted via contact of the cuticle with the contaminated
soil. However, since the brood and especially larvae have a
thinner cuticle than the queens, these life stagesmay be negatively
affected directly when in contact with contaminated soil. The
presence of pollutants could cause stress in the queens, leading
to reduced investment in the brood due to allocation costs (63),
since pollutants may be taken up by the queen when cleaning
the surface of larvae that have come into contact with the
contaminated soil or feeding during brood care.

Moreover, pollutants may alter the microbial community in
the soil, which could affect the founding process (64). Even
though we expect to find negative effects of single pollutants,
it might well be that significant effects only manifest when ant
queens or brood are exposed to a combination of pollutants.
Organisms might be able to compensate for single effects but will
be overstrained when facing multiple stressors.

MATERIALS AND METHODS

Ant Queen Collection and Housing
Between 9th and 12th July 2020 we collected 600 L. niger wingless
queens after their nuptial flight in and around Bayreuth (Bavaria,
Germany).We kept them in plastic boxes containing damp paper
towels until further use. On 13th July, 510 queens were randomly
assigned to 16 soil treatments and one control treatment (N =

30 queens per treatment) using Research Randomizer (65). For
this, we prepared 15ml falcon tubes as nests for the queens with
the different soils. Each tube was filled with 5ml autoclaved water
and a cotton ball pushed to the 5.5ml mark to provide constant
moisture. On top of the cotton ball, we put 5ml of the respective
soil treatment. The soils contained different types, concentrations
and combinations of pollutants (For details see “Preparation of
Soil Treatments”). Finally, we placed one queen into each tube,
closed the screw-top loosely to ensure air circulation and then
started the experiment.

During the experiment, the queens were kept in a climate
chamber at 20◦C and 70% humidity under a constant 12:12 h
light:dark cycle. Only the regular checks for queen survival,
the presence of the brood stages and burrowing depth were

performed in the laboratory at room temperature. Brood stages
included eggs, larvae, pupae and freshly hatched workers. We
checked tubes every other day until eggs or the next brood stage
appeared. Then, we checked daily for a whole week. For the
checks, we used a dissecting microscope to identify brood stages
clearly. Observers were blind regarding the treatment. After the
first worker hatched, the tube, including the queen and the
brood, was frozen at −20◦C until further assessment to compare
colony founding success at a defined stage. In cases where no
workers emerged, queens were frozen 60 days after the start of
the experiment. Finally, we sorted, counted, and weighed each
queen and its brood (dry weight after 48 h at 50◦C). For each
queen, we calculated the development times of brood stages by
deducting the days of the first emergence from each other. As we
froze the brood when the first worker appeared, worker count
alone is not a meaningful variable as sometimes more than one
worker hatched at the same time by chance. Consequently, for
brood count, we add up the number of pupae and workers to have
only one variable.

Preparation of Soil Treatments
The soil used in our experiment was provided by the Ecological
Botanical Garden of the University of Bayreuth and consisted of
low-nutrient cultivation soil mixed with 10% organic compost.
Before mixing it with pollutants the soil was dried for overnight
at 70◦C in a drying oven (UFE 600, Memmert, Schwabach,
Germany) and sieved. We added autoclaved water (20% v/v) to
the soil to establish the same moisture in each soil treatment.
Then we used the following pollutants to prepare the soil
treatments: brake dust particles, soot particles, polystyrene
particles, polystyrene fibers and liquid manure.

Brake Dust Particles
Brake dust particles were provided by the Department of
Ceramic Materials Engineering of the University of Bayreuth.
Tribologically tested LowMet brake pads (provided by TMD
company) were ground, after several braking cycles on a ceramic
brake disc, that means after a dissipation of a total friction energy
of about 15 MJ and temperatures up to 400◦C. In order to reach
the required fine-grained powder, 3min in total, a vibrating cup
mill with tungsten carbide grinding set up (pulverisette 9, Fritsch
GmbH, Idar-Oberstein, Germany) was applied. A breakdown
of the composition of such brake pads can be found in Breuer
and Bill (66). The biggest fractions consist of steel wool [15%
(w/w)], petrol coke [12% (w/w)], sulfides [10% (w/w)] as well
as aluminum oxide and binder [both 5% (w/w)] (66). The
particle sizes of the ground brake pads were measured using
a laser diffraction particle size analyzer (PSA 1190 LD, Anton
Paar GmbH, Ostfildern-Scharnhausen, Germany). The average
particle size found was 10.19 ± 4.37µm (D10 = 0.68µm, D50
= 5.76µm, D90= 25.87 µm).

Soot Particles
We used the carbon black PRINTEX 30 Furnace Black (Degussa
AG, Frankfurt, Germany) for the soot treatments with an average
primary particle size of 27 nm. Carbon black and soot are
often used interchangeably even though they are distinct from
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each other. Carbon blacks are commercially produced elemental
carbon particles with different properties (67). In contrast, soot is
a by-product of relatively uncontrolled, incomplete combustions,
which results in a material of varying and often unknown
composition (68). In terms of particle size, there is a high degree
of similarity between soot and carbon blacks (69). As we want
to simulate contaminated soil and since soot is the most similar,
naturally occurring pendant we henceforth refer to the carbon
black as soot.

Polystyrene Particles and Fibers
Granules were ordered from Styrolution (Frankfurt am Main,
Germany) and further processed to particles and fibers by the
faculty ofMacromolecular Chemistry I (MCI) at the University of
Bayreuth. Polystyrene particles had a particle size of 125–200µm,
while the fibers had a length of 1–4mm and a diameter of 40 µm.

Liquid Manure
Liquid manure was provided by a small dairy cattle farm
in Bauerngruen near Bayreuth on 10th July 2020 (49.894071,
11.587649). The liquid manure was collected directly from the
outlet of the stable for calves (where ∼20 calves are kept at a
time) that do not receive any treatment with antibiotics according
to the farmer. However, it is likely that the calves have received
deworming treatment. As manure is typically applied in liquid
form, we did not dry the manure. Also, drying the manure likely
changes its properties making it less comparable to the common
practice in agriculture.

We assessed individual and dose-dependent effects of each
solid pollutant by using single pollutant treatments with two
different concentrations [0.5 and 2% (v/v)] of each pollutant
mixed into the soil. In the liquid manure treatments, we replaced
the water added to the soil completely [20% (v/v)] or partly with
liquid manure [5% (v/v)]. In the multiple stressor treatments,
we mixed the four solid pollutants in equal proportions with
three different overall concentrations [0.5, 2, and 8% (v/v)]
into the soil, either with or without manure [20% (v/v)], to
see combinatorial effects. We chose the concentrations to assess
stressor effects and dose effects (For details see: “Statistical data
analyses”; Figure 1). Because studies have found a wide range
of pollutant concentrations in natural soils [up to 6.7% (w/w)]
(56), we chose a similar range for our experiment. However, for
conceptual consistency we used volume/volume concentrations,
as particles differ dramatically in their bulk density.

Statistical Data Analyses
All statistical analyses were performed using R 4.0.3 (70). We
excluded queens that were untraceable after some time (4.1%),
mostly due to burrowing in the soil, and were not observed
again until freezing from the survival analysis. The survival
data were analyzed with a Cox proportional hazard regression
(COXPH) with treatment as a predictor [package survival, (71,
72)]. Survival model assumptions were tested using Schoenfeld
residuals [survminer, (73)].

For all subsequent analyses, we excluded queens that died
during the experiment (N = 36), were untraceable for at least
10 days (N = 21) or had zero or more than five workers at

the point of freezing (N = 35). More than five workers at
the point of freezing indicated that we missed the day of first
emergence because normally only few workers emerge within 1
day. Queen weight, brood weight, brood counts and development
times were analyzed fitting generalized linear models GLMs with
treatment as a predictor. We checked model assumptions using
model diagnostic test plots, i.e., qqplot and residual vs. predicted
plot from the package DHARMa (74). Depending on model
assumptions, we then used Kruskal-Wallis tests or produced
F-statistics with the function anova() to calculate p-values for
differences between treatments. For significant treatment effects,
we ran pairwise comparisons. In the case of a significant
Kruskal-Wallis test, pairwise comparisons were done using
Dunn’s test for multiple comparisons with Benjamini-Hochberg
correction [package “FSA,” (75)]. In the case of a significant
ANOVA, pairwise comparisons were made using Tukey HSD
post-hoc test with Benjamini-Hochberg correction from the
packagemultcomp (76). Even though we ran all possible pairwise
comparisons, we only report the relevant comparisons because
comparing different stressor types with different concentrations
is not very informative. To characterize the stressor effects, we
show the comparisons of each stressor type to the control, the
comparisons between stressor types of the same concentration
and the comparisons between the high concentration of manure
and the multiple stressor treatments with manure. Finally, we
compared the treatment levels within the same stressor type to
identify dose effects (Figure 1). To measure effect sizes of the
pairwise-comparisons, we calculated Hedges’ G with the package
esvis (77). Data were arranged using the package tidyr (78) and
were plotted using the package ggplot2 (79).

RESULTS

Overall, we found very low mortality in the queens. Thirty-six of
510 queens (7.1%) died during the experiment. Queen survival
was similar across treatments (COXPH overall LR-test: X2 =

23.23, df = 16, P = 0.108).
Queen weight significantly differed between the treatments

[GLM with gamma distribution: F(16, 324) = 1.896, P = 0.020].
However, only queens exposed to the high concentration of
manure were significantly heavier than the queens exposed to the
low concentration of manure (Table 1, Supplementary Figure 1,
Tukey comparison: P = 0.044). Even though treatment
significantly affected brood weight [GLM with gaussian
distribution, F(16, 324) = 2.168, P = 0.006], the multiple
comparison analyses showed no significant differences between
the treatment levels (Table 1, Supplementary Figure 2). At
higher manure concentrations brood weight tended to be lower
than the control. But for the other pollutants we could not
identify a clear pattern.

Neither the number of eggs [GLM with gaussian distribution:
F(16, 324) = 1.601, P = 0.067], nor the number of larvae differed
between treatments [GLM with gaussian distribution: F(16, 324)
= 1.668, P = 0.051; Supplementary Figures 3, 4]. In contrast,
the number of pupae and workers significantly differed between
treatments [GLM with gaussian distribution: F(16, 324) = 2.852,
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FIGURE 1 | The different treatments and their stressor concentrations (v/v). Relevant comparisons are comprised between treatments that lie on a vertical or

horizontal line or are connected with arrows. Dashed arrows represent the dose effect, i.e., the comparisons within stressor type. Solid arrows represent the stressor

effect, i.e., the comparisons between stressors types or stressor type and control.

P < 0.001]. Queens exposed to the high concentration of
manure had fewer pupae and workers than control queens
[Tukey comparison control vs. multiple stressors (2%)+manure:
P = 0.030] and queens exposed to multiple stressors [Tukey
comparison multiple stressors (0.5%) vs. multiple stressors
(0.5%)+manure: P = 0.004; Table 1, Supplementary Figure 5].

The development time from egg to larvae significantly differed
between treatments (Kruskal-Wallis rank sum test: X2 = 112.86,
df = 16, P < 0.001). The development time from egg to larvae
was longer in treatments containing the high concentration of
manure compared to controls (Figure 2, Dunn’s comparisons:
see Table 1). We also found a significant effect of treatment
on the development time from larvae to pupae (Kruskal-Wallis
rank sum test, X2 = 39.311, df = 16, P < 0.001). However,
post-hoc Dunn’s test revealed no significant differences between
the treatments (Table 1, Figure 2). The development time from
pupae to worker did not differ between treatments (Kruskal-
Wallis rank sum test, X2 = 14.417, df = 16, P = 0.568; Figure 2).
The overall development time from egg to worker differed among
treatments (Kruskal-Wallis rank sum test, X2 = 88.944, df =

16, P < 0.001). Similar to the development time from egg to
larvae, the development time from egg to worker was longer in
the treatments with the high concentration of manure compared
to controls and multiple stressor treatments (Figure 2, Dunn’s
comparisons: see Table 1).

DISCUSSION

In this study, we looked at the effects of different soil pollutants
on the colony founding success of Lasius niger ant queens in
the laboratory. Ants were exposed to different concentrations
and combinations of pollutants to determine dose-dependent
effects and interactions between these potential stressors. While
brake dust particles, soot and polystyrene microplastic (particles
or fibers) did not affect any of the measured colony foundation
parameters, a high concentration of manure in the soil led
to delayed egg development and a smaller number of pupae
and workers.

The overall ant queen mortality was very low (7.1%) and was
not affected by soil treatment. This indicates that pollutants in
the soil, at least those used here, do not exert toxic effects on the
ant queens. During colony founding, ant queens do not consume
any food as they meet their energy demands by using internal
resources, such as degeneration of their flight muscles (38, 61).
For a pollutant to be toxic at this stage, it would have to be lethal
at a very low dose or capable of entering via the cuticle or the
trachea. Consequently, most pollutants at field-realistic doses,
such as insecticides and fungicides, do not increase mortality in
founding ant queens [(51, 81, 82), but see (83)].

While we found no differences in queen survival, the number
of offspring or brood weight, exposure to a high concentration of
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TABLE 1 | P-values and Hedges’ g of the relevant comparisons with a p-value below 0.1 for the different response variables.

Response Comparison Mean difference p-value Hedges’ g

Weight (mg)

Queen Manure (20%) > Manure (5%) 1.524 0.044 1.123

Brood Control > Manure (20%) 1.019 0.055 0.964

Control > Multiple stressors (2%) + Manure (20%) 1.133 0.052 0.937

Control > Multiple stressors (0.5%) + Manure (20%) 0.943 0.092 0.916

Multiple stressors (0.5%) > Multiple stressors (0.5%) + Manure (20%) 0.908 0.092 0.938

Number of

Eggs – – – –

Larvae – – – –

Pupae + worker Control > Manure (20%) 4.146 0.068 0.906

Control > Multiple stressors (0.5%) + Manure (20%) 4.313 0.068 1.005

Control > Multiple stressors (2%) + Manure (20%) 5.174 0.030 0.901

Manure (5%) > Manure (20%) 3.662 0.080 0.747

Multiple stressors (0.5%) > Multiple stressors (0.5%) + Manure (20%) 5.950 0.004 1.408

Multiple stressors (2%) > Multiple stressors (2%) + Manure (20%) 4.389 0.064 0.753

Development time (days)

Egg to larvae Manure (20%) > Control 1.521 0.002 0.893

Manure (20%) > Manure (5%) 2.018 <0.001 1.298

Multiple stressors (0.5%) + Manure (20%) > Control 2.188 0.009 0.944

Multiple stressors (0.5%) + Manure (20%) > Multiple stressors (0.5%) 2.550 <0.001 1.207

Multiple stressors (2%) + Manure (20%) > Control 1.632 0.026 0.834

Multiple stressors (2%) + Manure (20%) > Multiple stressors (2%) 2.278 <0.001 1.426

Multiple stressors (8%) + Manure (20%) > Control 0.952 0.051 0.620

Multiple stressors (8%) + Manure (20%) > Multiple stressors (8%) 1.492 0.002 1.453

Larvae to pupae Manure (20 %) > Control 0.854 0.068 0.783

Multiple stressors (0.5 %) + Manure (20 %) > Control 1.213 0.050 0.613

Multiple stressors (8 %) + Manure (20 %) > Control 1.224 0.060 0.815

Pupae to worker – – – –

Egg to worker Manure (20%) > Control 1.958 0.010 0.955

Manure (20%) > Manure (5 %) 2.478 <0.001 1.265

Multiple stressors (0.5%) + Manure (20%) > Control 2.725 0.025 0.998

Multiple stressors (0.5%) + Manure (20%) > Multiple stressors (0.5%) 3.650 <0.001 1.519

Multiple stressors (2%) + Manure (20%) > Control 1.708 0.087 0.724

Multiple stressors (2%) + Manure (20%) > Multiple stressors (2%) 2.167 0.008 0.952

Multiple stressors (8%) + Manure (20 %) > Control 1.493 0.064 0.748

Multiple stressors (8%) + Manure (20%) > Multiple stressors (8%) 2.163 0.004 1.472

According to Cohen (80) effect sizes > 0.8 indicate a large effect. Significant adjusted P-values are shown in bold.

manure (20% v/v) delayed brood development time resulting in a
delayed time of first worker emergence. A slower development
from egg to larvae caused this delay (Figure 2). While we are
not aware of any study investigating the effects of manure
on the development of soil-dwelling insects, the effects on
soil properties, such as pH or oxygen, or on microbial soil
communities are well-studied. Even though we did not measure
it, manure typically changes soil pH and increases the availability
of nutrients, which in turn increases microbial biomass (84,
85). This shift in pH and biomass affects the structure of the
microbial soil community (86–88). Such changes in the soil
may also affect the development of larger organisms. Because
ant development varies with environmental conditions (89), the

delayed egg development may be explained by manure-induced
changes in oxygen-levels. As insect eggs depend on oxygen for
their development, they have diffusion holes in the shell (90,
91). Under low oxygen levels in the immediate environment,
Tenebrio molitor (92) and Drosphila melanogaster (93) show
slower development. The application of manure reduces oxygen
levels in the soil, sometimes locally even leading to anoxic
areas (94, 95). Peak oxygen deficits in soil occur 16 h after
the manure application and go back to near-normal within the
following days (94). We assume this process could explain the
observed delay in the development time of the brood stages in
our study. Because an oxygen deficit only manifests for a short
time after the manure was added, it most likely just affected
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FIGURE 2 | Development time of the brood stages of each treatment (days since first appearance of eggs). Boxplots show median, first, and third quartile. Dots show

outliers outside of 1.5 × Inter-quartile range. Horizontal lines indicate the median of each brood stage over all treatments (red = larvae, blue = pupae, yellow = worker).

the early brood development. As most queens (94%) laid their
eggs within the first 2 days, delayed egg development could
have been caused by low oxygen levels. Later brood stages were
not affected since oxygen should have been back to normal
after a few days. However, as we did not measure oxygen levels
during our study, this explanation remains hypothetical. The
smaller number of pupae and workers in the manure treatments
might be explained in a similar way. Low oxygen levels at the
beginning of the experiments may have not only caused delayed
development but also lead to losses in the first egg clutch (91).
Those early losses would result in fewer pupae and workers at
the time of first worker emergence. A smaller number of workers
and a delayed development could lead to less competitive ant
colonies. As ants are in constant competition for resources and
habitat, a smaller colony size at an early stage may reduce the
survival probability of affected colonies (96). Repeated treatment
of grasslands with manure can then add up to the observed

slight but significant negative effects of fertilization on ant species
richness and abundance (45).

The manure we used for our experiment was collected
directly from the sewage of a stable that houses calves that
were not treated with antibiotics. However, large-scale cattle
farming typically relies on high amounts of antibiotics and
dewormers (97, 98). The effect of manure that contains residues
of medications could be different from the effects we observed as
it is likely that that soil fauna is even more affected (99). Before
application, manure is often aged in a lagoon in which bacteria
degrade organic matter (100). Again, such manure could have
different effects than the ones we observed, asmany of the organic
compounds are already decomposed (101). Because we used
nearly sterile soil (dried overnight at 70◦C + use of autoclaved
water) in our setup, the effects of manure in our experiment could
partly be attributed to microorganisms. Manure typically carries
high loads of different microorganisms. Therefore, the manure

Frontiers in Insect Science | www.frontiersin.org 7 October 2021 | Volume 1 | Article 761881

https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/insect-science#articles


Seidenath et al. Soil Pollution Effects on Ants

treatments also represent a bacteria-rich environment, at least
in comparison to our other almost sterile soil treatments. Ant
queens maintain their own and their nest’s hygiene by investing
in external immunity, which can come at the cost of reproduction
(64, 102, 103). L. niger queens founding a colony under high
microbial pressure are actually forced to pay a substantial cost
by simultaneously investing in reproduction and immunity (64).
Therefore, the negative impact of manure in our experiment
could also partly be caused by the similar effect of microbes on
colony development described by Tragust et al. (64).

Apart from manure none of the other pollutants applied,
i.e., brake dust, soot, microplastic particles and fibers, caused
any changes in the investigated colony founding parameters.
It is highly unlikely that initial queen weight affected this
finding as we have fully randomized the assignment of the
queens to the different treatments using an automated algorithm
(65). Nevertheless, it would be interesting to investigate a
potential effect of pollutants on the relation between initial
queen weight and colony founding success. Although other
studies show that fecundity and brood development of ants
are sensitive to sublethal concentrations of pollutants, we
did not detect any effects on those parameters in L. niger.
In contrast, azole fungicides decrease fecundity in L. niger
and the semi-claustral founding ant M. rubra (81, 83, 104).
Thiamethoxam, a neonicotinoid insecticide, negatively impacted
L. niger resulting in smaller colony size and worker weight
(51). Selenium, a widespread contaminant in soils resulting
from agricultural irrigation, hindered brood production in the
Argentine ant Linepithema humile (105). A field experiment
revealed negative effects of microplastic pollution on soil fauna,
including ants (106). However, studies investigating the direct
effects of microplastic on ants or studies that try to detect
microplastic in ant bodies are still lacking. The combination
of pollutants in the multiple stressor treatments revealed no
additional effects other than those induced by treatments with a
high concentration of manure. Therefore, we found no notable
interactions among the different pollutants that would cause
different effects on the ant queens.

Even though we did not find any effects of the pollutants
apart frommanure during our experiment, we cannot yet declare
the pollutants as harmless to founding L. niger queens, as our
experimental setup had some limitations. The commercially
produced carbon black we used as soot is chemically distinct from
real soot. Soot has a higher proportion of organic compounds
which might have affected the ants differently (67). Similar,
the brake dust in our experiment was artificially produced by
grounding brake pads. Brake dust from real braking processes
may differ in chemical and physical composition and thus affect
ants differently. Another limitation of our study is that the period
until the emergence of the first worker may not be sufficient to
detect mid- or long-term effects of pollutant exposure. Several
studies show that ants can compensate for stress for some time
but ultimately must pay the hidden costs later in life. Some effects
of a fungal pathogen in combination with physical stress on
claustral colony founding ant Crematogaster scutellaris were only
present at an early stage. In contrast, others only became evident
in the long-term (107). The impact of microbe-enriched soil on
L. niger queens just appeared when they were forced to lose

their first batch of brood after hibernation (64). Another study
found no effects of thiamethoxam on L. niger colonies before the
first overwintering, but exposed colonies had fewer workers and
larvae before the second winter (51).

Apart from long-term effects, other hidden costs might be
present that our study design cannot uncover. The pollutants
could affect worker health and immunity. Eg., heavy metal
pollution suppressed the encapsulation response in wild colonies
of Formica aquilonia (53). Ant workers may be more prone
to the pollutants than the queen, as a recent study suggests a
superior detoxification system in ant queens (51). In honeybees
(Apis mellifera), queens aremuchmore tolerant to acaricides than
workers, even when adjusted for body size (108).

The black garden ant L. niger, a prevalent ant species across
Europe, has a wide range of habitats, including urban areas
and agricultural fields (54). The frequent occurrence might be
explained by a higher stress tolerance of L. niger than other
species. Higher resilience to disturbance and pollutants forms
an important trait to tolerate and survive in human-altered
landscapes. Genomic analysis revealed an increased potential of
stress-resistance in L. niger compared to other ant species (109).
The higher number of cytochrome P450 genes present in L.
niger could improve its detoxification abilities of anthropogenic
pollutants. Moreover, L. niger prefers visual information over
pheromone trails for foraging, making it less vulnerable to
interferences with repellent substances that could be especially
present in urban environments (110, 111). These findings suggest
a higher tolerance of L. niger against pollutants than other ants,
even though we do not know of any study explicitly testing this
hypothesis. Studies of Formica s. str. in heavy metal polluted
areas showed that even closely related species can differ in their
sensitivity to pollutants (49). Consequently, even though we do
not find any short-term effects of pollutants on L. niger, we
cannot conclude that there are no effects on ants in the long-
term or that the pollutants studied here have more detrimental
effects on other ant species. Especially rare ant species may be
more vulnerable to pollution.

We could show that single and combined exposure of
different soil pollutants does not affect colony founding in
L. niger until the first workers emerge. The application of
manure, however, affected colony founding by prolonging the
development time from egg to larvae which ultimately led
to a delayed emergence of the first workers. Moreover, fewer
pupae and workers were raised by the queens in the manure
treatments. These findings underline the issue of excessive
manure application in our environment. Even though we did
not find any effects or interactions among the other pollutants,
effects on later stages of colony development cannot be ruled
out. Therefore, future studies could investigate potentially hidden
long-term effects of pollutants on colony development. Of similar
importance might be to show if and how ant queens take up
the pollutants.
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