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Spotted-wing drosophila (SWD), Drosophila suzukii, has become one of the most widely

studied insect species over the last decade, largely due to its recent invasion and rapid

expansion across the Americas and Europe. Unlike other drosophilid species, which

colonize rotting fruit, SWD females possess a serrated ovipositor that allows them to

lay eggs in intact ripening fruit, causing significant economic problems for fruit/berry

producers worldwide. Though an impressive amount of research has been conducted on

SWD’s ecology and physiology, aspects of their nutritional ecology remain ambiguous.

This review synthesizes the research to date to provide a more comprehensive view

of SWD’s nutritional relationship with its fruit hosts and associated microbes. Overall,

data suggest that SWD’s ability to utilize novel resources is likely due to changes in

their ecological, rather than physiological, niche that are largely mediated by microbial

associations. Studies show that SWD’s nutrient intake is comparable to other drosophilid

species, indicating limited adaptation to feeding on lower-protein resources. Instead,

data show that fruit protein content is a reliable predictor of host suitability and that

fruit-microbe dynamics have a strong impact on protein availability. In particularly,

fruit protein increases after infestation with SWD-associated microbes, suggesting that

initially-suboptimal intact fruits can become protein-rich on a timeframe that is relevant

for larval nutrition. This body of work suggests that microbial associations between

flies and their fruit hosts can compensate for the nutritional differences between intact

and rotting fruit, and that these relationships are likely responsible for SWD’s expanded

nutritional niche.

Keywords: macronutrients, host suitability, microbes, geometric framework, niche

INTRODUCTION

Spotted-wing drosophila (SWD), Drosophila suzukii, is a fruit fly species endemic to Eastern and
Southeastern Asia (1, 2) but is a recent invasive species in North and South America and Europe
(3–9). First reported in California (10) and Spain in 2008 (8), SWD quickly spread across North
America and Europe by 2013 (11, 12). Belonging to the D. suzukii subgenus Sophophora within
D. melanogaster species group, SWD can be distinguished from most other drosophilids by two
morphological features: the presence of dark spots on the wings of males and a large serrated
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ovipositor on the females. The serrated ovipositor is an
ecologically-significant trait, as it allows female SWD to lay
eggs in ripening intact fruit, which is a unique niche among
other drosophilids that typically lay eggs in split and/or rotting
fruit (11, 13, 14). Spotted-wing drosophila is highly polyphagous
and is documented to feed on over 25 different plant families,
including many economically-important berry and stone fruit
varieties (15). Losses can be caused by direct injury to the fruit
or by other indirect effects, such as reductions in wine quality
based on the spread of Acetobactor bacteria to wine grapes by
SWD (16). In Minnesota raspberries alone, SWD is estimated
to cause more than $2 million in annual losses (17). Additional
economic impacts are also incurred through costs associated with
prevention and control (14, 18, 19).

The nutritional ecology of SWD is rather complex due to its
dependence, not only on plant hosts, but also on plant-microbe
associations. Fruit tissues provide shelter and food for larvae,
while microbes colonizing these tissues provide additional and
essential sources of protein, sterols, vitamins and minerals for
both larvae and adults. Much research has been focused on
different aspects of fly nutrition, including their physiological
constraints (13, 20–24), the suitability of different host plants
(25–33) and microbial associations between different plant hosts,
as well as associations with the flies themselves (34–38). The
primary features of SWD’s nutritional ecology are illustrated in
Figure 1, along with the various characteristics that interact to
affect fly fitness. This review synthesizes this body of work to
build a more comprehensive understanding of SWD’s nutritional
ecology, particularly as it relates to host range in an evolutionary
context. Understanding the nutritional ecology of SWD is
essential for elucidating other aspects of its invasion ecology and
developing more effective control strategies.

FLY NUTRITION

In order to understand the nutritional ecology of SWD we first
have to elucidate its nutritional requirements. Many studies have
attempted to do this by testing different fruits, fruit purees, and
artificial diets; however, it is difficult to compare across studies
due to the many physical and nutritional differences between
these diets. The geometric framework of nutrition (GF) offers
a useful method for standardizing dietary variables by focusing
on the balance of specific nutrients, typically dietary protein and
carbohydrates (39–41). These twomacronutrients are required in
the greatest amounts by all animals, and a plethora of GF studies
have shown that they have the strongest impacts on animal fitness
and that their intake is also tightly regulated to reach an optimal
balance. This is termed an intake target and is represented by a
protein-to-carbohydrate ratio (P:C) (39, 41–43). For SWD, two
nutrient-regulation studies have been published that utilize a GF,
and both focus primarily on larval performance (13, 23). Despite
testing different P:C ratios, Young et al. (23) and Silva-Soares
et al. (13) showed that larval survival and developmental times
were optimal onmore protein-biased diets, which ranged in these
studies from a P:C ratio of 1:2 to 24:1. Silva-Soares et al. (13)

FIGURE 1 | The three main features of D. suzukii nutritional ecology and the

key characteristics that interact to affect fly fitness.

also found that adult female weight and ovariole number were
maximized on high-protein larval diets ranging from 1.5:1 to
1:2. Adults in this study were, however, allowed to feed on the
experimental diets after they eclosed, making it difficult to clearly
separate the effects of larval vs. adult nutrition. Although they
did not utilize a GF, Plantamp et al. (44) assayed adult females
fed intact fruit, damaged fruit, and sucrose + yeast solutions,
and found that protein acquisition in the adult stage is essential
for egg development. Females fed a sucrose + yeast solution had
significantly more oocytes per ovary than those fed on fruit alone,
even fruit that had been decaying for 16 days and most likely had
a higher protein content than intact fruit.

One difficulty in studying SWD adult nutrition is the effect
that oviposition has on female feeding behavior, in particular the
potential to draw females away from optimal feeding sites. An
interesting result of the Silva-Soares et al. (13) and Young et al.
(23) studies was that despite the optimality of high-protein larval
and adult diets, females showed a strong oviposition preference
for high-carbohydrate substrates- a trait that has also been
observed in other drosophilids (13, 20, 45, 46). While this may
seem contradictory, plant-microbe interactions and their impact
on larval nutrition may explain much of this behavior and is
discussed more thoroughly in section Microbes and Nutrition.

Nutrient regulation of specific nutrients has also been used
to identify SWD nutritional requirements. Silva-Soares et al.
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FIGURE 2 | The macronutrient content of different host fruits, as well as the intake targets for D. suzukii and two other drosophilid species (A). Macronutrient changes

over time in strawberry (B,C) after infestation by D. suzukii. These graphs were adapted from the raw macronutrient data published in Silva-Soares et al. (13) and

Matavelli et al. (48).

(13) is the only study that has measured nutrient intake in
SWD, which was done in larvae using spectrophotometric
quantification of food dye. Data showed that SWD larvae strictly
regulate protein intake and tolerate a broader range of dietary
carbohydrate concentrations. A specific intake target was not
explicitly calculated in this study, however, extrapolating from
their data suggests that the species average is around 1:3.2.
Because SWD feeds on ripening intact fruit with low microbial
colonization, it has been hypothesized that SWD larvae may be
adapted to lower-protein resources relative to other drosophilid
species that feed on microbe-rich rotting fruit. Silva-Soares et al.
(13) measured larval nutrient intake for D. biarmipes, a closely
related species, and the estimated intake target from these data
show a species average around 1:2.2, a slightly more protein-
rich intake target than SWD. However, other studies looking
at nutrient regulation in adult D. melanogaster have reported
intake targets that are more carbohydrate-biased than SWD,
at around 1:4 (46, 47). Additionally, SWD and D. biarmipes
did not differ significantly in their oviposition preference for
low P:C ratio substrates (13). When taken together, these
studies do not strongly support the notion that a physiological
shift toward more carbohydrate-biased resources has evolved
in SWD and rather suggests that SWD’s physiological niche
largely overlaps with other drosophilid species (Figure 2A)
[but see (49)].

HOST PLANTS CHARACTERISTICS

Many studies have explored host range (50, 51) and suitability
(26, 28–32) for D. suzukii by measuring developmental time and
adult emergence across different fruits. Fruit purees have also
been used to control for differences in the physical characteristics
between fruits (skin thickness, fruit morphology, fruit size, etc.).
Across laboratory studies, there is quite a strong consensus that
raspberries are an optimal host for larval performance, followed
by blackberries and strawberries (26, 28–32, 51). The adequacy
of blueberries and cherries are less consistent across studies,
while grapes consistently produce poor larval performance.
Interestingly, the results found across studies that used whole
fruits (26, 28, 30–32, 51, 52) and fruit purees (25, 27, 32, 33)
are very similar, suggesting that the physical characteristics of
different fruits play a minimal role. However, in many of these
experiments, larval densities were tightly controlled and because
larval competition has significant effects on developmental
time and emergence (27), and is likely impacted by structural
differences between fruits, this limits our ability to accurately
determine the role of physical traits in many of these studies.

It should be noted that others studies have explored the
suitability of non-fruit hosts for SWD, including mushrooms and
animal manure (22, 53). While these data do show the capacity
for SWD to utilize non-fruit under certain circumstances, their
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relevance to host suitability characteristics or nutrition is limited
by the fact that these components were not measured for
each. Should future research be able to connect these non-
fruit hosts with specific macronutrient profiles or physical
characteristics, they could help elucidate the important factors for
fly performance.

Combining data on fly nutrition and fruit macronutrient
content uncovers some interesting patterns. The most commonly
utilized North American fruits, as well as their P:C ratios and
energy contents, are listed in Young et al. (23) and summarized
in Figure 2A. Raspberries and blackberries represent the most
protein-rich fruits, followed by strawberries, cherries, and
blueberries, while grapes are the most carbohydrate-biased.
Figure 2A shows that the larval intake targets for SWD and two
other drosophilid species, D. biarmipes and D. melanogaster, fall
closest to raspberries and blackberries- the two fruits with the
greatest SWD suitability (25–28, 30–33, 51, 52). This suggests that
the nutritional characteristics of fruit hosts may play a primary
role in larval performance and host suitability.

Across 67 fruits, Poyet et al. (51) found that adult emergence
was significantly greater in fruits with smaller diameters and
those with polydrupes compared to berries or single drupe
fruits. Additionally, Little et al. (30) found a significant positive
relationship between the number of pupae present on different
hosts, fruit brix content (sweetness), and pH, but a negative
relationship with firmness. However, in another study focused
on boreal fruits, Little et al. (31) found no association between
adult emergence, brix content or skin firmness and instead a
negative correlation between emergence and pH. Although it
appears that fruit pH and morphology, specifically the existence
of compartmentalized structures, may play an important role
in host suitability, more work is needed to determine exactly
how these factors impact larval performance and/or interact with
other nutritional characteristics.

Data on the link between oviposition preference and fruit
characteristics are less straightforward. Although oviposition
preference in whole-fruit and fruit puree choice tests largely
supports the preference/performance hypothesis, as oviposition
matches the larval suitability data for raspberries and blackberries
being the preferred hosts, other studies show discrepancies
between suitability and oviposition preference data. Poyet et al.
(51) found that female flies generally prefer to lay eggs in large
fruits with simple structures (berries or single drupes), black or
white coloring, a round vs. oval shape, and rough vs. smooth
skin- virtually the opposite characteristics of the most suitable
hosts. While Little et al.’s (30) female oviposition data does
not match their suitability data, citing a preference for low
rather than high pH and low-intermediate rather than high brix
ratings, Lee et al.’s (54) oviposition data do, citing an increased
likelihood of oviposition in blueberries with high pH and brix
ratings. Stewart et al.’s (55) peach data, however, find no effect
of firmness or sugar content on oviposition. Additionally, as
already discussed, females in GF studies also show an oviposition
preference for more carbohydrate-biased diets, with P:C ratios
ranging from 1:8 to 1:12. This apparent mismatch between larval
suitability and oviposition preference could be affected by many
factors and is likely dependent on the host options available,

as well as interactions between nutritional and physical factors.
However, as the next section will show, the role of microbes
in SWD larval nutrition may be key to explaining many of
these discrepancies.

MICROBES AND NUTRITION

So far, we’ve discussed SWD’s nutritional requirements and how
it relates to other host plant characteristics. The last, and perhaps
most critical, facet of SWD’s nutritional ecology is the role that
microbes play. Microbes are an essential part of all drosophilid
life histories, as they are the primary source of protein, sterols,
and other vitamin and minerals for larvae and adults. Microbes
also play a significant role as endosymbionts and mediators of
chemosensory cues that are important for host selection. These
two topics are unfortunately beyond the scope of this review but
see (35, 56, 57). Understanding how plant-microbe relationships
affect SWD populations is a burgeoning field of study, and
elucidating these relationships from a nutritional perspective is
essential for understanding SWD’s ecology.

The most important microbe in drosophilid nutrition is
yeast (13, 23, 27). Plant-yeast associations are widespread
in nature, but the most common species found in fruits
infested by SWD include: Hanseniaspora uvarum, Issatchenkia
terricola (formerly Pichia), Rhodotorula mucilaginosa, Candida
spp., Metschnikowia pulcherrima, Pichia spp., Saccharomycopsis
vini, Cryptococcus spp., Sporobolomyces spp., Debaryomyces
spp., Penicilium paneum, and Moniliella megachiliensis (36,
58). Many of these species are also present in SWD’s
gut microbiota, including Hanseniaspora, Issatchenkia, and
Metschnikowia species in larvae and adults, and Candida
species exclusively in larvae (58). Several bacterial species are
also associated with wild-caught and laboratory-reared SWD,
including Acetobacter, Enterococcus, Lactococcus, Gluconobacter,
Dyella, Orbus, Tatumella, and Staphylococcus species (34, 37).
While Acetobacter and Gluconobacter are known associates
of other drosophilid species, SWD’s bacteriome is uniquely
dominated by Tatumella, which is less common in other species.
Studies have shown that the abundance and diversity of bacterial
species associated with SWD varies throughout the season,
between different populations, and across different habitats (37).
Bacterial diversity also appears to vary more extensively in adults
than larvae (34).

The connection between dietary yeast and SWD
performance is well-documented, and has been studied in
both presence/absence experiments that utilize anti-microbials
in artificial diets (23) and more-detailed studies that incorporate
specific yeast strains into artificial diets (36, 38). Young et al.
(23) reared larvae on artificial diets that varied in P:C ratio
with and without antimicrobials present. The macronutrient
profile of the diets containing antimicrobials does not change
throughout the experiment because colonization by microbes
cannot occur; however, diets without antimicrobials are subject
to colonization, and therefore, may change throughout the study.
When antimicrobials were present, performance was best on the
high-protein diets and worst on the high-carbohydrate diets,
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however, when antimicrobials were absent, this pattern was
reversed such that performance was best on high-carbohydrate
diets and worst on the high-protein diets. The fact that larval
performance was similar for the high-protein/antimicrobial
treatment and the high-carbohydrate/anti-antimicrobial
treatment, suggests that the high-carbohydrate diet became
a high-protein diet through the opportunistic colonization
of microbes as the experiment progressed. However, because
microbial growth and/or abundance was not measured in these
diets, it is impossible to confirm such a change.

The relationship between host plant nutrients and
microbial growth represents a missing link in SWD nutrition.
Unfortunately, very few studies that have assessed how microbial
growth varies across different fruits and/or how it impacts
the macronutrient content of fruit tissues. Silva Soares et al.
(13) addressed this issue by monitoring changes in strawberry
protein and sugar content after exposure to SWD to see how
the macronutrient profiles changed after microbial colonization,
and though they did not directly measure microbial abundance
on fruit tissue, they did see a significant increase in protein
content and simultaneous decrease in sugar content over a
14-day period. Matavelli et al. (48) found a similar pattern with
fig macronutrients after colonization by yeast (Figures 2B,C).
Because the inoculated fruit tissues did not simply accumulate
protein but also become more deplete in carbohydrates, the
P:C ratio of fruit changed quite quickly. These results suggest
that intact fruits that are sub-optimal high-carbohydrate
resources at the time of oviposition can quickly become optimal
high-protein resources.

This scenario is made more plausible by data showing that
even uninfested intact fruits are not devoid ofmicrobes.Microbes
readily colonize split or damaged fruit and are thought to be
largely absent on the inside of intact fruit, but Hamby et al.
(58) examined yeast community composition in varieties of
cherry and raspberry and found between 14 and 20 different
yeast species in uninfested fruits. In fact, their data suggest
that the microbial dynamics on specific hosts may have greater
implications for suitability than the total number of species
present. For instance, the total number of yeast species did not
differ dramatically between raspberries, an optimal host, and
cherries, a less optimal host, but the number of species in infested
vs. uninfested fruits was different. A higher number of species
was present in infested vs. uninfested raspberries, while more
species were actually present in uninfested than infested cherries.
The abundance of present yeast species, as measured by colony-
forming units, was also greater in infested raspberries than
in infested cherries. These patterns of microbial diversity and
abundance may explain why raspberries are such optimal hosts
for SWD; however, much more data on microbial associations,
their growth rates on different fruit hosts, and the impact on host
nutrient content are needed.

DISCUSSION

The synthesis of current research shows that, from a nutritional
perspective, the invasion success of SWD is due to interactions

between fly physiology, host plant characteristics, and microbial
associations that have expanded SWD’s ecological niche in such
a way that the pest can utilize novel resources. This conclusion is
supported by data showing that SWD’s nutritional requirements
are comparable to other drosophilids and that their intake targets
are not drastically more carbohydrate-biased, as expected if they
were adapted to low-protein resources like intact fruits (13,
47). Studies have also shown that fruit macronutrient content
appears to play a primary role in host suitability, as there is
a strong relationship between host optimality and fruit P:C
ratio (Figure 2A). While the importance of microbes in fly
nutrition is well-established, there are still many unanswered
questions about microbial interactions in the field. Despite this,
increasing data show that the relationship between microbial
diversity/abundance and specific fruit hosts, as well as the
microbial dynamics in infested vs. uninfested fruits, impact larval
nutrition by turning low-protein intact fruit into high-protein
resources on a timescale that is relevant for larval nutrition.
This is supported by data showing that fruits can change from
low to high P:C tissues rather quickly after initial infestation by
SWD (13, 48). Furthermore, the inoculation of intact fruits with
fly-associated microbes during oviposition, and subsequently
through secondary infections, may expedite this process (59, 60).
In fact, the oviposition preference that all drosophilids, including
SWD, appear to have for high-carbohydrate substrates is likely
driven by the fact that high sugar content fuels microbial growth
and likely expedites this transition. Much more work is still
needed to support these hypotheses, particularly data on the
timeline of microbial colonization of different fruit hosts, it’s
effect on fruit macronutrients, and the subsequent implications
for larval nutrition.
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