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Volatile compounds provide important olfactory cues for honey bees (Apis mellifera

L.), which are essential for their ecology, behavior, and social communication. In the

external environment bees locate food sources by the use of floral scents, while

inside the hive, pheromones such as the queen mandibular pheromone (QMP) and

alarm pheromones serve important functions in regulating colony life and inducing

aggressive responses against intruders and parasites. Widely reported alterations of

various behaviors in- and outside the hive following exposure to pesticides could

therefore be associated with a disturbance of odor sensitivity. In the present study, we

tested the effects of neonicotinoid pesticides at field concentrations on the ability of honey

bees to perceive volatiles at the very periphery of the olfactory system. Bee colonies

were subjected to treatments during the summer with either Imidacloprid or Thiacloprid

at sublethal concentrations. Antennal responses to apple (Malus domestica L.) flower

volatiles were studied by GC-coupled electro-antennographic detection (GC-EAD), and

a range of volatiles, a substitute of the QMP, and the alarm pheromone 2-heptanone

were tested by electroantennography (EAG). Short-term and long-term effects of the

neonicotinoid treatments were investigated on bees collected in the autumn and

again in the following spring. Treatment with Thiacloprid induced changes in antennal

responses to specific flower VOCs, with differing short- and long-term effects. In the short

term, increased antennal responses were observed for benzyl-alcohol and 1-hexanol,

which are common flower volatiles but also constituents of the honey bee sting gland

secretions. The treatment with Thiacloprid also affected antennal responses to the

QMP and the mandibular alarm pheromone 2-heptanone. In the short term, a faster

signal degeneration of the response signal to the positive control citral was recorded

in the antennae of bees exposed to Thiacloprid or Imidacloprid. Finally, we observed

season-related differences in the antennal responses to multiple VOCs. Altogether, our

results suggest that volatile-specific alterations of antennal responses may contribute

https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org/journals/insect-science#editorial-board
https://www.frontiersin.org/journals/insect-science#editorial-board
https://www.frontiersin.org/journals/insect-science#editorial-board
https://www.frontiersin.org/journals/insect-science#editorial-board
https://doi.org/10.3389/finsc.2022.821145
http://crossmark.crossref.org/dialog/?doi=10.3389/finsc.2022.821145&domain=pdf&date_stamp=2022-04-18
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/insect-science#articles
https://creativecommons.org/licenses/by/4.0/
mailto:sergio.angeli@unibz.it
https://doi.org/10.3389/finsc.2022.821145
https://www.frontiersin.org/articles/10.3389/finsc.2022.821145/full


Favaro et al. Impact of Neonicotinoids on Bee Olfactory Perception

to explaining several behavioral changes previously observed in neonicotinoid-exposed

bees. Treatment effects were generally more prominent in the short term, suggesting that

adverse effects of neonicotinoid exposure may not persist across generations.

Keywords: honey bee, pesticides, neonicotinoids, electroantennography, olfaction, brain, queen mandibular

pheromone, alarm pheromone

INTRODUCTION

Recent research has demonstrated a strong decline of various
groups of pollinating insects, although future prospects of crop

production rely on an increased dependency of agriculture on
pollination services (1). Honey bee species are essential for

their pollination services, contributing to the conservation of
wild plant biodiversity as well as to agricultural productivity
(2). The Western honey bee, Apis mellifera L., is the most

important managed pollinator worldwide and a primary species
for pollination of agricultural crops (3). In an effort to
contrast raising concerns about current and future capacities
of pollination service and guarantee food security, the EU
parliament and EU commission have recently launched the
“Farm to fork” and “Green Deal” initiatives, imposing a 50%
reduction in pesticide use and an increase by 25% of organic
farming by the year 2030 (4). It is therefore necessary to develop
more bee-friendly agricultural practices and support farmers with
reorganization toward less intensive industrial agriculture (5).

Despite extensive research, there is no conclusive evidence
as to the cause of the massive decline of managed honey bee
colonies registered during recent years in Europe and the USA.
While multiple interacting factors such as pesticides exposure,
the impact of the parasitic mite Varroa destructor, agricultural
intensification, and climate change may play a role (6), the use
of pesticides in large agricultural landscapes poses a serious
threat to bee health and colony survival. In a recent study on
bees collected along an alpine valley (7), 63 agrochemicals were
found, 15 insecticides, 43 fungicides, 3 herbicides and 2 plant
hormones. Furthermore, the drift of compounds such as Phosmet
and Fluazinam have been shown to pose serious risks to the
environment and to human health as far as 10 km away from
treated areas (7).

Honey bees may get exposed to pesticides either through
topical contact or indirectly through consumption of
contaminated nectar, pollen, or water (e.g., guttation water)
(8). Traditionally, the measurement of toxic effects of pesticides
has relied largely on the determination of acute toxicity, while
chronic and sublethal effects have received less attention.
However, prolonged use of a large, diverse set of pesticides in
agricultural landscapes may have detrimental effects on the
health of bees and threaten the survival of bee colonies long after
pesticide use. Whilst acute exposure results in rapid appearance
of symptoms, the consequences following a chronic exposure are
harder to assess, partly because bees degrade pesticides through
a continuous food processing and thereby reduce the amount of
pesticide residuals in the hive matrix (9).

A key aspect for the survival of bees is their ability to
forage, orientate, and return home with collected resources such

as nectar, pollen and water. Flower scents play an important
role in bee orientation, allowing them to recognize and locate
specific plant species during foraging flights, which is essential
to the pollination service provided by bees (10, 11). In addition,
pollination efficiency is also affected by the ability to detect pollen
and nectar via odor cues inside flowers (10, 12). Potential changes
in the detection of flower volatiles may cause disturbance in
the foraging behavior of bees, with implications on both bee
survival and pollination activity. As a social insect, honey bees
also rely strongly on pheromonal communication, e.g., with the
release and perception of the queen mandibular pheromone
(QMP) and the brood pheromone within the hive, or the alarm
pheromone (e.g., 2-heptanone) and the aggregation pheromone
outside the hive (13, 14). Pheromones have also been found to
affect motivation, learning, and memory of bees (15).

Neonicotinoids are commonly used as insecticides and
previous studies have demonstrated that bee colonies chronically
exposed to neonicotinoids have a reduced number of adult
bees (−28%), brood surface (−13%), and pollen collection
(−19%), and tend to exhibit higher queen supersedure as a
long-term impact (16). Physiological studies have demonstrated
that neonicotinoids interfere with the neural signal transduction
as an agonist of insect nicotinic acetylcholine receptors at
the postsynaptic membrane (17). Thus, neonicotinoids affect
transmission from olfactory receptor neurons via the antennal
lobe (18, 19) to the mushroom bodies. However, these studies
were all conducted downstream of the olfactory receptor neurons
(ORNs) and leave open the question to what extent the observed
effects originate in the ORNs or even in perireceptor events (20).

In the present study, we exposed honey bee colonies
to sublethal dietary concentrations of two neonicotinoids,
Imidacloprid and Thiacloprid, and examined short- and long-
term effects on the olfactory responses of adult bees. Specifically,
we investigated whether chronic exposure to Imidacloprid and
Thiacloprid (i.e., administered over several weeks) affected
honey bee antennal sensitivity by measuring electroantennogram
responses to flower volatiles, an alarm pheromone, and a
substitute of the queen mandibular pheromone.

MATERIALS AND METHODS

Apple Flower Volatiles Collection
Flower volatile organic compounds (VOCs) were collected in
April 2018 from five specimens of 8 years old apple trees (Malus x
domestica, Borkhausen, cv Fuji grafted on M9 rootstock), located
in an organically managed parcel of the Laimburg Research
Center (Bolzano, Italy). The volatiles were collected on the day
after the opening of all the flowers in the cluster. A shoot portion
containing two flower clusters was enclosed in a plastic bag
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(BVOC-bag, Cuki oven bag, Bolzano, Italy) and air samples
were collected using an adsorbent trap (glass tube, 6.5 × 0.55
× 0.26 cm, loaded with 1.5mg activated charcoal; CLSA filter
LR-type; Brechbühler AG, Schlieren, Switzerland), as described
by Giacomuzzi et al. (21). Samples were collected daily from
11:00 to 14:00. The collected VOC samples were eluted from
the adsorbent traps with 100 µl GC grade dichloromethane in
GC glass vials (Sigma-Aldrich, Milan, Italy) and stored at−80◦C
prior to the GC-MS analysis. VOCs were collected also from an
empty sampling bag as a negative control.

Honey Bee Colonies
The experiment was conducted using nine honey bee [Apis
mellifera ssp. carnica (Pollmann)] colonies from the experimental
apiary of the Free University of Bolzano in Altenburg (Bolzano,
Italy) during the summer 2018 and spring 2019. The colonies
were located in a mixed forest (Quercus pubescens Willd., Fagus
sylvatica L., Pinus sylvestris L., Ostrya carpinifolia Scop.), with
crop fields (vineyards and apples) located in the lower valley at
ca 1 km flight distance. The colonies were created in May 2018
by the shook swarm method from healthy colonies, managed
according to good beekeeping practice, that had undergone
regular sanitary treatments against the parasitic mite Varroa

destructor (Anderson and Trueman). Swarms of 1.5 kg of adult
bees were transferred into standard 10-frames Dadant-Blatt
beehives for nomadic beekeeping with organic wax foundation
(Il Pungiglione Soc. Coop, Italy) and provided with new sister-
queens. The colonies were sorted into three treatment groups,
each placed at a distance of 10m from each other. After 5 days,
they were treated with 50ml of oxalic acid dihydrate sucrose
solution (5% w/v) trickled in-between frames for control of
Varroa destructor. All queens were accepted and the development
of the colonies was assessed weekly. To sustain development
and wax construction, each colony was fed for 6 weeks with
1 L of sugar syrup (Apiinvert, Südzucker AG, Germany). In
October 2018, when there was no more brood, an oxalic acid
treatment using the sublimation method was applied against
Varroa destructor. No other mite treatment was carried out in the
spring of 2019 before the EAG trials.

Neonicotinoid Treatments
The pesticide treatments were carried out starting on July 17,
2018. That period corresponds to the end of the last main
blossom in the area (chestnut, Castanea sativa L.), and it
is also the moment when local beekeepers collect the honey
suppers and begin to provide supplementary syrup to sustain
strong colonies. Hence, the nectar income from the surrounding
area was expected to be limited. At the beginning of the
treatment, the brood was spread over at least four frames
in each beehive. Each colony was provided twice a week
with 500ml sugar syrup with or without pesticides (Apiinvert,
Südzucker AG, Germany) through a rapid top feeder for 6
weeks. Treatment syrups were freshly prepared and administered
in the evening and all colonies consumed the syrup until
the following morning. At the end of the 6-weeks treatment,
no other feed supplements were given until the end of the

experiment. Colonies did not suffer detectable losses nor
collapsed, and all reached the autumn season in good condition.
All colonies survived the winter and successfully developed in
spring 2019.

Insecticides were previously dissolved in acetone (>99.8%,
Sigma-Aldrich,Merck KGaA, Darmstadt, Germany) and distilled
water and stored at −80◦C. Among six treated colonies, three
received syrup contaminated with 50 ppb Imidacloprid (Sigma-
Aldrich, Merck KGaA, Darmstadt, Germany, PESTANAL, CAS
138261-41-3) with 50 ppm acetone and three received syrup
contaminated with 4.500 ppb Thiacloprid (Sigma-Aldrich,Merck
KGaA, Darmstadt, Germany, PESTANAL, CAS 111988-49-9)
with 50 ppm acetone. Three control colonies were fed sugar syrup
containing 50 ppm of acetone.

Electroantennography
The EAG recordings were conducted in two periods, in
autumn 2018 (September 11–October 6) and spring 2019
(March 19–April 6). Forager bees carrying pollen loads were
individually collected at the hive entrance with 60ml transparent
polypropylene vials (NalgeneTM, Thermo Scientific, USA). The
vials were previously rinsed with ethanol (90%) to remove any
odor from the previous batch of bees. The vial opening was
closed with a fine plastic mesh to allow full air circulation.
The bees were provided sucrose sugar water (50% w/v) ad
libitum through a 1.5ml Eppendorf vial (Sigma-Aldrich, Merck
KGaA, Darmstadt, Germany) with removed bottom, inserted
into a hole in the mesh. The sugar water was made anew
and refilled every morning. The vials with the bees were
kept in the laboratory at a stable temperature of 20 ±

1◦C at least 1 day before the EAG recording. Before each
recording, the selected bee was anesthetized by leaving the
vial in a fridge (4◦C) for circa 60 s until immobilization.
The head of the bee was removed with a scalpel, and the
right antenna excised at the base of the scape. To avoid
effects related to olfactory lateralization, the right antenna
was used for every recording (22). The antenna was further
clipped after the pedicel and the distal tip of the flagellum
was removed. The base of the antenna was then mounted
in a glass capillary filled with Ringer solution with 1%
Polyvinylpyrrolidone (PVP average MW 360000 Da, Sigma-
Aldrich, Merck KGaA, Darmstadt, Germany) and inserted
in the indifferent electrode on the micromanipulators of
an electrophysiological setup (Syntech GmbH, Buchenbach,
Germany). The antenna tip was connected to the recording
electrode. A batch of Ringer solution (7.5 g NaCl, 0.35 g KCl,
0.28 g CaCl2·H20 dissolved in 1 l demineralized water) was
previously prepared and aliquoted in single-use Eppendorf
vials and stored at −80◦C. A new vial of the solution
was used every day. The manipulator base was connected
to ground to minimize electrical interference. A polymethyl
methacrylate (PMMA) box was used to cover the EAG setup
and exclude airflows. A stable baseline on the oscillograph of the
software indicated a successful contact between the antenna and
the electrodes.
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Coupled Gas

Chromatography-Electroantennographic Detection

Continuous Recording
The electroantennography detector described above was coupled
with an Agilent 7820A chromatograph (GC) equipped with a
Flame Ionization Detector (FID). Two µl of the pooled apple
flower volatiles were injected into the GC capillary column HP-5
Agilent 19091J-413 of 0.25µmcoating, 30m length, and 0.32mm
diameter. Helium at a flow rate of 2.5 ml/min was used as carrier
gas. The oven method was programmed as follows: inject at 50◦C
and hold for 1.8min, heating at 7.3◦C/min until 250◦C and hold
for 3min. The temperature of the injector was 250◦C and the
detector temperature was set to 350◦C. The column effluent was
mixed with a heliummake-up (15 ml/min) and split at a 1:1 ratio,
one part flowing to the FID, the other going through a transfer
line (170◦C) (Syntech GmbH, Buchenbach, Germany) into a
charcoal-filtered and humidified airstream which was channeled
to the mounted antenna. Before and after each recording, the
mounted antenna was tested with a positive control (citral 10−2)
according to the technique reported below, in order to assess
the responsiveness of the antennal preparation. 50 µl of apple
flower VOCs were taken from each of the CLSA elution vials
and pooled together to avoid specimen differences and to create
a working sample.

Discontinuous Recording (EAG)
The testing compounds were delivered into charcoal-filtered and
humidified air constantly flowing through a metallic tube (0.6
l/min) using a stimulus controller (Syntech GmbH, Buchenbach,
Germany). Each of the compound standards (Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany) was dissolved in paraffin
oil (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) at
decreasing concentrations of 10−2, 10−3, 10−4, 10−5, and 10−6

(w/w). The solutions were stored at −80◦C and used also for
the spring experiment. 50 µl of each dilution were applied on a
piece of filter paper (Whatman 1, Sigma-Aldrich, Merck KGaA,
Darmstadt, Germany), cut to a size of 3 × 1 cm and W-folded,
and inserted into a glass Pasteur pipette (Sigma-Aldrich, Merck
KGaA, Darmstadt, Germany). Immediately after the application,
the pipette openings were sealed with Parafilm (Sigma-Aldrich,
Merck KGaA, Darmstadt, Germany) to prevent dispersion of
the volatile compound. The prepared pipettes were singularly
marked and stored at −80◦C, to use a new batch for each
antennal recording. The pipette batch was taken out of the
freezer 1 h before the recording, to reach room temperature.
The interval between stimuli was 40 s, and the stimulus duration
was 0.5 s. The pipette was inserted into the metal tube through
a hole at a distance of 10 cm from the antennal preparation
to ensure the mixing of the stimulus with the airflow. During
the stimulus, the continuous carrier airflow was reduced by the
same amount that the stimulus added, thus keeping a constant
stream reaching the antenna. Each antenna was presented with
two negative controls, one of pure air (empty pipette) and one
of filter paper and paraffin oil only, at the beginning and the
end of the trial. A positive control (citral at 10−2) was presented
after the negative controls at the beginning, the end, and in
the middle of the recording. If the response of the mounted

antenna was < −0.5mV at the beginning or < −0.2mV at
the end, the preparation was discarded and another antenna
was prepared. The testing VOCs were presented sequentially
from the lowest (10−6) to the highest (10−2) concentration. The
order of presentation was: linalool, hexyl-acetate, (Z)-3-hexen-1-
ol, methyl-salicylate, (E)-β-ocimene, 1-hexanol, benzyl-alcohol,
benzyl-acetate, α-terpineol, 2-heptanone (Figure 1). The same
order was used in both Autumn and Spring recordings. The
antennae were also presented with a substitute of the queen
mandibular pheromone complex (QMP) (Bee Boost, Savorelli,
Italy), by inserting the plastic tube that contained it directly into a
glass Pasteur pipette. Each recording lasted approximately 40min
in total. Twenty-four bees (8 per hive) were tested per treatment
in the autumn, and 12 bees (4 per hive) in the spring. Since bees
were collected from 9 different hives (3 hives× 3 treatments), the
bee antennae were tested following a fixed order, thus controlling
for possible time-related effects due to the date of collection or
date of recording.

Identification of the Bioactive Flower
Volatiles
Two µl of the pooled apple flower volatiles were injected in
a splitless mode in a GC system (7890A) coupled with an
MS (5975C Network) (Agilent Technologies, Santa Clara, USA)
for identification of the compounds. The GC column was a
non-polar HP-5MS (Agilent Technologies), 0.25µm coating,
30m length, and 0.25mm diameter. Helium at a flow rate of
1.2 ml/min was used as carrier gas. The oven method was
programmed as follow: inject at 50◦C and hold for 1.5min, then
7.5◦C/min until 250◦C and hold for 5min. The temperature of
the injector was 250◦. The GC-MS data acquisition and analysis
were performed using the ChemStation software (Agilent
Technologies). Compounds were initially identified by mass
spectra comparison with the databases NIST 14 (Gaithersburg,
MD, USA) and Wiley 7N (Wiley, Hoboken, NJ, USA). Linear
retention indices (LRI) of the peaks (23) were calculated by using
a mixture of n-alkane standards (nC9-nC20, Sigma-Aldrich,
Milan, Italy). The obtained LRI values were compared with
reference LRI values available in the literature. Since the GC-
MS and the GC-FID used in the experiments had different
column diameters, the methods were designed to match the
alkanes retention times at the best possible. Furthermore, the
correspondence between the bee antennal responses and the GC
peaks was confirmed by the respective LRI. Finally, the identity
of compounds was confirmed by comparing the mass spectra and
the retention times with those of authentic standard compounds
(Sigma-Aldrich, Merck KGaA, Darmstadt, Germany).

Data Analysis
Normalization of Response Values
As a positive control, citral was presented at the beginning,
middle, and end of each recording using the concentration
10−2. Following standard procedure [e.g., (24)], the data were
normalized by setting the response to the positive controls
to 100% and calculating a linear trend for each bee antenna
(Figure 1). Subsequently, the observed stimulus values were
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FIGURE 1 | Stimuli presentation sequence for each antennal recording (example from Subject 4). Tested compounds are presented from lowest (10−6) to highest

concentration 10−2 at 40 seconds intervals. Dashed line connects the responses to the positive control citral 10−2 and shows the 100% reference for the responses

normalization. The dotted line is the average value of the negative controls empty pipette and empty pipette with paraffin oil (paraf) at the beginning and at the end of

the recording.

normalized according to the positive control trend line and
expressed as percentages.

Statistical Analyses
The statistical analyses were performed using the software R
(25). The packages emmeans (26), MASS (27), lmerTest (28) and
lme4 (29) were used for analyses, while ggplot2 (30) was used
for graphics.

The statistical analysis considered three effects:

• Short-term effects of treatments: To test for the effect of
neonicotinoid treatment in the weeks after administration,
only the autumn recordings were employed, by comparing
each treatment group to the control group.

• Long-term effects of treatments: To test for the effect of
neonicotinoid treatment several months after administration,
the spring recordings were employed, again comparing each
treatment group to the control group.

• Season effect: Variations in the antennal responses between
autumn and spring were tested by comparing only antennal
recordings obtained with the control group.

For each of these effects (short-term, long-term, season), the
following analyses were performed:

i. The decay in antennal responses to negative and positive
controls was analyzed using linear mixed-effects models
(LMM) with the difference in response between the
measurements at the beginning and end of each recording
as dependent variable, season or treatment as fixed effects,
and hive ID as random effect. For each fixed effect, three
models were run analyzing the antennal responses to positive
controls, to negative controls using empty pipettes, and to
negative controls using paraffin oil, respectively.

ii. Antennal responses to the substitute of the queenmandibular
pheromone complex were analyzed using an LMM with
season or treatment as fixed effects, and hive ID as
random effect.

iii. The antennal responses to VOCs were analyzed separately
for each concentration of a VOC using LMMs with
season or treatment as fixed effects, and hive ID as
random effect.

Model diagnostics of LMMs were produced and evaluated using

the DHARMa package (31). The random effect associated with

bee hive ID explained on average 3% of the variance in the
seasonal models (minimum = 0%, maximum = 70%), 11.9%

of the variance in the short-term effect models (minimum =

0%, maximum = 38.4%), and 2.5% of the variance in the long-

term effect models (minimum = 0%, maximum = 46.2%).

Random effects were removed if they explained zero variance
(i.e., converting LMMs into linear regression models), otherwise,
they were retained in the models. P-values were computed
from LMMs using Kenward-Roger estimation of the number
of degrees of freedom. P-values were corrected for multiple
tests within each type of VOC (i.e., tests on observations
at different VOC concentrations) using the “false discovery
rate” method (32).

To test whether the response to VOCs differed from the
response to negative controls, for each concentration of a VOC,
the normalized responses among all subject bees were compared
to the normalized responses to the negative controls using
paired t-tests.

Response values in the text and figures are reported as means
of normalized antennal responses ± one standard deviation
unless otherwise specified. The term “response signal” is used to
indicate non-normalized values.
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TABLE 1 | Volatile compounds identified by GC/MS analysis of the headspace of

Malus domestica cv Fuji flowers and their amounts (10−4 TIC).

Compound LRIa LRIb 10−4 TIC

(E)-2-Hexen-ol 852 8501 354.2

p-Xylene 865 865† 81.6

3-Heptanone 869 8691 88.9

Anisole 916 9161 156.8

Phenol 948 9481 17.3

Benzaldehyde 962 963† 33.8

Hexyl acetate 1012 10121 117.1

1-Phenylethanone 1033 10321 61.8

Limonene 1039 1034† 1637.3

Benzyl alcohol 1044 1039† 332.7

1-Ethenyl-3-ethyl-benzene 1063 10641 49.1

Linalool 1104 1101† 232.3

Benzyl acetate 1170 1167† 203.2

Decanal 1214 1207† 28.0

Cinnamaldehyde 1312 13051 47.6

3-Methyl-1- ethynylbenzene 1453 14512 31.5

Z-3-Hexenyl benzoate 1573 15711 29.3

Hexadecane 1603 1600† 38.3

LRI, Linear retention index calculated in relation to n-alkanes.

LRIb, Linear retention index already published in peer-reviewed journals and listed in

PubChem (1) or Pherobase (2). When possible, the LRI was verified by a standard

compound (
†
).

The volatile compounds were collected in April 2018 by CLSA technique for 3 h. The

compounds were identified by mass spectrometry and confirmed by linear retention

indexes from the literature or laboratory standards when available.

RESULTS

Headspace Volatile of Apple Flowers
We used chromatographic analysis to identify a set of 18 flower
VOCs typical of the flower samples (Table 1). These compounds
were reported in other publications as commonly emitted from
apple flowers. p-Xylene and 3-heptanone were reported in
Baraldi et al. (33) as released by the flowers of different fruit tree
species. Benzaldehyde, hexyl acetate, limonene, linalool, benzyl
acetate and decanal were identified as main compounds of apple
flowers (34). (E)-2 hexen-ol, phenol, 1-phenylethanone, benzyl
alcohol, 1-ethenyl-3-ethyl-benzene, cinnamaldehyde, 3-methyl-
1-ethynylbenzene, Z-3-hexenyl benzoate were found with either
CLSA or SPME technique in apple flowers (35). Heptadecane and
anisole were reported specifically from Fuji apples (36, 37).

EAD Responses to Flower Volatiles
Three apple flower VOCs elicited clear antennal responses:
benzyl alcohol, linalool, and benzyl acetate (Figure 2). The
responses were confirmed in 6 out of 13 antennal recordings.

These three VOCs were employed in the EAG discontinuous
recordings, and six other common flower VOCs were also added
to the experiment: 1-hexanol, α-terpineol, methyl-salicylate,
hexyl-acetate, (E)-β-ocimene, and (Z)-3-hexen-1-ol. Moreover,
also the alarm pheromone 2-heptanone and a substitute of the
queen mandibular pheromone were included in the trials.

EAG Responses to Flower Volatiles
Compound Dependence
The EAG experiments showed a dose-dependent antennal
response (Figure 3). The VOC stimuli were presented from low
to high concentration and normalized response values increased
at a rate of ∼3-fold with each 10-fold increase in concentration,
except for the lowest concentrations 10−6 and 10−5 for which
similar responses were observed. Furthermore, the strength of
the antennal response depended on the VOC. The strongest
antennal responses were elicited by the compound 1-hexanol,
with a normalized response of 184 ± 24% at the concentration
10−2; twice the response to the positive control citral. (E)-
β-ocimene elicited the weakest antennal responses, with a
normalized response of 35.6 ± 4.8% at the concentration 10−2;
approximately one third of the response to the positive control.
The remaining flower VOCs elicited intermediate responses.

Season Effect
The EAG normalized responses to VOCs in the control group
varied between seasons in different ways (Figure 3). For some of
the VOCs, responses were weaker in spring than in autumn at
multiple concentrations:

• Hexyl acetate elicited weaker responses in spring at
concentrations 10−3 (LMM: t = −2.65, d.f. = 30.08, p
= 0.021) and 10−2 (linear regression model: t = −3.57,
d.f.= 33, p= 0.0055).

• (E)-β-ocimene elicited weaker responses in spring at
concentrations 10−5 (linear regression model: t = −2.84,
d.f. = 33, p = 0.015), 10−4 (LMM: t = −3.40, d.f. = 30.95,
p = 0.0093) and 10−2 (linear regression model: t = −2.79,
d.f.= 33, p= 0.015).

• 1-Hexanol elicited a weaker response in spring
at concentration 10−2 (LMM: t = −3.60,
d.f.= 31.09, p= 0.0054).

• Benzyl acetate elicited a weaker response in spring at
concentration 10−4 (linear regression model: t = −4.30,
d.f.= 33, p < 0.001).

• α-terpineol elicited weaker responses in spring at
concentrations 10−6 (linear regression model: t = −2.25, d.f.
= 33, p = 0.039), 10−4 (linear regression model: t = −4.73,
d.f.= 33, p< 0.001), 10−3 (linear regressionmodel: t=−2.32,
d.f. = 34, p = 0.039), and 10−2 (linear regression model: t =
−4.65, d.f.= 34, p < 0.001).

In six cases, increased responses were observed in spring:

• Hexyl acetate elicited a stronger response in spring at
concentration 10−5 (LMM: t = 3.32, d.f.= 27.12, p= 0.0064).

• Methyl salicylate elicited stronger responses in spring at
concentrations 10−3 (linear regression model: t = 3.96, d.f.
= 33, p = 0.0018) and 10−2 (LMM: t = 3.74, d.f. = 32.00, p
= 0.0018).

• Benzyl alcohol elicited stronger responses in spring at
concentrations 10−3 (linear regression model: t = 6.93, d.f.
= 33, p < 0.001) and 10−2 (LMM: t = 9.09, d.f. = 32.00,
p < 0.001), with a trend toward significance at 10−5 (linear
regression model: t = 2.08, d.f.= 32, p= 0.076).
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FIGURE 2 | GC-EAD recording of a bee antenna (lower line) responding to the headspace volatiles (upper line) of apple flowers cv Fuji, collected in May 2018 with

CLSA technique for 3 h. In multiple (6 out of 13) recordings, clear signal deflections were observed in correspondence to the VOCs reported in the figure: 6. benzyl

alcohol, 7. linalool and 8. benzyl acetate. The other main peaks were: 1. (E)-2-hexenol, 2. p-xylene, 3. anisole, 4. hexyl acetate, 5. Limonene.

Short-Term and Long-Term Treatment Effects
Effects of neonicotinoid treatment on antennal responses were
only observed in the group exposed to Thiacloprid (Figure 3,
Supplementary Table 1). Short-term effects were observed for
two VOCs:

• Benzyl alcohol elicited increased responses in the group
exposed to Thiacloprid compared to the control group at
concentrations 10−3 (LMM: t = 4.28, d.f. = 6.00, p = 0.013)
and 10−2 (LMM: t = 4.29, d.f.= 5.98, p= 0.013).

• For 1-hexanol, increased responses in the group exposed to
Thiacloprid at concentrations 10−4 (linear regression model:
t = 2.36, d.f.= 65, p= 0.052) and 10−3 (LMM: t = 3.52, d.f.=
5.96, p= 0.052) were close to significance.

In addition, one long-term treatment effect was detected, as
Methyl salicylate elicited a lower response in the group exposed
to Thiacloprid compared to the control group at concentration
10−3 (linear regression model: t = −3.55, d.f.= 33, p= 0.0058).

Responses to Positive and Negative
Controls
The compound citral was presented as a positive control in a
concentration of 10−2 at the start, the middle, and the end of
each recording. Each recording lasted 39min and the response
signal to the positive controls showed that antennal responsivity
decreased over time (Figure 4). The decays in antennal response
signal from the beginning to the middle of each recording did
not differ from the decays from the middle to the end of each
recording, indicating that antennal response signals decreased

linearly (paired t-test, t = −0.84, df = 107, p = 0.40). We
observed no difference between autumn and spring in the
response values to the positive controls in the control group.
The responses to the first presentation of citral did not differ
between treatments neither in the short-term nor in the long-
term. However, we observed a short-term effect of neonicotinoid
treatment in the decay of antennal response signal to the positive
controls, as in the autumn it was significantly stronger in both
the Thiacloprid- (LMM: t = 3.18, d.f. = 6.00, p = 0.019) and
Imidacloprid-treated (LMM: t = 3.26, d.f. = 6.00, p = 0.017)
groups compared to the control group (Supplementary Table 2).
No long-term effect of treatment was observed, as the decay in
response signal to the positive controls in the spring was similar
across all groups.

The antennae also responded to the negative controls
(empty pipette and pipette with paraffin oil on paper)
(Supplementary Table 2). The negative controls were presented
either at the beginning or the end of each recording, thus
indicating a signal baseline (Figure 3). In the control group, the
response signal to the negative controls did not differ between
the beginning and the end of each recording in the autumn
experiment. In the spring experiment, response values to the
negative controls containing paraffin oil increased significantly
during the time of recording (Figure 4) (linear regression model:
t = 3.10, d.f. = 34, p = 0.0039), but such a pattern was not
observed for the empty pipette (linear regression model: t =

1.28, d.f. = 34, p = 0.21). No short-term or long-term effects of
neonicotinoid treatment were observed on the response signal to
negative controls.

Frontiers in Insect Science | www.frontiersin.org 7 April 2022 | Volume 2 | Article 821145

https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/insect-science#articles


Favaro et al. Impact of Neonicotinoids on Bee Olfactory Perception

FIGURE 3 | Antennal dose-response curves to flower volatiles during different seasons. Autumn recordings started 2 weeks after the end of the treatments and reveal

the short-term effect of the treatments. Spring values, recorded 7 months after the exposure, show the long-term effects of the treatments. Normalized EAG signals

(Continued)
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FIGURE 3 | as a function of the season [bees collected in September (N = 72) or April (N = 36)], Treatment (Imidacloprid 50 ppb or Thiacloprid 4500 ppb in sugar

syrup, Control: pure syrup). Black asterisks report statistical significance between seasons (controls in autumn vs controls in spring), whilst red asterisks report

statistical significance between treatments and controls within the same season (LMM). p ≈ 0.05, *p < 0.05, **p < 0.01, ***p < 0.001). The dashed lines show the

average response to the negative controls (empty pipette and solvent) presented at the beginning of the recording. The asterisks below it indicate whether the

responses to the concentration of each compound are significantly different than the responses to the negative controls (LMM, * = significant, n.s. = not significant).

FIGURE 4 | Temporal variation of the antennal response during the EAG recordings to the positive (citral 10−2) and the negative (empty pipette and pipette with

paraffin) control stimuli. Values reported as a function of the season [bees analyzed in September (N = 72) or April (N = 36)], Treatment (Imidacloprid 50 ppb or

Thiacloprid 4500 ppb in sugar syrup, Control: pure syrup) and the recording time within and experimental trial (start, middle, end) of a recording session. Asterisks

report statistical significance (LMM, *p < 0.05, **p < 0.01).

Responses to the Pheromones
When comparing the control group in autumn and spring, the
normalized EAG response values to the QMP substitute did
not change significantly with season. A short-term treatment
effect was found in the group exposed to Thiacloprid, for which
responses to the QMP substitute were significantly increased
compared to the control group in the autumn (linear regression
model: t = 2.11, d.f. = 69, p = 0.039) (Figure 5). No effect of
treatment was observed in the long term, as responses to the
QMP substitute in the spring were similar across all groups.

For 2-heptanone, the other pheromone tested in the trial
(Figure 3, Supplementary Table 1), responses in the control
group were weaker in spring for concentrations 10−6 (LMM:
t = −2.66, d.f. = 29.98, p = 0.021), 10−5 (linear regression
model: t = −2.82, d.f. = 34, p = 0.020), and 10−4 (linear
regression model: t = −3.50, d.f. = 34, p = 0.0066), and with

a trend toward significance for 10−3 (LMM: t = −1.95, d.f. =
32.00, p = 0.075). In addition, a short-term treatment effect was
observed in the group exposed to Thiacloprid with a significant
increase in responses to 2-heptanone at concentration 10−3

in the autumn (LMM: t = 3.84, d.f. = 5.91, p = 0.046). As
evident from Figure 3, an increased response was also observed
at concentration 10−2, however this effect was not significant
after correction for multiple testing (LMM: t = 2.49, d.f. =
5.95, p = 0.12). No long-term effect of treatment was observed,
as reponses to 2-heptanone in the spring were similar across
all groups.

Difference From the Negative Controls
At the lowest concentrations, the VOC dilution should reach a
level of undetectability for which the antennal responses should
approach a value around the average of the negative controls.
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FIGURE 5 | Antennal responses to Bee boost (Savorelli, Italy), a commercial

substitute of the queen mandibular pheromone complex. Normalized EAG

signals as a function of the season [bees collected in September (N = 72) or

April (N = 36)], Treatment (Imidacloprid 50 ppb or Thiacloprid 4500 ppb in

sugar syrup, Control: pure syrup). Asterisk reports statistical significance (LM,

*p < 0.05).

However, in the spring trials, we recorded responses that were
significantly lower than the responses to the negative controls for
five VOCs (Figure 3):

• Linalool at concentrations 10−6 (paired t-test: t = −3.38,
d.f. = 35, p = 0.0017) and 10−5 (paired t-test: t = −3.41,
d.f.= 35, p= 0.0016).

• Hexyl acetate at concentrations 10−6 (paired t-test: t =−4.15,
d.f. = 35, p < 0.001) and 10−5 (paired t-test: t = −2.75,
d.f.= 35, p= 0.0091).

• Z-3-Hexenol at concentration 10−6 (paired t-test: t = −5.25,
d.f.= 35, p < 0.001).

• (E)-β-ocimene at concentrations 10−6 (paired t-test: t =

−4.81, d.f.= 35, p< 0.001) and 10−5 (paired t-test: t =−2.55,
d.f.= 35, p= 0.015).

• α-terpineol at concentration 10−6 (paired t-test: t = −4.11,
d.f.= 35, p < 0.001).

Responses to methyl salicylate, 1-hexanol, benzyl alcohol, benzyl
acetate and 2-heptanone were never significantly lower than the
negative control.

DISCUSSION

Bioactive Compounds and Dose Sensitivity
The coupled gas chromatography-electroantennographic
detection continuous recordings (GC-EAD) allowed us to
identify three apple flower compounds, benzyl alcohol, linalool,
and benzyl acetate, that elicited strong signal responses. These
compounds are generally reported in apple flowers (34, 38, 39)
and were shown to play a role as bioactive compounds to honey
bee antennae (40). To extend our investigation to a wider range
of candidate flower volatiles, six more odorants were included in
the study. Most of these were previously described in stone fruit

flowers (41) and apple flowers, such as (Z)-3-hexen-1-ol (34, 40),
hexyl-acetate, (E)-β-ocimene, methyl salicylate (34), 1-hexanol
(39). α-terpineol was found in other plants of honey bee interest
like black locust (42), field scabious (43) and St. John’s wort (44).

In our recordings, the strength of the antennal response
depended on the compound and its concentration, e.g., 1-
hexanol and (Z)-3-hexen-1-ol elicited overall higher responses
than other VOCs. Such variations are intuitive and widely
reported in the literature for honey bees (45–47) and other
insects (48, 49). It is worth noting that, as pointed out by
Andersson et al. (50), the amount of a volatile that reaches
the olfactory sensory neurons depends on the intrinsic nature
of the molecule and its affinity with the solvent. Therefore,
the observed responses might have been influenced by different
airborne quantities. For this study, however, comparisons
between volatiles were not relevant as we focused on the effect
of the neonicotinoid treatments and season on the response to
each individual volatile.

Five of the flower volatiles employed in the study have
also been associated with pheromone functions in honey bees.
Citral consists of the two isomers (E)-citral and (Z)-citral,
which are components of a pheromonal blend with attractive
effect released by the Nasonov gland (51). The volatiles 1-
hexanol, hexyl acetate, benzyl alcohol, and benzyl acetate are
found in the honey bee alarm pheromone emitted by the
stinging apparatus (52). However, 1-hexanol and hexyl acetate
(53) appear to be involved in nestmate recruitment rather
than stinging behavior (54). Benzyl alcohol was reported as
being ineffective as an alarm pheromone (55), e.g., it did
not elicit defensive behaviors (56), and its function as a
pheromone seems unclear (54). Benzyl acetate alone only
induced flight behavior (57), and had a repellent effect when
combined with n-octyl acetate (54, 58). Meanwhile, all of these
compounds are extremely common flower volatiles, and they
may be employed by plants to attract bees by mimicking their
pheromones (54).

Seasonal Effects
Bees face different organizational tasks and accordingly undergo
physiological changes between autumn and spring (59). Whether
these changes may involve the peripheral reception is, so
far, unknown, and there is a gap in the literature regarding
the variation of olfactory responses with season. One study
examined the annual sensitivity dynamics of honey bee workers,
focusing, however, only on the queen extract (60), but other
pheromones or flower volatiles have not previously been
investigated. In the present study, we report that seasonal
variations in responses to VOCs and pheromones occurred at
multiple concentrations. The variation between our autumn
and spring recordings suggests a seasonal change in honey bee
perception of VOCs with antennal responses in some cases being
weaker in spring than in autumn. However, confirming such
a general trend would require a repetition of the experiment
over multiple years. In Skirkevièius and Skirkevièienë (60),
antennal sensitivity varied during the year, with pheromone
receptors being more sensitive in May-July and January-
March and less sensitive in April and August-December. In
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the periods that we carried out our trials for the present
study (September-October and March-April), Skirkevièius and
Skirkevièienë observed that antennae were less responsive to the
queen extract with no significant variation between autumn and
spring. In agreement with this, our results show no seasonal
changes in antennal responsivity to the QMP, however, we did
observe variations for the alarm pheromone 2-heptanone and the
flower volatiles.

The reasons behind these seasonal variations are unexplored
and may reflect changes in the insects’ physiology as well as
adaptations to environmental conditions. For instance, insect
antennae are sensitive to humidity (61) and hygroreceptors are
found in the mid-region of the honey bee antennal segments
(62, 63). These receptors respond to changes in humidity and air
pressure following the deformation of the dendritic membranes
of the moist and the dry cells forming the receptor (64).
They respond with oscillations in impulse frequency depending
on the humidity and the rate of humidity change. During
the recordings in the present study, antennae were exposed
to a controlled airflow purified through a carbon filter and
subsequently humidified in a water bubbler, thus ensuring
a standardized treatment. However, Tichy and Kallina (63)
showed that honey bee hygroreceptors are not very efficient
in detecting instantaneous humidity changes, while they are
rather specialized for large-amplitude fluctuations. Therefore,
we cannot rule out the possibility that differences in the
environmental relative humidity outdoors or in the laboratory,
rather than in the air stream, might have affected the overall
antennal sensitivity. Yet, since not all the responses were lower
in spring (i.e., sensitivity to methyl-salicylate at 10−2 and 10−3

and benzyl-alcohol at 10−2 and 10−3 was higher in spring
than in autumn), environmental conditions such as humidity
would only contribute significantly to the seasonal effect if
they affected some chemical receptors more than others, or
even in opposite directions in terms of odor sensitivity. We
consider that to be rather unlikely. Thus, it appears that
the seasonal changes in antennal sensitivity are likely to be
associated with physiological changes and not reflecting changes
in environmental conditions.

We propose that such seasonal changes may be associated
with a change in the number of sensilla and receptors according
to the season (i.e., winter or summer bee). Awad et al. (65)
described the variations of sensilla present on the flagellum
of young (3-days old) worker bees in different queen statuses
(1-year-old mated queen; supersedure queen; 3-day-old virgin
queen; queen cell; without queen; and without queen/without
bee bread). They showed that the antennae exhibited significant
changes in the number of the sensilla Chaetica, Placodea, and
Trichodea between the different queen conditions. The number
of sensilla may also change according to the bee type, as Riveros
and Gronenberg (66) have shown that the number of olfactory
sensilla is greater in pollen and water foragers, which are known
to exhibit higher sensory sensitivity, compared to nectar foragers.
Similarly, seasonal plasticity between generations of winter and
summer bees is possible. Changes in the number of sensilla could
be an ecological adaptation. As the availability of flowers strongly
reduces in autumn, the low concentration of floral scents in the

air might require bees to elevate their antennal sensitivity, while
in spring, when flowers and their volatiles are abundant, less
sensitivity is needed but the dynamic range needs to be higher.
An investigation of the type, distribution, and number of sensilla
during the year could reveal the drivers behind seasonal variation
in antennal sensitivity.

Short-Term vs. Long-Term Effects of
Neonicotinoid Treatments
We detected neonicotinoid-induced changes in antennal
responses to VOCs with effects varying between short- and
long-terms. Treatment with Thiacloprid elicited an increase in
antennal responses to benzyl alcohol and 1-hexanol as well as to
the alarm pheromone 2-heptanone in the autumn experiment,
while similar effects were not observed in the spring. In addition,
treatment with Thiacloprid elicited decreased responses to
methyl salicylate in the spring experiment, while a similar effect
was not observed in the autumn.

The bees employed in the autumn experiment fed directly
on contaminated treatment syrups, which were administered
chronically at the end of the summer. In contrast, the bees
employed in the spring experiment did not feed directly on the
treatment syrups, but passed the winter feeding on stores made
from the syrups administered the previous summer. Because all
honey bees collected for the recordings were foragers at the hive
entrance, we can exclude the scenario that autumn bees would
have survived the winter to the following spring. The nectar, as
the syrup, must undergo a series of chemical transformations
before being stored (67), and these digestive processes contribute
to degrading xenobiotics in the hive, possibly reducing the
residual insecticide content in the final honey product (9).
Honey bees can relatively quickly detoxify cyano-substituted
neonicotinoids such as Thiacloprid, while nitro-substituted
neonicotinoids, like Imidacloprid, are metabolized more slowly
(68). This suggests that spring bees probably had access to a less
toxic nutrition than bees in the autumn. We therefore expected
that treatment effects would be more prominent in the autumn
bees compared to the spring bees. Accordingly, we detected four
out of five changes in antennal responses to floral odors in the
Thiacloprid group in the autumn experiment and only one in the
spring experiment. However, due to a reduction in sample sizes
in the spring experiment, we had more statistical power to detect
short-term compared to long-term effects, and our results should
therefore be interpreted with caution.

Thiacloprid-Induced Effects
Only one study has previously investigated the effect of
neonicotinoids on antennae responses, however only in the
short term. In a recent paper, Straub et al. conducted EAG
recordings on Osmia bicornis L. (Hymenoptera, Megachilidae)
and Bombus terrestris L. (Hymenoptera, Apidae) (24). After
topical application of 0.75 µg and 2.55 µg Clothianidin
for O. bicornis and B. terrestris, respectively, antennae were
presented with two flower volatiles, 2-phenylethanol and linalool
at different concentrations. Clothianidin reduced antennal
responses to 2-phenylethanol, but the responses to linalool
were not altered. These results correspond with our findings
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that treatment with Thiacloprid elicited variations in the
antennal response only to some VOCs and some VOC
concentrations. Straub et al. suggested that the neonicotinoids
may affect receptors of only some chemical classes of VOCs, and
recommended testing on a broader spectrum of compounds, as
we eventually did. However, among the six Thiacloprid-altered
responses in our data, the stimulus VOCs represented a rather
diverse assortment of chemical classes: two were alcohols (1-
hexanol and benzyl alcohol), one was an ester (methyl salicylate),
and one was a ketone (2-heptanone). Thus, our results do not
support the hypothesis that neonicotinoids affect receptors of
only some chemical classes, and we recommend more research
on the topic, e.g., including calcium imaging of ORN signals in
the antennal lobe (69).

The majority of studies on behavioral consequences of
neonicotinoid exposure have reported an impaired ability to
associate floral scents with food quality (70–75). Honey bees use
flower scents to evaluate nectar quality, and subtle differences in
the proportion of volatiles allow them to discriminate between
floral scents (10, 76–78). Different concentrations of flower
volatiles were reported to impact the visitation frequency of
honey bees to sunflowers (79) and rapeseed (80) varieties.
However, functional imaging of the antennal lobe response maps
showed that neonicotinoids remove the odor-specificity of the
response pattern, thus potentially disrupting the ability of bees
to identify the plants with the best rewards (18). Accordingly,
Clothianidin-treatment was found to decrease the number of
flowers visited per foraging flight and increase both the duration
of flower visits and the searching time between flowers in Osmia
bicornis L. and Bombus terrestris L. (24). Similar results were
observed for honey bees (81–85), including a disruption of the
flight direction and inefficient foraging activity. An important
result of our study is that treatment with Thiacloprid elicited
an increase in antennal responses to benzyl alcohol and 1-
hexanol. We propose that an enhanced sensitivity to certain
flower volatiles above others may affect the ability of bees to
accurately perceive the proportions of volatiles in floral scents,
which may explain previous findings of effects of neonicotinoid
exposure on foraging behavior of bees.

Altered antennal responses may also be involved in
other behavioral consequences of neonicotinoid exposure.
In particular, since benzyl alcohol and 1-hexanol have also
been associated with pheromone functions in honey bees,
regulatory effects of these VOCs on social behaviors such as
aggression may play a role in addition to their function as
floral scents. Furthermore, one study reported a neonicotinoid-
induced increase in olfactory learning and memory (72).
This is consistent with our findings, as an enhanced learning
effect can be explained by a partial increase of the strength
of odor responses, as observed in our study. The question of
learning-induced changes in the EAG signal is all but clear, and
the few existing studies report ambiguous results; some find
a learning-induced increase of responses (86, 87), while other
studies find no variations (88) or report decreased signals (89).
To further explore whether pesticides may impair learning at the
periphery of the olfactory system, combined studies of behavior
and EAG responses are needed.

Imidacloprid Induced No Effects
No differences were observed in the antennal responses between
the Imidacloprid-treated group and the control group, neither
in the short- nor long-term assessment (i.e., the autumn and
spring experiments). The chosen treatment concentration of
50 µg/kg (ppb) in our experiment is above the usual amount
found in the environment and in hive products (90–93) and
can potentially be detrimental to the health of bee colonies
(94). Previously reported effects include reduced foraging activity
following exposure to Imidacloprid at 48 ppb for 4 days (95),
reduced overwintering colony survival, higher rates of queen
failure, and broodless periods at concentrations ranging from 20
to 100 ppb for 12 weeks (94), and reduced colony strength at a
concentration of 100 ppb for 6 weeks (96). However, these colony
effects may not be related to potential effects of Imidacloprid on
the bee peripherical olfactory system. Thus, the observations in
our study are not in contradiction with the previously observed
colony effects.

Studies suggesting an Imidacloprid-induced impairment of
the olfactory system are extremely limited. At the behavioral
level, it was found that the administration of Imidacloprid at
sublethal doses (0.1, 0.4, 1.1 ng) to the parasitic wasp Nasonia
vitripennis (Walker) (Hymenoptera, Pteromalidae) disrupted
sexual communication and host finding behavior (97). In vitro
recordings from mushroom body Kenyon cells, showed that
Imidacloprid and Clothianidin blocked neuronal firing (98).
Calcium imaging of the honey bee antennal lobe projection
neurons during exposure of the brain to a 10µM solution
of Imidacloprid showed an elimination of the odor-specific
glomerular response patterns (18). However, from these studies,
it is not possible to make inferences about effects at the level of
the antennae or the ORNs.

Affected Response Properties
The observed effects of treatment with Thiacloprid included both
reductions and increases of antennal responses. In addition, the
decays in antennal responses to positive controls during each
recording increased in both neonicotinoid-treated groups. The
observation of this decay was made possible because citral was
the only VOC presented more than once, and the same may
have been noted with other odors. However, while the observed
signal variation suggests an effect of neonicotinoid treatment on
honey bee olfactory sensitivity, the EAG technique applied in
this study does not allow us to identify the mechanism behind
the variation. EAG signals represent the summed potential
change of receptors (99). Thus, any treatment-induced variation
of the EAG signal may be explained by changes in the
olfactory reception mechanisms or the antennal physiology. In
the present experiment, the neonicotinoids could have affected
either the number of receptors that were activated when cues
were presented or the activation strength by altering the firing
rate of single neurons. However, also physical and chemical
modifications of the biological tissues could result in an altered
electrical resistance between the neuronal site and the recording
electrode (100).

A previous study has shown that Imidacloprid at sublethal
doses interacts with ASP2, a general Odor-binding protein (OBP)
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in Apis cerana, and strongly decreased the binding of ASP2 to
a common flower volatile, β-ionone (101). In addition, recent
studies have reported altered expression of genes associated
with mitochondria and oxidative phosphorylation in honey
bees exposed to environmental concentrations of Thiacloprid
(102) and Spinosad (103), potentially affecting cellular energy
production. While the flux of fresh hemolymph in the antenna
might compensate for such a detrimental effect in a living insect,
the antennal excision and interruption of the flow of hemolymph
could enhance the effect. Our results did not demonstrate an
effect in living individuals, but they suggest a possible cellular
disturbance that is likely to also cause an in-vivo impairment.

No difference was noticed in the responses to negative controls
between neonicotinoid treatments and the control group. As
most of the measured antennal responses to negative controls
are likely produced by mechanoreception, the observed effects of
neonicotinoid treatment in our studymost likely do not affect the
coding of mechanical stimuli (104). The fact that the responses to
negative controls are significantly above the responses to some
VOCs at the lowest concentrations is likely due to minimal odor
contaminations of the control pipettes. When odor stimulus
concentrations are low, small contaminations can significantly
alter response signals and we believe that such an effect increased
antennal responses to the negative controls in our experiment.
The pipettes used for presenting the solvent (paraffin) on filter
paper or dry filter paper (i.e., the negative controls) were used
twice, at the beginning and end of each recording. The analysis
showed that the response amplitudes significantly increased
between the initial and the final presentation during the spring
measurements, which is likely due to odor contamination in the
second presentation. Because of this potential contamination, we
are conservative in our interpretation of the responses measured
at the lowest VOC concentrations (10−6 and 10−5).

Effects on Pheromone Responses
Two compounds triggering a social response in honey bees
were included in the present study. 2-heptanone is an alarm
pheromone released by the honey bee mandibular glands (105)
which induces a defensive (106) and a repellent (107) effect.
It has been shown to impair learning and memory (15) and
it has an anesthetic effect used to deter and paralyze intruders
(108). In contrast, the queen mandibular pheromone (QMP) is
an attractive blend of five diverse substances (109) that elicit the
retinue response of worker bees (110). The QMP, in combination
with other compounds such as queen esters and alcohols, act as
primer pheromones that affect the physiology and behavior of
worker bees (111). Because of their crucial role in colony social
behavior, we considered these two pheromones as important
candidates to include in our experiment.

Effects of pesticide exposure on the antennal responses
to alarm pheromones have not previously been investigated.
Meanwhile, increased aggressiveness of honey bees after
exposure to neonicotinoids have been reported (112, 113).
For example, Bortolotti et al. (114) reported an increased
aggressiveness in 23.8% of affected hives after intoxication with
neonicotinoids during spring 2008. Increased aggressivity due to
neonicotinoids has also been described in ants (Hymenoptera:

Formicidae), affecting competition and spread of invasive species
(115). Our study shows an increased antennal response to the
alarm pheromone 2-heptanone at concentration 10−3 in honey
bees in the short-term following treatment with Thiacloprid,
and a non-significant effect at concentration 10−2. Among five
flower VOCs that have also been associated with pheromone
functions, two (1-hexanol and benzyl alcohol) elicited an
increased response in Thiacloprid-treated bees in the short
term. These two compounds are part of the complex alarm
pheromone blend emitted by the sting gland. The increased
sensitivity to 2-heptanone, 1-hexanol, and benzyl alcohol
suggests a general increased sensitivity to alarm pheromones
in honey bees following exposure to Thiacloprid, which could
induce abnormal responses, potentially triggering aggressive
behaviors reported in the literature. However, we propose this
hypothesis with caution, as the antennal responses to other
components of the alarm pheromone blend (hexyl acetate and
benzyl acetate) were not affected by treatment with Thiacloprid
in our experiment. In addition, the function of benzyl alcohol
as an alarm pheromone is uncertain. Further EAG experiments
focusing on the alarm pheromone blend may shed more light on
the observed alteration of antennal responses.

Our study also revealed a seasonal variation in the responses
to 2-heptanone, as the response signals of the control group
were generally higher in autumn than in spring. We propose
that the higher responses to 2-heptanone in the autumn may be
associated with a higher level of vigilance, which may be adaptive
in honey bees. In autumn, the colonies are still strong in size,
but as food availability plummets, it is vital for bees to preserve
food storages and defend the colony against robberies typical
of this period (116, 117). In contrast, spring bees experience
abundant food resources, reducing the likelihood of robbing and
the need for aggressive behavior. Thus, increased sensitivity to
low concentrations of 2-heptanone in autumn bees may reflect
an ecological adaptation.

As also observed for 2-heptanone, higher responses to the
QMP in the short term were elicited in bees exposed to
treatment with Thiacloprid. This increased sensitivity could
reflect a compensatory mechanism triggered by compromised
queen bees. Exposure to neonicotinoids has previously been
reported to be associated with impaired and reduced fecundity
(118, 119), immunosuppression (120), and reduced survival
(121) in queen bees. High supersedure rates (60%) in autumn
were observed in colonies exposed for 46 days to Thiametoxam
and Clothianidin in summer (16), and this effect was ascribed to
a reduced performance of exposed queens. A reduced metabolic
rate (∼11%) reported in queens exposed to Imidacloprid (122)
might imply a reduced secretion of QMP, as its production
and release involve an energy cost. Worker bees might perceive
the queen impairment, if resulting in a lower pheromonal
production, and compensate for it by increasing the sensitivity
to avoid risky autumn supersedure.

Among honey bees exposed to Thiacloprid or Imidacloprid
in our experiment, antennal responses to citral decreased
significantly with the order in which it was presented, compared
to controls. However, as EAG recordings were conducted on
excised antennae, this effect cannot be inferred to antennae on
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living bees. Notably, antennal responses to the first presentations
of citral were not affected by treatment with Thiacloprid or
Imidacloprid and did not show any seasonal variation. Citral is
a component of the Nasonov blend and our results imply that
neonicotinoid exposure does not affect the sensitivity of honey
bees to this aggregation pheromone.

A last consideration on bee pheromones will be given to β-
ocimene. Although it is a common plant volatile released by
several plant parts, including leaves (123) and flowers [e.g., (34)],
β-ocimene plays a key role as a brood pheromone inside the
beehive (124). It is produced by young larvae and expresses the
nutritional needs of the brood. It inhibits ovary development
in workers and stimulates early foraging in nest workers, thus
regulating the food availability to the brood. In our study, β-
ocimene elicited significantly higher responses in autumn than
in spring for the control group. Because of its double role, as a
plant volatile and as a pheromone, it is difficult to disentangle
the causes and behavioral outcomes of such a difference. Yet,
most likely, because of the reduced brood size in autumn, bees
might tune their sensitivity to perceive even small amounts of
the pheromone, while, in spring, the much larger brood surface
allows for a less accurate detection.

CONCLUSION

The present study reports variations in the antennal responses
to flower volatiles and pheromones in honey bees chronically
exposed to two neonicotinoids. In the short term, the antennae
of bees exposed to Thiacloprid showed increased responses
to the flower volatiles benzyl alcohol and 1-hexanol, to the
queen mandibular pheromone, and to the alarm pheromone 2-
heptanone. In contrast, only one long-term effect was observed,
as spring bees from colonies exposed to Thiacloprid during
late summer showed decreased responses to methyl salicylate–
however only at one concentration. Treatment with Imidacloprid
induced no changes in antennal responses to any of the tested
VOCs or pheromones, neither in the short nor the long
term. However, the antennae of bees exposed to Imidacloprid
and Thiacloprid showed an increased signal degeneration
in the short term. In addition, we observed season-related
differences in antennal responses for seven VOCs and the alarm
pheromone 2-heptanone.

The difference in observed treatment effects between the
autumn and spring experiments indicate that the adverse effects
of exposure to neonicotinoids may be stronger in bees that are
directly exposed (acute effects) and less severe in subsequent

generations. This difference between short- and long-term effects
may hold promises of a brighter future for bee populations if
agricultural practices that reduce the use of pesticides are widely
implemented. However, the mechanisms behind the observed
effects are yet unknown and we hope that the results of our study
will stimulate further investigations of neonicotinoid effects
on peripheral olfactory responses and antennal transduction
in bees. It would be of great importance to link changes in
antennal signals to behavioral observations at the single bee and
colony level.
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