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Jean-François Doherty*† and Benjamin J. Matthews†

Department of Zoology, University of British Columbia, Vancouver, BC, Canada

Insects and parasites dominate the biosphere, in terms of known biodiversity and mode of
life, respectively. Consequently, insects play a part in many host-parasite systems, either
as parasite, host, or both. Moreover, a lot of these systems involve adaptive parasite-
induced changes of host phenotype (typically behavior or morphology), which is
commonly known as host manipulation. While many host manipulation systems have
been described within the last few decades, the proximate mechanisms that underpin host
phenotypic change are still largely unknown. Given the intimate co-evolutionary history of
host-parasite systems, teasing apart the intricate network of biochemical reactions
involved in host manipulation requires the integration of various complementary
technologies. In this perspective, we stress the importance of multidisciplinary research
on host manipulation, such as high-throughput sequencing methods (genomics and
transcriptomics) to search for candidate mechanisms that are activated during a
manipulation event. Then, we argue that gene editing technologies, specifically the
CRISPR-Cas9 system, are a powerful way to test for the functional roles of candidate
mechanisms, in both the parasite and the host. Finally, given the sheer diversity of unique
host-parasite systems discovered to date, there is indeed a tremendous potential to create
novel non-traditional model systems that could greatly expand our capacity to test the
fundamental aspects of behavior and behavioral regulation.
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INTRODUCTION

Insects have dominated Earth’s animal biodiversity for hundreds of millions of years (1–3).
Parasitism, wherein one organism typically exerts a negative fitness effect upon a host organism
by living in or on it, has arguably become the dominant mode of life on this planet (4, 5). Therefore,
unsurprisingly, most lineages within Metazoa that have independently evolved parasitism consist of
insects and other arthropods (6). In return, insects play host to a vast range of parasites, including
viruses (7), protists (8), fungi (9), helminths (10), and other insects (11). Since it is likely that every
metazoan species has evolved with at least one parasitic species (12), and most animal species, i.e.,
insects, remain to be discovered and formally described (13, 14), there is undoubtedly an enormous
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and currently underappreciated diversity of unique host-parasite
systems (5, 15). Moreover, each of these systems reflect an entire
co-evolutionary history that has resulted in a number of
adaptations for both antagonistic species, creating a complex
network of host-parasite interactions spanning multiple
biological systems. While parasites are typically adapted to
avoid or resist the host defense system in order to develop
(16), hosts are usually adapted to avoid or defend against
parasitic infection (17, 18). However, many parasitic lineages
have evolved other remarkable strategies that ultimately tip the
odds of success in their favor.

A parasite that adaptively changes the phenotype of its host to
increase the likelihood of completing its life cycle is said to
“manipulate” its host. While this metaphor promotes a parasite-
centric perspective of the phenomenon (19), host manipulation
has been highlighted as one of the most influential ideas in
parasitology (20). Since adaptive host manipulation was used to
explain the behavioral changes observed in amphipod hosts
during the early 1970s (21), hundreds of host-parasite systems
requiring host manipulation have been described (22, 23). Many of
these include insects as either the parasite, the host, or both, and
some of the most notorious examples of host manipulation involve
the altered behaviors of insect hosts (24): hairworms (phylum
Nematomorpha) cause their terrestrial insect hosts to enter water,
where the host typically dies and the hairworm escapes to mate
(25); lancet liver flukes (phylum Platyhelminthes) cause their
intermediate ant hosts to climb to the tip of grass blades to be
eaten by grazing ruminants, allowing the parasites to pursue their
development (26); and jewel wasps (Hymenoptera: Ampulicidae)
render their cockroach hosts nearly incapable of walking
voluntarily, allowing the wasp to bring the host back to its nest
and lay its eggs upon it (27). Throughout the past few decades,
many researchers have helped catalogue new host manipulation
systems, and in recent years have been working to identify
the proximate mechanisms and molecular interactions at play
(20). If a parasite is truly capable of adaptively manipulating its
host, we should be able to (i) pinpoint the “manipulation gene(s)”
encoded in the parasite genome and (ii) trace the causal chain
between these gene(s) and the phenotypic changes observed in the
host (24, 28–30).

Within the past decade or so, there have been growing calls for
multidisciplinary research on host-parasite interactions to uncover
the proximate nature and true extent of host manipulation by
parasites (29–33). Given their sheer diversity, insects play an
important role as parasite or host in many host manipulation
systems, representing a key source of potential model systems for
host manipulation research (24, 34). In this perspective, we
highlight recent integrative and multidisciplinary research on
insects that has shed light on some of the complex interactions
occurring during host manipulation. Then, we call attention to a
recent development in gene editing technology (CRISPR-Cas9) as
a powerful tool to test the causal roles for genetic loci, in both host
and parasite, that modulate host phenotype. We argue that these
state-of-the-art technologies, in combination with host
manipulation, will lead to the creation of novel, non-traditional
model systems that will expand upon the behavioral studies of
traditional, laboratory models. Finally, we conclude that host
Frontiers in Insect Science | www.frontiersin.org 2
manipulation systems, involving two closely interacting species
that have adapted fine-tuned mechanisms in an intimate
evolutionary arms race, offer researchers a unique and powerful
perspective on understanding the fundamental nature of behavior
and behavioral regulation.
MULTIDISCIPLINARY RESEARCH ON
HOST MANIPULATION

The adaptations initially required for parasites to evade or resist
host immunity could have resulted in fortuitous, indirect
mechanisms that were then honed by natural selection to
produce novel, directed mechanisms necessary to alter host
phenotype and favor parasite development (35, 36). Given
their indirect origins, these adaptations could have variable
impacts on multiple host systems (Figure 1), highlighting the
multidimensionality of host manipulation (39). To complicate
things even more, these impacts may affect the host at multiple
levels of biological organization, from the epigenome (epigenetic
markers) to the protein interactome (network of host-parasite
protein interactions) (33, 37) (Figure 1). Therefore, uncovering
the proximate mechanisms of host manipulation naturally
requires an in-depth, multidisciplinary approach, integrating
FIGURE 1 | Depicting the multidimensional nature of host manipulation in
insects. A parasite produces “manipulation factor(s)” that can interact with
and cause cascading effects in various host biological systems, such as the
nervous and immune systems. These manipulation factor(s) can impact the
host at one or more levels of biological organization (dashed rectangle), from
the genome to the proteome. These interactions ultimately result in adaptive
changes in host external phenotype (typically behavior or morphology) that
benefit the parasite. Note that the parasite was haphazardly placed inside the
insect; its location varies with each system and can play an important role
during manipulation. Figure inspired by Hébert and Aubin-Horth (37) and
Herbison (38).
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experimental infections, various “-omics”, specialized imaging
technologies, etc. (24). For example, proteomics was used
relatively early in host manipulation research to identify
differences in protein expression profiles between infected and
uninfected individuals of various host-parasite systems (mainly
insect hosts), with the goal of identifying candidate gene function
during a host manipulation event (40–42). Other studies have
utilized advanced imaging technologies to locate parasites in
their insect hosts, thus recognizing the importance of the
parasite’s physical presence and exact location during host
manipulation (43, 44). Identifying candidate mechanisms is
one thing, but more importantly is the ability to control or
suppress these mechanisms in order to test for causation, rather
than just observing a correlation of events during manipulation.
While the importance of integrating different approaches in host
manipulation research has been brought forward in recent
reviews (24, 38), only within the last few years have we seen
studies that have exploited different technologies to explore the
underpinnings of host manipulation.

High-throughput sequencing technologies have been described
as the next best thing in host manipulation research (24, 32, 37,
45), and rightly so. The ability to quantify the complete set of RNA
transcripts (transcriptomics) at a precise moment in time or at a
specific location in the organism (host or parasite) can allow us to
identify the genes that are over- or under-expressed during a
manipulation event. In turn, comparative genomics and
transcriptomics, i.e., comparing the sequences or expression
levels of genes between species, have opened the door to
identifying signatures of convergent evolution, protein mimicry,
or other shared mechanisms between host and parasite that might
be responsible for altering host phenotype. Despite the potential
power of these techniques, only a few studies on host
manipulation have utilized transcriptomics to identify candidate
genes or mimicry proteins between host and parasite (46–48). For
example, Will et al. (48) used comparative transcriptomics before,
during, and after manipulation to uncover a network of candidate
genes that were linked to host circadian rhythm, foraging
behaviors, neuromodulation, and novel parasite compounds and
toxins - all biological pathways thought to be important for the
successful manipulation of ants by Ophiocordyceps fungi. In this
well-documented system, infected ants climb up vegetation, clamp
down on the underside of leaves with their mandibles, and die,
where the fungus can produce a fruiting body and spread its spores
by shedding them upon other ants (49). Undoubtedly, this type of
integrative research can help uncover the candidate mechanisms
involved in host manipulation events, but linking these
mechanisms to functional and observable changes in host
phenotype will require a completely different type of technology,
one that harnesses the remarkable properties of a certain
prokaryotic immune system.
CRISPR-CAS9 AND HOST MANIPULATION

At the time when researchers were beginning to explore the
adaptive nature of host manipulation by parasites (21), others
were starting to understand the role of certain prokaryotic
Frontiers in Insect Science | www.frontiersin.org 3
molecules in bacterial immunity and their potential for
manipulating DNA (50–52). Through the following decades,
more and more prokaryotic enzymes capable of binding to
specific DNA sequences and breaking the double-stranded
helix were discovered (see 53 for a brief history). Among these,
the Streptococcus pyogenes CRISPR-Cas9 system was recognized
for its robustness, simplicity, and flexibility and, with the
understanding that living cells can incorporate exogenous
DNA through homologous recombination (54) and other
homology-directed repair, provided the promise of a true “cut-
and-paste” genome engineering tool. CRISPR-Cas9 eventually
replaced older technologies, including zinc-finger nucleases and
TALENs, as the primary technology used in targeted gene
editing, due to its ease of reprogramming (53, 55, 56).
Essentially, a CRISPR (clustered regularly interspaced short
palindromic repeat) is a prokaryotic DNA sequence consisting
of short palindromic repeats and non-repeating spacers (57).
Spacers are DNA sequences naturally acquired from attacking
bacteriophages and integrated into the bacterial genome (58, 59).
Found in most Bacteria and Archaea (60), these spacers are
transcribed into short CRISPR RNAs (crRNAs), which guide
associated Cas (CRISPR-associated) enzymes to target and cut a
specific region of the bacteriophage genome and defend against
invading nucleic acids (61). Researchers were able to reprogram
the S. pyogenes Cas9 enzyme to target specific DNA sequences in
bacteria by generating short guiding RNA sequences in vitro (62)
and, in just a few years’ time, the CRISPR-Cas9 system was
successfully adapted for in vivo genome editing in eukaryotic
cells (63–65). Within the past decade, researchers from many
fields have adopted CRISPR-Cas9 technologies, as well as
identifying other CRISPR-Cas systems, which have become the
method of choice for genome engineering (53, 55, 56).

The latest developments of CRISPR gene editing technologies
have greatly expanded upon the original CRISPR-Cas9 system,
such as CRISPR activation (CRISPRa) and CRISPR interference
(CRISPRi), which essentially up- or down-regulate gene
expression, respectively (56). Unsurprisingly, CRISPR-Cas9
gene editing is now being used to uncover the molecular
determinants of pathogenesis for a number of important
human diseases such as dengue fever and malaria (66, 67).
Increasingly, this system is being adapted to a variety of
parasites, including bacteria, protists, and nematodes, to study
intricate host-parasite interactions and uncover functional
traits encoded in parasite genomes (68–70). Although these
studies have focused on disease-causing agents in humans,
there is indeed a great potential to combine CRISPR-Cas9
with other areas of parasitological research, such as host
manipulation. Previously, we highlighted the capability of
identifying candidate parasite genes and shared mechanisms
between host and parasite through comparative genomics and
transcriptomics. While this is surely a crucial step in discovering
the molecular changes responsible for host phenotypic change,
the data obtained from comparative studies are still correlational
in nature. Since parasites can impact host phenotypes across
multiple systems (especially the immune and nervous systems)
and levels of biological organization (36, 37) (Figure 1), there
is bound to be a large amount of molecular noise associated
July 2022 | Volume 2 | Article 938644
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with any biochemical reactions occurring simultaneously
or coincidentally in the host (or parasite) during the
manipulation period. Even so, if the “manipulation factors” of
a parasite have a large number of cascading effects in the host
(30), natural selection has likely optimized the specific pathways
that ultimately lead to an increase in parasite transmission (28).

The ability to remove specific genes (gene knockout) in any
genome using CRISPR-Cas9 will essentially allow us to test the
causative and functional role of candidate mechanisms identified
during a natural manipulation event (24) (Figure 2A). Knocking
out candidate genes in the parasite would allow us to test for any
direct causal link between the knockout gene and host phenotype
(Figure 2B), whereas knocking out genes in the host would help
us determine what host mechanisms are directly impacted by
parasite manipulation (Figure 2C). To help illustrate this
concept, we look at the discovery of the mechanism
responsible for tree-top disease in moth larvae infected with a
baculovirus. In this relatively simple system, infected larvae are
prone to climb to the top of trees to die, where they liquefy and
release viral particles, thus infecting other larvae below (71).
Early on, it was shown that ecdysteroid UDP-glucosyltransferase,
encoded by the egt gene in the virus, prevents larvae from
molting by inactivating the larval molting hormone 20-
hydroxyecdysone (72). The egt gene was also hypothesized to
play a role in the tree-climbing behavior of infected larvae.
Recombinant viruses, lacking the egt gene, were inoculated in
larvae and the climbing behavior almost completely disappeared
in comparison to larvae inoculated with wild-type viruses (73).
In a closely related system, CRISPR-Cas9 was recently used to
knockout three candidate host genes, all important for host
visual perception pathways (74). These genes were found,
through transcriptomics, to be upregulated after viral infection,
Frontiers in Insect Science | www.frontiersin.org 4
causing an acute phototactic response and increased climbing in
larvae. Infected knockout larvae showed a significantly reduced
climbing behavior, strongly implying that these specific host
genes are important for the successful manipulation by the
baculovirus (74). To truly confirm which gene(s) underpin the
manipulation of larvae, CRISPRa could be used to activate
specific candidate host genes to try and replicate the climbing
behavior observed in naturally infected individuals. Albeit simple
on paper, this is a nascent field of research and its scope is
currently very limited. In fact, the logistics of working with a new
organism in a laboratory setting is a prerequisite for genetic
editing approaches and can often be much more challenging
than designing and generating the necessary CRISPR-Cas
components (75). Parasites may pose additional challenges as
they require a host to develop, which can complicate their
maintenance and manipulation under artificial conditions. This
would make CRISPR-Cas9 in parasites particularly challenging,
although novel techniques, such as ReMOT Control (76) and
DIPA-CRISPR (77), may increase the success rates of knockouts
(or knock-ins) in these systems. Despite these challenges, gene
editing promises to provide us with a powerful and elegant
method to test the functional roles of host-parasite mechanisms
involved during host manipulation.
A PLETHORA OF NON-TRADITIONAL
MODEL ORGANISMS FOR BEHAVIORAL
RESEARCH

In the previous sections, we featured the recent developments of
multidisciplinary research on host manipulation in insects, and
A B C

FIGURE 2 | Simplified depiction of how loss-of-function CRISPR-Cas9 gene editing can be used to elucidate the proximate mechanisms of host manipulation.
(A) During a natural manipulation event, “manipulation factor(s)”, encoded in the parasite genome, are released into the host. These factors initiate a series of host-
parasite interactions that impact one or more host mechanisms encoded in the host genome, resulting in external changes in host phenotype (typically behavior or
morphology). (B) CRISPR-Cas9 is used on a living parasite to knockout a candidate parasite gene with potential manipulation functions, allowing researchers to test
which parasite genes have a functional role during manipulation. (C) CRISPR-Cas9 is used on a living host to knockout a candidate gene potentially manipulated by
the parasite, allowing researchers to test which host mechanisms underlie the altered phenotype.
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highlighted the potential of CRISPR-Cas9 gene editing as an
effective method to elucidate the functional mechanisms causing
host behavioral change. This type of research stresses the
importance of comparative studies and the strength of
integrative research on behavior (33, 78). Host-parasite systems
arguably represent an untapped source of potential research on
behavioral regulation and the genes that govern it. Traditional
model systems can allow for decades-long research and in-depth
investigations into behavior (79). However, the molecular
pathways under scrutiny in these systems are limited to the
evolutionary history of the model organism. Contrastingly, non-
traditional model organisms can offer us a better glimpse of the
entire spectrum of biological diversity, greatly expanding our
understanding of the adaptations and molecular mechanisms
underpinning animal life on this planet (80). Researchers have
even begun outlining ways to create novel model systems,
integrating high-throughput sequencing and genome editing,
in the goal of branching out from the widely used traditional
models (75). Given the known diversity of host-parasite systems
involving insects and host manipulation, and the potential of
discovering many more of these systems, it is time to start
harnessing the power of genome engineering to explore the
fine-tuned mechanisms that parasites have acquired through
natural selection to manipulate their hosts.
CONCLUDING REMARKS

In this perspective, we have featured some of the vast diversity of
host-parasite interactions that occur in insects. Many of these
systems require parasite-induced host phenotypic changes
(mainly behavior or morphology) that benefit the parasite, a
phenomenon commonly known as host manipulation. Given the
evolutionary history of host-parasite interactions and the sheer
diversity of insects (14, 36), many examples of host manipulation
involve behavioral alterations of insect hosts (22). Parasites can
impact host behavior through multiple systems and levels of
biological organization. Therefore, multidisciplinary research is a
necessary step towards elucidating the fundamental nature of
host manipulation and behavioral regulation. We showed that
Frontiers in Insect Science | www.frontiersin.org 5
comparative genomics and transcriptomics can help identify
candidate genes and mechanisms that are activated during
manipulation. While this is a crucial step in uncovering the
molecular underpinnings of host manipulation, these data
remain correlational in nature. To truly test the functional
roles of these candidate mechanisms, gene editing technologies
offer us a powerful means of assigning causation to the genes
responsible for the host phenotypic alterations under scrutiny.
In this regard, the CRISPR-Cas9 system has revolutionized the
way in which researchers can target and modify specific areas of
the genome in living organisms (53). Finally, we argued that
host-parasite interactions represent a huge untapped source of
non-traditional study systems that, paired with multidisciplinary
research, could greatly broaden the horizons of ethology. While
parasitologists have occasionally been slow to adopt novel
technologies and molecular methods for their research (81),
host manipulation, gene editing, and integrative research could
pave the way for fundamental studies on behavioral regulation.
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