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Russian honey bee genotype
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enhanced marker panel set

Arian Avalos* and Lelania Bilodeau

Honey Bee Breeding, Genetics, and Physiology Research Laboratory, USDA-ARS, Baton Rouge,
LA, United States
Russian honey bees (RHB) are a breeding population developed by USDA-ARS

as an effort to provide Varroa-resistant honey bees to beekeepers. The

selection strategy for this breeding population was the first in honey bees to

incorporate genetic stock identification (GSI). The original GSI approach has

been in use for over a decade, and though effective, novel technologies and

analytical approaches recently developed provide an opportunity for

improvement. Here we outline a novel genotyping assay that capitalizes on

the markers used in the GSI as well as new loci recently identified in a whole

genome pooled study of commercial honey bee stocks. Our approach utilizes

a microfluidic platform and machine learning analyses to arrive at an accurate,

high throughput assay. This novel approach provides an improved tool that can

be readily incorporated into breeding decisions towards healthier more

productive bees.

KEYWORDS
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Introduction

The Russian honey bee (RHB) breeding population was established by the USDA-

ARS Honey Bee Breeding, Genetics & Physiology Laboratory (HBBGPL) after importing

naturally Varroa-resistant RHB in 1997 (1, 2). A closed breeding system was developed,

resulting in 18 distinct lines. These breeding lines were later grouped into 3 blocks used in

a cross-breeding mating strategy to maintain the population. Initial breeding efforts

focused on improving resistance to tracheal mites (Acarapis woodi) and Varroa mites

(Varroa destructor), in addition to high honey production (3–8). Further refinement of

the breeding population culminated in a release to the Russian Bee Breeders Association

(RBBA) in 2008. As part of the release, a GSI assay was developed to discriminate the

selected RHB population from other commercially available honey bee populations

throughout the U.S. (9).
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The GSI assay incorporated allele frequency data from 11

microsatellite and 5 single nucleotide polymorphism (SNP) loci

to accurately identify RHB breeding lines of honey bees (9).

Broadly, the analysis used a reference baseline sample set of

known RHB honey bees and a separate sample set collected from

several commercial non-Russian honey bee populations across

the U.S. with the aim of maximizing diversity. The GSI assay

then estimated the likelihood of membership to either group,

using a similar empirical approach to that applied in salmonid

fisheries population identification (10–12). When applied to

honey bees, the method provided accurate and consistent

assignment with only 8 worker samples per colony (9).

Ultimately this method was incorporated by the RBBA to

complement their multi-trait selection program, becoming the

first major genetic certification assay of a honey bee population

and indeed the only one for insect breeding.

Since development, the assay has been refined due to shifts

in allele frequencies. The present GSI assay derives likelihoods

using only 9 of the original microsatellite and 2 of the original

SNPs (13). This is a major current limitation of the GSI assay,

the reduced number of reliable markers coupled with high

recombination rate of the honey bee genome (14) and

documented introgression event in RHB (13) has added a

greater degree of uncertainty. Continued loss of information

from marker alleles could eventually make the GSI assay

unreliable. In addition, there are also logistic limitations to

using the GSI assay. Principal among these is that the assay

itself is time consuming, labor-intensive, and low throughput

when compared to the projected output in a microfluidic system.

Genotyping via a microfluidic platform has been a recent

advance in marker-based analyses. Most DNA genotyping

approaches (original GSI included) are conducted at a

processing scale that is still defined by a human operator. At

such scale the genotyping is often made more efficient by scaling

up the quantity of reactions or parallelizing the steps in the

method. A microfluidic system further improves on this by

miniaturizing the chemistry using computer-chip inspired

arrays. This approach retains all of the features of a standard

DNA genotyping approach, while also allowing for a greater

number of chemical reactions at one time with significantly less

reagent waste (15).

In this study we outline the development and application of

an expanded GSI assay. Using informative markers from the

original GSI panel and novel markers obtained from recent

whole-genome pooled sequencing of many of the honey bee

populations in the U.S. (16) we are able to increase the degree of

resolution with which we examine this important breeding

population. Furthermore, by capitalizing on novel microfluidic

technologies and machine learning analytical approaches to

group identification, our approach can quickly and accurately

provide high throughput results to arrive at reliable stock

identification decisions.
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Methods

Data sets

Using two pre-existing data sets (9, 16) we selected a panel of

biallelic SNP markers that can reliably segregate the RHB

population from the baseline genetic diversity across the US.

In (9) researchers identified 16 markers capable of segregating

the RHB population from a diverse pool of samples gathered

from commercial and research populations across the US. More

recently this set has been reduced to 11 markers (13) and we

used these as our focal reference. Similarly, (16) examined

pooled whole genome sequencing of commercial and research

honey bee populations which included many of those

populations previously used for the GSI development (9).

Differences in our reference datasets necessitated study-

specific strategies for identifying and extracting likely

candidate SNPs. As a genome-wide survey of genetic diversity,

the study by Saelao and colleagues afforded a greater resolution

as well as a larger number of markers to be considered in our

study. We used the freely available sequencing data in (16)

(BioProject # PRJNA605407) but followed an alternative method

for variant calling. Specifically, our approach followed GATK

best practices (17) and used a joint variant calling step in lieu of

the population-specific variant calling used by Saelao and

colleagues. This modification was necessary as the population

analysis in (16) conservatively focused on the common variation

across populations, while an identification assay would most

benefit from population-specific variation. Variant calling

arrived at a joint set of 3,640,438 biallelic SNPs across the

honey bee genome. For each of these ~3.6 M markers we

extracted the allele frequency matrix derived from SNP by

sample read counts and calculated a pooled sample fixation

index (FST) for each marker. In our approach FST was estimated

in a one-to-many comparison between the RHB population and

all others in the data set. In this way we identified markers with

divergent allele frequencies unique to the RHB population. All

FST calculations were conducted using the poolfstat R package

(18, 19). The final subset of SNPs with outlier FST values derived

from (16) totaled 177 putative SNPs.

To extract discriminant biallelic markers from the data set in

(9) we applied a linkage-based identification approach. Of the

current set of eleven markers (9), nine are microsatellites which

correspond to structural variants, specifically short sequence

repeats (SSRs), that do not directly translate to a SNP-based

assay directly. However, by identifying adjacent SNPs in direct

linkage with microsatellite features, we can retain the reliability

of such markers. To achieve adjacent SNP identification, we used

blastn (20) to localize the original primer sequences to the new

the honey bee genome assembly (21). The localized paired

primer sets allowed us to estimate the amplicon spans across

the new reference genome, and we overlapped these with known
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regions of low recombination (haplotype blocks) across the

honey bee genome (22). A total of 13 haplotype blocks were

identified to contain at least one of the eleven amplicons with

some amplicons crossing haplotype block boundaries. We then

overlapped the target haplotype blocks with the SNPs from (16)

due to the greater resolution in that study. This approach

identified 204 putative SNPs in the 13 haplotype block regions.

The initial combined marker panel totaled 381 SNPS, 204

from (9) and 177 from (16). We further reduced the number of

markers to those that were most contributive to separating RHB

from the other populations. To achieve this, we used the minor

allele frequency matrix for the combined set of 381 SNPs in a

Principal Component Analysis (PCA). Using the absolute value

of the loadings for the first two principal components which

account for 26% of the variance in the analysis, a subset of

markers with the highest contribution (>= 70% among all

markers) in separation was selected. This set of outliers

constituted the final testing panel of 164 markers.
Sample processing

Performance of our test panel was validated with archived,

frozen DNA of 223 samples that included the RHB and other

commercial and research honey bee populations used as baseline

in (9). In addition, we processed 154 novel samples collected

from the 2019 RHB population as part of a yearly genotyping

assay conducted by the Honey Bee Breeding, Physiology, and

Genetics Research Laboratory (HBBPGRL) and 72 samples

collected from three Italian honey bee (IHB) commercial and

research populations for a total sample size of 449. These 2019

RHB samples (n = 154) and known IHB samples (n = 72) were

considered together to examine the diversity of current

populations in relation to the (9) baseline sample sets.

The method for DNA extraction for novel samples followed

those described in (9) to assure comparable processing. Briefly,

samples were first homogenized in lysis buffer (100 mM Tris pH

8.0, 10 mM EDTA pH 8.0, 1% SDS) and 100 mg 5-mm stainless

steel beads for 3 min at a rate of 30 beats per second in a

TissueLyzer II (Qiagen, Inc., Frederick, MD) and then treated

with Proteinase K (20 mg/ml) at 70°C for 10 min. Protein

precipitation was then completed, followed by ethanol

precipitation and lyophilization. Pure genomic DNA was

rehydrated in Millipore filtered and deionized dH2O and

stored at −20°C until further processing.
Assay deployment

A Fluidigm 96.96 Dynamic Array™ IFC (FluidigmCorp, South

San Francisco, CA, USA) genotyping assay was developed for all
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164 target SNPs using genomic coordinates and the honey bee

reference genome (21). Resulting assay chemistry, microfluidic chip,

and DNA extracts were provided directly to the Functional

Genomics Unit of the Roy J. Carver Biotechnology Center of the

University of Illinois at Urbana-Champaign where processing was

conducted according to the manufacturer’s protocol using the

Fluidigm Biomark System. Briefly, a pre-amplification step was

conducted on each DNA sample using a pool of the Specific Target

Amplification (STA) primers and Locus-Specific Primer (LSP). This

step yields a pool of amplicons that includes each of the 164 SNPs

for each of the 449 samples processed. Pools where then processed

on the Fluidigm 96.96 Dynamic Array™ IFC microfluidic chip in

the Biomark System using the LSP and Allele-Specific Primers

(ASP), which are pairs of primer sets labeled with

different fluorophores.

Genotypes were called using the Fluidigm SNP Genotyping

Analysis Software (version 4.5.1). We initially applied manual

validation of the automatically generated fluorescence scatter

plots. Using these as a guide we removed from the assay any SNP

that had a poor call rate (<= 80%) or whose no template control

(NTC) fluoresced in overlap with any of the genotype clusters.

Lastly, any NTC with significant fluorescence (> 0.2) was

removed regardless of overlap. Once these considerations were

applied, we further filtered the resulting genotype calls by sample

and degree of information. Specifically, we removed those

samples with significant degrees of missingness (> 20%) and

also those SNPs where genotypes were present, but were

uninformative due to homogeneous calls, i.e. all one genotype

across the entire sample set. We also used the relationship

between SNP genotypes to filter out those markers with near

zero variance and to prune sets of highly correlated markers to

single representatives. This conservative filtering approach

resulted in a final data set of 81 SNP markers and 394 samples.
Feature extraction

A machine learning approach was used in the analysis of our

final SNP panel set. The approach capitalized on having the

known membership for the original mapping population which

together with the genotypes of the new markers were applied to

build a predictive model using a panel of classification algorithms.

After filtering, our total sample size of n = 394 included n = 191

samples from the the original mapping population (9). We used

these to arrive at a predictive model by 1) isolating 20% of the

samples (n RHB = 20, n other = 18) as our test set and 2) using the

remaining 80% (n RHB = 80, n other = 73) as our training set

(Figure 1A). Initial performance of 7 classification algorithms

including 4 random forest (23), 1 naïve bayes (24), 1 XGBoost (25)

and the k-nearest neighbor was examined to identify the one with

the highest predictive power for our data set.
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Model selection, tuning, and training

Data was pre-processed prior to tuning by mean-imputing

missing values. In this way our genotype matrix retained dosage

values that would lie within the standard 0, 1, 2 scale. Model

selection and tuning was conducted concomitantly. Using the

training set, we examined performance of all 7 classification

algorithms each with an algorithm-specific set of parameters.

Leave one out cross validation was implemented to assess the

optimal model resulting from each algorithm and parameters

set. These resulting models, one from each algorithm, were then

compared to arrive at a final discriminant model. Of all

algorithms and parameter combinations examined, the model

derived from the ranger algorithm (26) provided the highest

predictive accuracy. The ranger algorithm in particular was

tested using a grid of specific parameters as follows: mtry = c

(2:10), splitrule = c(“gini”, “extratrees”), min.node.size = c(2:10),

wheremtry the number variables to split at each node, splitrule is

the splitting rule at each node, and min.node.size is the minimal

node size. Combined, this parameter grid totaled 162 possible

combinations considered within this algorithm from which we

established the specific parameter combination resulting in our

final classification model. Model tuning and training tests used

the F-score as principal estimator of the balance between model

precision and model recall, but other estimates (e.g. Accuracy,

Specificity, Kappa) were also taken into consideration in our

final selection. In all tests predictive power was derived using the

testing set containing the 20% of the baseline population samples

unused in the training. All analyses for model testing and tuning
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were conducted using the caret package in R (27). Estimates of

memberships for the testing set was derived using the predict()

function in R and these were compared using the

confusionMatrix() function in the caret package.
Performance contrast and
genotype identification

Performance of our approach was contrasted with the

original GSI assay by using the baseline testing set. We

conducted two independent population membership

predictions. One approach used our model to predict

membership on the testing set (n = 38). For another approach

we used the method in Burgeois et al., 2010 but excluded our

testing set and then used that model to predict membership for

those 38 samples. In this way, the testing set represents samples

with known population membership, membership predicted by

our model, and also membership predicted by the classification

approach in (9). In this way we compared performance by

contrasting each model’s prediction to the known membership

to arrive at model-specific accuracy estimates. We also

statistically examined how different these predictions were

from the know differences through a chi-square test

of independence.

We also used an additional novel sample set (n = 203 post

filtering) containing recently collected representatives from the

RHB and other commercial honey bee populations to examine

how allelic preferences may have shifted from sampling in (9) and
A B

FIGURE 1

Principal Component Analysis of Sample Sets. Figures (A, B) both illustrate the PCA values derived from the genotype matrix of all the samples.
Each point corresponds to an individual honey bee worker with distances generally corresponding to degree of genetic similarity in allele
structure between individuals across all markers in our assay. For (A) the baseline population is shown, with color denoting known population
membership of RHB (magenta), and a panel set of commercial and research honey bee population (green). The symbols for each point denote
whether a specific sample was used as part of the training set (open circle) or part of the independent testing set (x symbol). For both figures,
color-filled ellipses encircling 95% of samples are provided to clarify genotypic boundaries between populations. For (B) the novel set of
samples are illustrated, like (A), point color corresponds to population source, but in this set for the 2019 samples. The dashed ellipse in (B) is
the outline of those illustrated in (A) and are provided as reference to illustrate the shift in genetic diversity for the 2019 samples.
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now (Figure 1B). Specifically, the markers in our panel represent

genomic regions with the greatest genetic divergence between the

RHB and other honey bee populations. Any changes in allelic

profile of these markers would then suggest possible population-

wide events such as introgression. Furthermore, this set of samples

has population membership that is known by collection source, but

not by genetic identity, providing a unique opportunity to examine

divergences of the predictive membership to the collection source.

For specific analysis of shifts in genetic divergence we used a

contrast of population- and SNP-based FST values in the baseline

set against those of the novel sample set (Figure 2). Estimates for FST
(28) were derived using the snpgdsFst() function part of the

SNPRelate package in R (29).
Results

Model selection, tuning, and training

Analysis of our seven model panel using leave one out cross

validation showed the ranger (26) algorithm was the optimal

option (best tuned model cross validated F score = 0.9938,

Accuracy = 0.9935, and Kappa = 0.9869). Model tuning

determined optimal parameters were: mtry = 1, splitrule =

extratrees, and min.node.size = 3. We examined model

performance by predicting population membership of the

testing set (n = 38) which had not been used for model

training and contrasted predictions with their known

population membership. For this subset of data our model had

an Accuracy and F score of 1.0, accurately predicting the

membership for the entire set.
Performance contrast and
genotype identification

Contrast in the performance of the original GSI assay and

the expanded GSI show that both arrive at predicted

membership values that do not significantly differ from known

membership in the testing set (original GSI X2 = 3.744, df = 1, p-

value = 0.053; expanded GSI X2 = 34.095, df = 1, p-value = 5.25

E-9). Comparison of performance metrics do show distinct

differences between approaches. The expanded GSI correctly

predicted values to a high degree (both Accuracy and F score at

1.0). Predictive performance of the original GSI had lower

Accuracy (0.6842) and F score (0.7000) values, misclassifying

both RHB samples (n = 6) and IHB samples (n = 6).

Model performance was also examined in the 2019 novel

sample set (n = 203) containing representatives from the current

RHB population (n = 141) as well as from other commercial

honey bee populations (n = 62). These samples represent a set

with known collection source, but unknown genetic identity. We

contrasted membership as defined by collection source against
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the membership predicted by our model to arrive at model

performance estimates. Model parameters showed a lower

Accuracy (0.7143) and F score (0.7642). Further analysis also

showed the greatest difference in model performance was

between Sensitivity (true positive rate) value (0.8952) and

Specificity (true negative rate) value (0.5204). Largely, the

difference between these metrics stemmed from the model

misclassifying a larger proportion of RHB samples (0.67)

compared to the IHB samples (0.18). The distribution of

classification probabilities (Figure 3) provided a greater

resolution to the differences between the collection sources,

showing a pattern concordant with the shift in genetic

variation previously observed in the PCA between the 2010

and 2019 samples (Figure 1B). These population-specific

patterns are likely not an artifact, but may reflect actual

changes in genetic diversity in the RHB population from 2010

to 2019 and agree with previous studies on introgression events

in this population (13).

To test whether the lower true positive rate in RHB reflected

shifts in the allelic profile of the population, we examined genetic

divergence between samples across our target markers

(Figure 2). For the FST estimation we contrasted RHB and IHB

samples using the population source as our membership

classifier. Estimates for the baseline set were derived using all

the samples, both test (n = 38) and training (n = 153), in this way

the combined set serves as a reference of the genetic variation

across both RHB and IHB populations in 2010 (Figure 2A).

Similarly, all samples were used in the novel set (Figure 2B). Both

population (average FST across the markers) and SNP-specific

FST values were derived and examined. Results show that the

population-level estimates were comparable for baseline (FST =

0.1154) and novel set (FST = 0.1109). The pattern was more

distinct in the SNP-specific FST values across the sample sets.

Overall, there was a broad reduction in FST values of the novel

set (Figure 2B) with baseline set having a median FST value of

0.096, and the novel set median at 0.043. The similarity in

population FST estimates is explained in that divergence has

actually increased in a small set of markers in our panel

(Figure 2). These results frame that genetic diversity has

changed unevenly across the markers that constitute our panel

assay with most markers in having a lower degree of allelic

divergence in the novel set while a smaller portion of the

markers have become more divergent (Figure 2).
Discussion

Here we present an expanded GSI assay to facilitate

discerning population membership in the RHB breeding

population. Our approach improves the resolution of the

original GSI assay (9) by increasing the number of segregating

markers considered nearly 10 fold. The final model using the

ranger algorithm (26) also shows a significant gain in predictive
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accuracy with values of 1.0 using our approach in contrast

to the original GSI accuracy values of 0.67 on the same testing

set of samples. Overall, the discriminant value of this assay is

robust and when applied to samples within a colony can

reliably identify those most similar to the referenced 2010

RHB population.

Performance in our independent testing set was high, and

likely driven by the degree of genetic differentiation between

samples from the 2010 population (Figures 1A, 3) which has
Frontiers in Insect Science 06
been reduced in the 2019 populations (Figures 1B, 3). This

distinction was initially observed in the PCA of genotype

distribution within our markers set (Figure 1), where the

2019 RHB population seems to have moved closer to the

allelic profile of the IHB samples (Figures 1B, 3). This shift,

within the framing of this subset of markers, coincides with

and independently confirms the introgression event previously

reported (13). Marker-specific analysis concurred with our

PCA results (Figure 2). Indeed, when we look at estimates of
A

B

FIGURE 2

Analysis of FST estimates. The figure set illustrates the FST estimates for each of: (A) baseline sample set, and (B) novel sample set using
population source to identify samples in both sets. Each point in the figure represents the FST estimate for one of our final 81 SNP markers
within the respective RHB v. IHB population contrast. The blue rectangles encapsulate the interquartile range of FST values. The median FST
value for each population is indicated by the dark blue line and exact value is given in the axis also in blue. The yellow lines highlight some of
the markers in our panel that have become more divergent in the 2019 population.
FIGURE 3

Distribution of probabilities of RHB membership classification. The figure is a simplified boxplot of the distribution of probabilities that a sample
would be classified as part of RHB (x-axis) as estimated by our approach. The y-axis highlights our data groups with two reference sample sets
(2010 RHB and IHB) are provided which constitute the predicted probability values for the testing set (n = 38) and two additional sets (2019 RHB
and IHB) which represent our novel samples from the 2019 populations. A solid line denotes the threshold value (0.5) above which a sample would
be classified in as part of one group or another. For all plots the segments span from the minima to the maxima probability value in each data set
while the gap highlights the interquartile range. The colored points identify the mean and the open circle the median in each of the groups.
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divergence (FST) for each marker in both data sets, we see a

consistent lower median FST across the markers in the novel

2019 set (Figure 2).

The genetic shift described is directly connected to the

differences in predictive performance where a large

proportion (0.67) of samples collected from the 2019 RHB

population are classified as IHB by our model. This is not an

artifact, but rather the distribution of classification

probabilities provided by our model reflect that indeed

there is a greater range of 2019 RHB in the present

population with lower than 0.5 likelihood membership in

the RHB cluster (Figure 2). However, though there has been a

shift in genetic variation, there remains a proportion of the

RHB population that still resembles the 2010 population. If

restoring the population’s genetic identity is a desired goal by

RHB breeders, the higher resolution and throughput afforded

by our expanded GSI over the original GSI could further

facilitate the effort.

The method outlined provides a high throughput

approach to the accurate discrimination of the RHB

population from the broader genetic diversity in commercial

honey bees in the U.S. Future work will aim to further improve

the assay by expanding the reference sample set to include

honey bee populations beyond those in commercial use,

towards a more robust identification of the RHB breeding

population. Ultimately, we expect this tool to be imminently

useful to RHB breeders in their efforts. The approach as

outlined also has practical potential beyond similar

applications in other distinct honey bee populations. Indeed,

this method can be directly applied to trait-based selection by

a simple exchange of the markers used in the panel once target

markers with robust genetic correlations to traits of interest

are discovered.
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