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Herbivory by Atta vollenweideri:
Reviewing the significance
of grass-cutting ants as a
pest of livestock

Julian Sabattini 1 and Martin Bollazzi2*

1Consejo Nacional de Investigaciones Cientı́ficas y Técnicas, Cátedra de Ecologı́a de los Sistemas
Agropecuarios, Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Rı́os, Oro
Verde, Argentina, 2Entomologı́a, Facultad de Agronomı́a, Universidad de la República,
Montevideo, Uruguay
The grass-cutting ant Atta vollenweideri is well suited for studies examining the

negative effect leaf-cutting ants have on livestock production in South American

grasslands because they forage on the same plants as cattle. This study

investigated the impact of A. vollenweideri on livestock production in

Argentinean rangelands. First, we assessed A. vollenweideri herbivory rates and

its economic injury level (EIL). Second, using satellite imagery in a region covering

15,000 ha, we estimated the percentage of this area that surpassed the

calculated EIL. Results showed that A. vollenweideri consumed approximately

276 kg of dry plant weight/ha/year, foraging mostly on grasses (70%).

Additionally, ants cut 25% of herbs and 5% of trees. In summer and autumn,

ants consumed more grasses, while in winter and spring, herbs and trees were

also significantly cut. Ants consumed 7% of the forage demand needed to raise a

calf according to the management regime applied by farmers. Our calculated EIL

(5.85 nests/ha) falls in the range of previous studies. Colonies were absent in

93.6% of the surveyed area, while their density was below the EIL in 6.2% of the

area. A. vollenweideri populations surpassed the EIL in only 0.2% of the area,

which corresponds to 2.6% of the locations holding colonies. These results

question the perception that Atta leaf-cutting ants are a pest of livestock

production. Although ants consume a small percentage of cattle’s forage

demand, evidence that ants and cattle are competing in the few cases in

which density surpasses the EIL is arguable. First, grass-cutting ants are

capable of consuming herbs and trees in addition to the grasses on which

cattle mostly feed. Second, there is no evidence indicating that both are cutting

the same plant portions when preferences overlap. Third, evidence suggests that

ants are not displaced under high-pressure grazing regimes by cattle. In the

countries where A. vollenweideri is present, decision makers have promulgated

several acts making its control mandatory. It is time to revisit the pest status of A.

vollenweideri and include the use of EIL as a control criterion.
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1 Introduction

Leaf-cutting ants belonging to the genera Atta and

Acromyrmex are primary pests and have been considered as the

insects that cause the most damage to agriculture throughout the

Neotropics (1). During foraging, leaf-cutting ant workers cut and

transport plant fragments, which are then used to cultivate a

symbiotic fungus inside the so-called fungus chambers (2). This

fungus serves as the sole food source for the colony (3). Atta

vollenweideri (Hymenoptera: Formicidae) is well suited for studies

examining the negative effect leaf-cutter ants may have on

extensive livestock practices in South American grasslands. They

belong to the group classified as grass-cutters together with Atta

capiguara and Atta bisphaerica (4, 5). Grass-cutting ants have

traditionally been seen as the main cattle competitor because they

forage on the functional group on which cattle mostly feed (6). A.

vollenweideri does not show homogenous distribution on a local

scale because it tends to nest on heavy clay soils used for livestock

production due to its low productivity for cropping (7–9). Table 1

summarizes a comprehensive list of studies reporting plant

consumption over the last decades. To date, three publications

have analyzed consumption by A. vollenweideri and its possible

impacts on livestock. While the study carried out by Robinson and

Fowler (13) reported a consumption of 868 and 924 kg of dry

weight/ha/year, Jonkman (12) estimated a consumption of only

38 kg of dry weight/ha/year. Based on those results, Robinson and

Fowler (13) concluded that A. vollenweideri consumed twice the

yearly requirement of cows. However, Jonkman (12) estimated it

was below 5%. Both studies, nevertheless, suffer from having

estimated the consumption based on only one A. vollenweideri

nest. Additionally, they did not cite the aerial net primary

productivity (ANPP) of the habitat, which determines the
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amount of net available forage source for which ants and cows

should compete. The most comprehensive study was conducted

by Guillade and Folgarait, who also measured ANPP and the

portion consumed by cattle (14). They reported a minimum of 224

and a maximum of 1,867 kg of dry weight/ha/year, averaging 1,216

kg of dry weight/ha/year consumed by Atta vollenweideri. The

authors concluded that competition between ants and cattle

occurred only during the low-productivity periods of the year.

The economic injury level for the study location was estimated at

0.29 nest/ha.

In addition to estimating consumption by ants and the pasture

demands of cattle, a comprehensive estimation of competition

between leaf-cutting ants and cattle should also include an

estimation of nest density at a landscape scale, and not only the

density of the study site where measurements have been performed.

Leaf-cutting ant distribution is not homogeneous and tends to be

aggregated at both local and landscape scales (7, 23, 24). When

actual density at landscape scales is not determined, and the impact

of leaf-cutting ants on cattle is extrapolated from the highly infested

areas where consumption was measured, the negative effect of ants

on livestock can be overestimated. An extrapolation to landscape

level should also be carried out to properly discuss the impact of

leaf-cutting ants.

Thus, this study aimed to study the potential impact of A.

vollenweideri as a pest at both local and landscape scales. Locally, we

assessed functional groups foraged by A. vollenweideri (grasses,

shrubs, and trees) to estimate the potential impact of ants by

considering the extent to which ant preferences might overlap

with the known grass preference of cattle. We also calculated the

impact of such overlapped consumption by considering the

standard cattle management regime for the region. Second,

working at a regional scale in midwestern Argentina, we
TABLE 1 Average intake by colonies of Atta species obtained from the literature, as well as the method applied and the number of colonies assessed.

Species Location Reference Colonies Method Intake (kg/ha/year)

Atta capiguara Brazil Amante 1972 (10) ? Foraging activity 1,015

Atta capiguara Brazil Forti 1985 (11) ? Foraging activity 165

Atta vollenweideri Paraguay Jonkman 1980 (12) 1 Conversion 36

Atta vollenweideri Paraguay Robinson and Fowler 1982 (13) 1 Foraging activity 868

Atta vollenweideri Paraguay Robinson and Fowler 1982 (13) 1 Exclusion 924

Atta vollenweideri Argentina Guillade and Folgarait 2015 (14) 3 Exclusion 1,216

Atta cephalotes Costa Rica Blanton and Ewel 1985 (15) 4 Foraging activity 653

Atta colombica Costa Rica Lugo et al., 1973 (16) 1 Foraging activity 312

Atta colombica Panama Herz et al., 2007 (17) 50 Foraging activity 132.4

Atta colombica Panama Haines 1978 (18) 9 Conversion 98

Atta colombica Panama Wirth et al., 1997 (19) 2 Foraging activity 517

Atta opaciceps Brazil Siqueira et al., 2018 (20) 8 Foraging activity 597

Atta opaciceps Brazil Costa et al., 2008 (21) 8 Foraging activity 824
Only studies that provided detailed information on methods were taken into account, resulting in data for two grass-cutter ants (A. vollenweideri and A. capiguara) and three leaf-cutter ants (A.
colombica, A. cephalotes, and A. opaciceps). The revision of data from Amante 1972 (10) conducted by Fowler, Forti, and Romagnano (22) are given instead of the values provided by the author
(ca. 6,259 dry weight in kg/ha/year). The data provided by Robinson and Fowler (13) for Atta capiguara were not included because the authors considered them as inconclusive. A full description
and discussion of methods can be found in Fowler et al. (22) and Guillade and Folgarait (14).
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estimated nest density through satellite images. This was carried out

to assess the percentage of the area that surpass the critical density

at which A. vollenweideri may negatively affect production.
2 Methods

2.1 Plant consumption by colonies

At a local scale, methods were, first, aimed at assessing seasonal

herbivory rates by the leaf-cutting ant A. vollenweideri using

foraging activity methods, while considering plant functional

groups. Second, we compared ant consumption with the reported

forage demands of cattle and the ANPP.

We selected two sites in the province of Entre Rios, Argentina,

with high-density Atta vollenweideri populations. “El Caraya”

(-30.633356, -58.847075) has a nest density of 1.27 nest/ha, while

“Santa Clara” (-31.549827, -59.677187) has a nest density of 1.63

nest/ha. Livestock have been historically bred at both sites and there

were no records of agriculture or pasture improvement. Both sites

possess the representative soil type Vertic Epiaqualfs (8) and were
Frontiers in Insect Science 03
located approximately 130 km from each other. In each site, five

mature nests located far from any perturbation (i.e., roads and

houses) were selected (Figure 1). Those nests had an average

diameter of 7.8 m (± sd 1.1, n=10), a height of 0.45 m (± sd 0.16,

n=10), and 21 active foraging trails on average (± sd 9.8, n=10), each

at least 50 m long.

For each nest, three foraging trails were selected for assessing

plant consumption by collecting each worker and the transported

load in a 5 min period every 2 h over a 24-h period (Figure 1).

Assessments were undertaken simultaneously in the three trails by

three people. In site I, measurements were taken during May, July,

August, and October 2016, and January and March 2017. In Site II,

measurements were carried out in August, September, November,

and December 2016, and January, March, April, June, and October

2017. Total daily foraging intake by the colony was assessed by

multiplying the intake of one of the three measured trails over 24 h

with the number of active foraging trails at the day of the

measurement. This procedure was carried out for each of the

three measured trails, obtaining three values of colony intake in

each visit, following methods published previously (22, 25–27).

Those colony intake values were averaged for the season. In total,
FIGURE 1

Top left: picture of an Atta vollenweideri nest taken by a drone at the El Caraya study site. Foraging trails can be clearly seen departing radially from
the nest mound. Top right: picture showing the loads carried by A. vollenweideri workers entering the nest. Most loads belong to grass fragments
but some of them are pieces cut from herbs and trees. See also ESM 1 for a video showing typical foraging activity in a trail. Bottom: diagram
showing the methods for estimating plant consumption. At the day of measurement, foraging trails can be active (represented by continuous lines)
or inactive (represented by dashed lines). Among the actives, three equidistant trails were selected (thick trails). In these trails, three collecting points
were marked (grey quadrants). Three people working simultaneously collected all workers and their loads in a 5 min period every 2 h over 24 h.
Loads were later classified into grasses, herbs, and trees for obtaining daily and seasonal intakes. See Methods for further details.
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measurements were taken at two sites, with three trails measured for

each of the five colonies per site, with a total of 30 estimations of

colony seasonal intake obtained.

All collected fragments were classified into three functional

groups—grasses, herbs, or trees—and later weighted to obtain mass

consumption. For this, the collected loads were taken to the

laboratory of the Department of Ecology at the Faculty of

Agronomy, Universidad Nacional de Entre Rios, Paraná,

Argentina. Once in the lab, the collected material was assigned to

one of the three functional groups and dried in an oven for 48 h at

60°C, after which it was weighed at a resolution of 0.1 mg. The

values of seasonal consumption, as explained above, were divided

into functional groups and multiplied by the number of days of each

season and nest density of the site to obtain the consumption by

colonies in a hectare per season or year.

Average consumption by A. vollenweideri colonies was

compared using a two-way repeated measures ANOVA with

season and functional group of consumed plants as factors. To

correct for the heterogeneity of variances of the data, given that

the assumption of sphericity could not be met, we applied a

Greenhouse–Geisser correction factor for the degrees of freedom

and reported a corrected Fc. Post hoc comparisons were performed

using Bonferroni correction. To assess differences among functional

groups inside each season, we conducted a one-way ANOVA.
2.2 EIL calculation

To assess the degree to which A. vollenweideri negatively affects

cattle raising, we considered the animal unit equivalent (28, 29) for

a cow (CUE), which is the yearly forage demand of one mature cow

of approximately 400 kg, raising a calf up to 6 months with a daily

dry-matter forage allocation of 2.5% of its weight (28, 29). The

commercial goal was to sell a 160-kg calf by month six. The negative

impact of ants was considered against the way ants affect the

carrying capacity of the site to sustain a CUE. Carrying capacity

(K) was calculated considering the typical ANPP for the areas with

A. vollenweideri nests, multiplied by the harvesting index depending

on the ANPP (30), and divided by the forage demand determined

by the CUE. The K to sustain a CUE is reduced by the presence of

ant nests, which compete for forage, with a concomitant reduction

in weight loss of the calf. Losses due to ant presence were used to

calculate the economic injury level (EIL) according to Pedigo et al.

(1986), where EIL=C/VDK. The cost of control (C) of a single nest

included the time needed to reach the area, locate the nests, and

apply the baits, and the cost of baits ($41 USD/ha considering 1

nest/ha). The market value (V) was set depending on the local sale

price of a calf (USD/kg) (31). The loss in final product weight (D)

caused by a nest (kg/nest) was defined in this study (see Results).

Finally, K represents the percentage of control efficiency, reported

as approximately 0.9 for A. vollenweideri (32), under the

assumption of bait acceptance, which did not occur in several

cases (5). Therefore, the EIL is the number of colonies for which

the costs of controlling equal the benefits of control, i.e., nest

densities above this EIL justify the undertaking of control measures.
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2.3 Landscape level density of nests

To determine the extent to which A. vollenweideri surpasses the

EIL level at the landscape scale, we estimated the density of nests/ha

in eight circular areas of 5 km in diameter in the province of Entre

Rios, Argentina (Figure 2). Inside these eight areas, each nest was

georeferenced using satellite images by superimposing a grid of 1 ha

(100 × 100 m) and counting the nests inside each quadrant. A.

vollenweideri nests can be observed in satellite imagery, not only

because the conspicuous dome nest can reach up to 10 m in

diameter, but also because they are surrounded by a halo of bare

white soil lacking any vegetation, which makes it even easier to

localize (8). The areas were analyzed using ArcGIS Pro 2.9.0. Only

the quadrants falling entirely inside the areas were considered,

making a total of 15,624 ha, in which nest density was estimated.

Aerial localization of Atta nests has been used previously with both

aerial photography (33, 34) and satellite imagery (35); the first

studies of this kind were, in fact, carried out with A. vollenweideri in

Paraguay (7, 36).
3 Results

3.1 Plant consumption by colonies

Results show that, in an annual average, A. vollenweideri

consumed approximately 276 kg of dry weight/ha/year. Grasses

were the functional group most consumed by ants (ca. 70%). The

remaining 30% was represented by herbaceous leaves and trees

(25% and 5%, respectively) (Figure 3, stacked bars, overall

differences among colored categories, ESM 2).

Among seasons, there were significant differences in total plant

consumption by ants. Winter consumption, with approximately

30% of the annual average, was not different from summer

consumption, but higher than that of spring and autumn.

Summer did not differ from the other seasons (Figure 3, stacked

bars, overall differences among seasons) (two-way ANOVA

repeated measures with season as the factor after a Bonferroni

post-hoc test, F2.16 = 8.76, p<0.0001).

When considering functional groups consumed by ants, results

show that season influences the plants selected by A. vollenweideri

workers (two-way ANOVA repeated measures with functional

group as the factor, F4.31 = 11.69, p<0.0001). There were

significant differences among functional groups selected by

workers throughout each season (Figure 3, stacked bars,

differences inside seasons). In summer and autumn, workers

consumed more grasses than herbs and trees (Summer F=58.82,

p<0.0001; Autumn F=49.20, p<0.0001, Bonferroni post-hoc test). In

winter, the season of higher consumption, there were differences

among the three groups (F=36.16, p<0.0001, Bonferroni post-hoc

test), with grasses being the preferred type, followed by herbs and

trees to a lesser extent. In spring, there were no differences in the

consumption of grasses, herbs, and trees (F=1.86, p=0.1652).

When comparing annual and consumption with the ANPP for

the region where A. vollenweideri is distributed (3,846 kg of dry
frontiersin.org
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weight/ha/year) (37–42) (Figure 3), ant consumption accounts for

7.17% of total ANPP. Regarding a potential concurrence with cattle,

the forage demand of a CUE is approximately 3,853 kg of dry

weight/ha/year (Figure 3). The annual consumption by ants

represents approximately 7.17% of the total CUE demand in an

annual base. Although ant consumption increases during summer,

overall ant consumption during spring plus summer is just 3.5% of

the total cattle demand in both seasons. Even in winter, when ant

demand for grasses is higher, it represents only 6% of cattle demand

for that season.
3.2 EIL calculation

Cattle are never capable of consuming all the available forage.

This, known as harvest efficiency, affects the K of the site for livestock

production and, therefore, the economic injury level of ant colonies.

When A. vollenweideri was absent (0 nest/ha), the K for livestock in

the sites was approximately 0.45 CUE, given a harvesting efficiency of

0.454 (30), a cattle demand of 3,853 (dry weight kg/ha/year) for the

CUE, and an ANPP of 3,846 (dry weight kg/ha/year). This means that

the study sites can hold a CUE every 2.3 ha to achieve the goal of

selling a 160-kg calf each year, without supplementary feed practices.

From there, each A. vollenweideri nest reduces the carrying capacity

of the site, as each colony consumes 185 dry weight kg/ha/year of
Frontiers in Insect Science 05
grasses. On average, each nest produces a loss of 3.49 kg per calf.

Thus, with a nest density of 2 nests/ha, the K decreases to 0.41 and

losses rise to 6.98 kg per calf; with 5 nests/ha, the K decreases to 0.34

and calf losses rise to 17.44 kg. When considering all the costs of

controlling a nest of A. vollenweideri (43), the EIL can be established

at 5.85 nests/ha, i.e., when the benefit of controlling a population ofA.

vollenweideri surpasses its cost at densities of 6 nests/ha or above

(Figure 4). As a standardization to allow comparisons, bibliographic

data allowed us to estimate an EIL based on the consumption

reported for Atta species (Table 1) by assuming the same cattle

demand, harvest efficiency, and costs of control as in our study, which

showed that our EIL of 5.85 falls in the range of the estimations made

for several Atta species across six countries in the Neotropical

region (Figure 4).
3.3 Landscape level density of nests

Satellite imagery censuses showed that the density at which A.

vollenweideri starts producing economic damage (above 5.85 nests/

ha) is rarely reached (Figure 4). Most plots showed no presence of

nests (14,635 of 15,624 plots) (ESM 2). Among the remaining 989

plots showing evidence of nests, 964 had a density below 6 nests/ha,

and only 25 equaled or surpassed this critical density. This

represents 2.52% of the area holding A. vollenweideri populations.
FIGURE 2

Map in the center: the numbers show the location of the eight circular areas in the province of Entre Rios, Argentina, where the nest censuses were
performed. The letters show the two sites where foraging intake measurements were conducted (A, El Caraya; B, Santa Clara). Numbered pictures
around the map: satellite images showing the locations of the nests in the eight areas where censuses were conducted. Upper right: detail of a field
showing the position of eight nests highlighted inside red circles. Bottom right: detail of an 800 × 600 m area showing the 100 × 100 grid used for
counting nest density and the marked nests inside the grid.
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Moreover, the distribution of this percentage is not homogenous

among sites because this EIL of 6 nests/ha was surpassed only in two

of the eight surveyed sites (Figure 2, areas 5 and 6).
4 Discussion

Although grass-cutting ants have been traditionally seen as a

pest of livestock production, our results show that the economic

impacts of Atta grass-cutting ants are less important than what is

commonly assumed. Although Atta is repeatedly cited as a grass-

cutter (36, 44), our work shows that A. vollenweideri also cuts

dicotyledonous leaves from shrubs and trees. In addition, results

show that ant preferences for a specific functional group change

throughout the year, with grass consumption greater in autumn but

less representative in spring. These changing preferences are

probably ruled by a high selectivity in response to fluctuations in

palatable resources and distance to the nest, as known for other Atta

species (45, 46). These plant preferences raise the question about

competition between ants and cattle because cattle mostly consume

grasses instead of shrubs and trees (28, 29). All studies to date

(Table 1) have not differentiated the functional groups consumed by

ants when comparing them with the actual dietary preferences of

cattle (10–21, 47). Those studies generally applied the foraging
Frontiers in Insect Science 06
method (9 of 13), and loads carried by ants belonging to all

functional groups were pooled. In our view, this overestimated

the negative impact of ants on cattle consumption. Therefore, any

calculation related to economic injury levels based on published

data obtained by the foraging intake method would be biased. In

our case, for instance, not classifying into functional groups as we

did would result in an overestimation of the percentage of non-grass

loads cut by A. vollenweideri by approximately 33%.

During this study, we decided to classify the loads into functional

groups to focus our analysis on the fraction in which the competition

was more likely to occur. By doing this, we intended to overcome the

extended misleading practices of previous studies that applied the

foraging method. Nevertheless, and although the exclusion method

for estimating ant consumption is less used than the foragingmethod,

we believe it also has some methodological issues worth mentioning.

The main difficulty of the exclusion method is that the area around

nests is not homogeneously cut. Colonies periodically change activity

among trails (4, 48, 49). In fact, the extent of the current foraging area

was less than 25% of the potential foraging area based on an

assessment of the extension of the trails (50). Additionally, cages

also excluded cow trampling (28, 51, 52) and forage by other small

herbivores that consume grasses (53–55). Altogether, our study and

those listed in Table 1 suffer from methodological issues that explain

the great variability of values reported for Atta consumption and the

impact they would have on livestock. However, from our point of

view, our work improves on previous studies by considering

functional groups using foraging methods over 24 h, increasing the

number of surveyed trails, colony number, and considering the

impact at a landscape level.
FIGURE 4

Top: average economic injury level (EIL) based on the studies
detailed in Table 1. Bottom: number of plots with Atta vollenweideri
as a function of its nest density as obtained in this study over an
area of more than 15,000 ha. The inset shows the number of 1-ha
plots without nests (white bar) vs. those with nests (black bar). The
grey dashed line shows the EIL value for A. vollenweideri obtained in
this study.
FIGURE 3

Top: estimated cattle demand as a function of season. The black
continuous line is the ANPP for the region where Atta vollenweideri
is present. See text for further explanations. Bottom: results
obtained for A. vollenweideri consumption classified into the three
functional groups (grasses, herbs, and tress) (colored stacked bars).
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In addition to the method for estimating ant consumption, other

factors to be taken into account are the consumption of ants and

cattle in relationship with the primary productivity of the habitat and

season. Farmers tend to maximize the management regime, i.e., the

number of cows per hectare, for the consumption of all the ANPP

under a high-pressure grazing regime (41). In this case, the

probability that the consumption by any other herbivore negatively

affects cattle intake is greater than when practicing a lower pressure

grazing regime. However, competition occurs only if both herbivores

forage on the same portion of the plants. It is known that cattle

mostly cut portions of plants located above 5–10 cm (28, 56). On the

contrary, there is no evidence that ants also focus on the biomass

above 5–10 cm or that they cannot cut below this height. There is also

no evidence to date indicating that forage consumed by ants could be

taken by larger herbivores when ants are not present in that area,

which seems to be an open question not only for ants but also for

other small-large herbivore interactions (57). In fact, leaf-cutting ant

colonies of both genera (Atta and Acromyrmex) are known to sustain

stable populations in modified habitats (58–62), such as those aimed

at livestock production, as commonly seen in other ant species (63).

By lowering the vegetation, large herbivores promote an increase in

soil temperature, which would be a limiting factor for the

establishment of leaf-cutting ant colonies (62, 64), at least in

southern South America (65). Intensive rangeland practices do not

seem to imply the displacement of leaf-cutting ants (62, 66).

The nest density recommended to control colonies (EIL) is far

beyond the density at which Atta colonies occur. Previous studies

conducted by Jonkman (7) using aerial photography to survey the

density of A. vollenweideri nests over an area of 80,000 km2 in

Paraguay showed that only 10% of the area contained living nests.

This is in line with our results, which show that a small portion of

the surveyed area had colonies. We recognize that calculating EIL

based on consumption data from the bibliography has a strong bias.

However, all species of Atta are expected to forage annual amounts

within a similar range. First, most species possess nests of different

shapes but similar sizes (67, 68), which results in similar colony

sizes and consumption (69, 70). Second, fungus gardens cultivated

by all species are highly conserved across species at a continental

scale (3, 71) and, therefore, are expected to decay foraged material

in a similar way. We believe this common EIL is an underestimation

because we consider toxic baits as the standard control measure,

following the established rationale for all leaf-cutting ants (72).

Nevertheless, it is known that grass-cutting ants of both genera,

Atta and Acromyrmex, do not always accept baits (5). Species not

accepting baits should be controlled with thermal fog, which is not

just more costly but also extremely harmful to the environment

compared with baits (5). Although we consider this common EIL to

be robust, we believe it is an underestimation. Our main goal was to

obtain an index that would allow us to carry out an overall

approximation for the genus, not species- or location-specific

comparisons. In summary, the EIL obtained during our work falls

in the range of the overall median for all studies summarized in

Table 1, which is 5.42 nests/ha (Figure 4). To date, average reported

nest densities for Atta species fall mostly below this average EIL, in

both natural and modified habitats (73–75).
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In recent decades, it was mostly assumed that Atta was a severe

pest of extensive livestock production. Given our work, it could be

said there is no conclusive evidence for Atta to be considered a

severe pest. In addition, we should consider the added negative

effect of controlling a species without numerical evidence

supporting such a decision. Several Atta species have been

confirmed as key engineer species (76). An irrational eradication

from areas aimed at extensive livestock production would preclude

extremely important ecosystem processes related to the presence of

Atta nests (9, 77, 78). Our data, similar to the previously published

works, suggest that Atta species, despite being conspicuous

herbivores in their habitats, should not always be considered a

pest of livestock production in rangelands. This differs from past

and current policies concerning grass-cutting ant control in the

countries where A. vollenweideri is widely distributed. For instance,

decades ago, Argentina, Paraguay, and Uruguay promoted and

made the control of A. vollenweideri mandatory through laws and

their subsequent regulatory acts (79–81), which are still in use. Now,

and based on the current evidence, new regulations are needed.

These should include the concept that a species is a pest in a specific

production system at a given population level, i.e., the critical

economic injury level, as discussed in this study, for livestock

production in rangelands. It is now time to apply the methods

already developed for estimating the population density of Atta

nests and using them as a decision criterion in rational pest

management practices (1, 34, 35).
5 Conclusion

Results show that A. vollenweideri consumed approximately

276 kg dry weight/ha/year of plants, the most foraged being grasses

(70%) but also cutting herbs (25%) and trees (5%). This

consumption represents 7% of the pasture demanded to raise a

calf according to the management regime applied by farmers. Our

calculated EIL was 5.85 nests/ha, which falls in the range of previous

works. Colonies were absent in 93.6% of a surveyed area of 15,000

ha, while their density was below the EIL in 6.2% of the area and

surpassed the EIL in only 0.2%.

These results question the perception that Atta leaf-cutting ants

are a pest of livestock production. Although ants consume a small

percentage of cattle’s demand, evidence that ants and cattle are

competing in the few cases that density surpasses the EIL is

arguable. In the countries where A. vollenweideri is present,

decision makers have promulgated several acts making its

control mandatory. It is time to revisit these regulations and the

pest status of A. vollenweideri by including the use of EIL as a

control criterion.
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