
Frontiers in Insect Science

OPEN ACCESS

EDITED BY
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Insights into the prey of Vespa
mandarinia (Hymenoptera:
Vespidae) in Washington state,
obtained from metabarcoding
of larval feces
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Sapphitah Dickerson1, Jessica Orr1, Todd M. Gilligan3

and Mark Wildung4

1Washington State Department of Agriculture, Olympia, WA, United States, 2Department of Agricultural
Biology, Colorado State University, Fort Collins, CO, United States, 3United States Department of
Agriculture, Fort Collins, CO, United States, 4Genomics Core Lab, Washington State University, Pullman,
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The northern giant hornet, Vespa mandarinia (Hymenoptera: Vespidae), was

detected for the first time in North America in 2019. Four nests have since been

located and removed in northwestern Washington State as part of an extensive

survey and eradication program. This recent introduction into North America has

prompted new research on the biology and ecology of V. mandarinia to help

inform management strategies. In its native range, V. mandarinia is known to prey

on a variety of insects including the economically important honey bee species

Apis cerana and Apis mellifera. Although A. cerana has developed defense

mechanisms against attack by V. mandarinia, A. mellifera have no such defenses

and an entire hive can be quickly destroyed by only a few hornets. In North America

the hornet has been observed foraging on paper wasps (Polistes dominula) and

honey bees, but little else is known about prey use in its novel range. To address

this knowledge gap, we employed a DNAmetabarcoding approach to characterize

species detected in larval feces collected from 3 of the 4Washington V. mandarinia

nests found to date. Sequences were recovered for 56 species across fourteen

orders, of which 36 species were likely prey items and 20 were suspected

inquilines. The most frequently detected species were other social

Hymenoptera, with Dolichovespula maculata, P. dominula, and A. mellifera

present in most samples. All of the species detected, except for A. mellifera,

represent new prey records for V. mandarinia, with eight families of insects newly

associated with giant hornets. These results suggest that V. mandarinia in

Washington preys on an assortment of insects similar to those documented in

its native range, and that this new invader has readily incorporated novel species

into its foraging and diet.

KEYWORDS

DNA metabarcoding, invasive species, environmental DNA, diet analysis, fecal pellet, Apis
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Introduction

Vespidae (Hymenoptera) comprises a family of mostly predaceous

wasps, including numerous social species. Several vespids in the

subfamilies Polistinae and Vespinae – all of which are highly

effective, eusocial predators - have been introduced into ecosystems

across the globe. Exotic species of paper wasps in the genus Polistes and

yellowjackets in the genus Vespula have spread across Australasia,

Polynesia, and North and South America (1). In most cases they have

been associated with negative impacts on human health, apiculture,

and the environment. Negative impacts stem from competition for

resources with native species, predation on endangered and

economically important species, reduction in native pollinator

populations, and the potential spread of parasites and pathogens (1–4).

More recently, two species of Vespa have become established in

new habitats where they have caused significant impacts. Multiple nests

of Vespa tropica were discovered on the island of Guam in 2016 (5).

This species has since spread across the island, resulting in measurable

damage to apiaries and increased sting incidents (see Rosario et al., this

volume). Vespa velutina, native to southeastern Asia, is thought to have

been introduced to South Korea in 2003 (6) and to France in 2004 (7–

9). In South Korea, the species is now found in much of the peninsula,

spreading at a rate of up to 20 km/year (3), and it has now been

recorded in parts of Japan (10). In Europe, V. velutina has expanded

from its initial introduction in France to ten other countries (11–13), in

some cases spreading at a rate of over 78 km/year (14, 15). In all

countries where it has been introduced, V. velutina has been associated

with increased calls to emergency services and increased loss of honey

bee colonies (3, 16). The annual costs of control are predicted to range

from 8–11 million Euros annually in Europe (17).

Vespa mandarinia (Hymenoptera: Vespidae) is one of the largest

hornet species in the world. It is a robust and efficient apex predator of

other social Hymenoptera, and coordinated mass attacks late in the

season can quickly destroy colonies of honey bees or social wasps [as

does the similarly sized and closely related V. soror; (18)]. Vespa

mandarinia was first detected in North America in 2019 (19), and as

of December 2022, five nests have been located and destroyed—one in

British Columbia, Canada, and four in WA State [(20); Looney et al.

in review].

Across its native range, V. mandarinia is a regular threat to

apiaries and a pest of concern to humans and livestock. The Asiatic

honey bee, Apis cerana, has evolved defense mechanisms in response

to V. mandarinia predation which include coordinated attacks on

foraging hornets and behaviors to obscure hornet marking

pheromones (21–24). The European honey bee, Apis mellifera, has

not coevolved with V. mandarinia and thus is poorly adapted to

defend against giant hornet predation. The detections of V.

mandarinia in North America are concerning due to its potential

impact on managed bees and its predicted ability to establish. Several

modelling studies indicate the hornet could spread across large swaths

of North America if eradication efforts are not successful (25–28).

In Japan, V. mandarinia is known to prey mainly on other social

Hymenoptera and opportunistically on a range of other insect taxa, and

their diet even extends to scavenging on carrion or other non-insect

protein sources. Prey items are collected by the foraging hornets and

shaped into “food pellets,” often comprising the thorax of an insect after

appendages have been removed. These food pellets are then brought
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back to the nest and fed to larvae being reared in cells in combs, the

number and arrangement of which are species-specific. Larvae defecate

in these cells as they develop, and the feces collects in a hard mass at the

bottom of the cell (Figure 1). Development of larva to adult takes about

34 days (29), and cells are sometimes reused after emergence.

Detailed knowledge of V. mandarinia foraging preferences is

based primarily on observations from south-central Japan (29, 30).

These studies of V. mandarinia foraging conducted between 1957 and

1990 identified 19 unique prey species across 5 arthropod orders

(Arachnida, Coleoptera, Hymenoptera, Lepidoptera, and Mantodea).

Species from Apidae and Vespidae comprised the majority of

observed predation events (>78%). These data were based upon

visual observations made during foraging or by collecting food

pellets from foraging hornet workers, both of which are techniques

that require a significant investment in time and which may

underestimate the diet breadth. Molecular approaches provide

another tool for characterizing prey from insect feces. Multiple

recent studies have employed metabarcode sequencing of wasp

feces to characterize the diets of different wasp species (e.g., 31–33).

Metabarcoding has the advantage of identifying prey items over an

entire season of wasp activity and from many individuals in the same

nest. In this study, we employed metabarcoding to provide a first

glimpse into the foraging preferences of V. mandarinia in its newly

invaded habitat. These results will serve as a baseline for determining

the potential impacts of V. mandarinia on native and naturalized

species in North America.
Materials and methods

Sample collection

Four V. mandarinia nests were located and eradicated in WA

State between 2020 and 2021, three of which were used in this study.

In each case, fecal pellets were collected from the individual cells in

each nest, and from empty, occupied by larvae, or capped cells

containing pupae/prepupae. For two nests (N1, N2) pellets were

removed with forceps or a probe, placed in 1.5 mL tubes, and

stored at -20°C until analysis. For the remaining nest (N4; nest 3

was not sampled) most samples were collected into 95% EtOH prior

to freezing. Instruments were flame-sterilized and bleached between

each sample extraction. Up to 100 mg of feces were collected from

each cell for analysis. Sampling effort across nests was uneven based

on resources and field work timing. A total of 403 fecal samples were

collected (Table 1). For N1 and N2, samples were composites of

multiple cells and grouped by comb, whereas samples of N4 were kept

separate by cell. For N4, gut contents were also collected from late-

instar larvae for analysis by dissecting the larva with a scalpel and

removing material with micro forceps.
DNA extraction, amplification,
and sequencing

Sampled fecal material was weighed and 20-40 mg was used for

each extraction. A total of 481 fecal samples (including replicate

samples) were extracted using a DNeasy Blood & Tissue kit
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(Qiagen Inc., Hilden, Germany) following the manufacturer’s

instructions. Samples were incubated in lysis buffer at 56°C for a

minimum of 4 hours prior to subsequent steps. Replicate extractions

were performed on samples collected from N1 and N2, and one comb

fromN4. The remaining samples of all N4 combs were extracted singly,

with the exception of 3 samples which included 8 extraction replicates

each. DNA extraction purity was assessed using the Nanodrop Lite

Spectrophotometer (Thermo Scientific, Wilmington, DE, USA), and

DNA was quantified using the Qubit 4 fluorometer with Invitrogen 1X

dsDNA HS Assay kit (Invitrogen, Waltham, MA, USA).

A subset of fecal extractions were spiked at the first step of DNA

extraction with a synthetic gBlock™ Gene Fragment (IDT, Coralville,

IA, USA) designed using the COI sequence from the dodo bird

(Raphus cucullatus, Accession KX902236) with nucleotide

modifications at primer binding sites to match primers used in this

study. A CO1 barcode from extinct dodo birds was selected as an

internal standard because it provides a biologically realistic nucleotide
Frontiers in Insect Science 03
composition while also being an unlikely prey item of V. mandarinia

in North America. Based on preliminary comparisons, a total of 400

copies of the dodo bird controls were selected to be spiked into

subsequent extractions.

A two-step PCR amplification was used to generate indexed

amplicons for sequencing. Step one PCR amplifications were

completed in 25 µl reactions and contained 5 µl of molecular grade

water, 12.5 µl of 2X Platinum II Hot-start Green PCR Master Mix

(Invitrogen), 1.25 µl of MgCl2 (50 mM), 0.5 µl of F and R primers (at

10 µM), and 2 µl of DNA template. Desalted oligos containing a 5’

block (5AmMC6) were used to generate the first round PCR product.

The primer pair LCO1490 and HCO2198 (34) with M13 tails

amplified a 658 bp region of the COI gene with rapid cycling

conditions as follows: initial denaturation at 95°C for 1 min., 35

cycles of 2 seconds denaturation at 96°C, anneal at 50°C for 5 seconds,

and extension at 72°C for 20 seconds. Final extension was at 72°C for

2 minutes.
TABLE 1 Sample collection by nest.

Nest Collection date Combs sampled Cells sampled

Nest 1 10/24/2020 5 22

Nest 2 8/25/2021 6 21

Nest 4 9/23/2021 5 360
FIGURE 1

An example of Vespa mandarinia nest material and larvae collected in Washington State and used in this study to assess prey items. Clockwise from top
left: In (A) a comb with capped and uncapped cells is shown, in (B) a fecal pellet located in the bottom of cell is indicated by the white arrow, (C) is an
individual fecal pellet with forceps for scale, and (D) is a fecal pellet emerging from a larvae.
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Second round PCR products were prepared following the PacBio

procedure for preparing multiplexed amplicon libraries using PacBio

barcoded M13 primers and SMRTbell® Express Template Prep kit 2.0

(Pacific Biosciences of California, Inc., Menlo Park, CA, USA). Step two

PCR amplifications were completed in 25 uL reactions and contained

7.5 µl of molecular grade water, 12.5 µl of 2X Phusion High-Fidelity

PCR Master Mix with HF Buffer, 2 µl each of PacBio’s barcoded M13

Forward and Reverse Primer (3 µM), and 1.0 µl of round 1 PCR

product. Step two PCR amplification conditions were as follows: initial

denaturation at 95°C for 30 seconds, 2 cycles of denaturation at 98°C

for 20 seconds, annealing at 60°C for 15 seconds, and extension at 72°C

for 60 seconds. Then 20 cycles of denaturation at 98°C for 20 seconds,

annealing at 65°C for 15 seconds, and extension at 72°C for 60 seconds.

Final extension was at 72°C for 5 minutes. Second round PCR products

were quantified with a Qubit 1X dsDNA HS Assay.

Final library construction was preformed using SMRTbell Express

Template Prep Kit 2.0 per manufacturer’s guidelines. The normalized

second round PCR products were pooled in equimolar amounts for

the required total mass of 250-500 ng for library construction. In

short, the indexed, pooled amplicons were ligated to SMRTbell

adapters and purified using AmPureXP beads (Beckman-Coulter,

Brea, CA, USA). Final library concentrations were quality checked

using gel electrophoresis and the Qubit flourometer. Final libraries

were shipped overnight to the Washington State University Genomics

Core Lab in Pullman, WA for sequencing.

Samples were sequenced in a PacBio Sequel II system. Advantages

to using the PacBio Sequel platform with SMRTBell Circular

Consensus Sequencing (CCS) technology include high output,

reasonably improved error rates, and long read sequences which

span the entire COI “barcode” region of ~658 bp. A majority of other

dietary metabarcoding projects have utilized the shorter read, high-

throughput Illumina platforms, but since the introduction of the

SMRTbell technology, PacBio has reduced error rates and as a result

has seen an increase in applied metabarcoding studies (35–37).

SMRTbell libraries were quantified, bound to polymerase using

Sequel Binding Kit v3.0, loaded onto a 1M v3 SMRT cell at 16pM

and sequenced using V3 reagents for 10 hours.
Bioinformatics

Circular consensus reads were generated for 500–900 bp

fragments with a minimum quality of 0.9999. These high-quality

reads were demultiplexed using a minimum index primer quality of

QV40. Index separated CCS reads were oriented and trimmed using

CLCBio version 10 (Qiagen). Resulting pools of reads for each unique

index were clustered to 0.97 ID and centroids and their counts were

output using USEARCH v11.0.667 (38). The resulting clusters

correspond to Operational Taxonomic Units.
Error rate and read recovery estimations

To estimate and categorize error produced during PCR, library

prep, and/or sequencing the dodo bird gBlock reads that passed QC

were compared to the original synthesized sequence. Comparisons were
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done using custom BLASTn (39) batch searches where the database for

comparison included only the synthesized dodo bird gBlock sequence.

Three error types were identified: single nucleotide gaps (SNGs), single

nucleotide variants (SNVs), and chimeric reads. The SNG errors where

totaled from gaps placed in both the query and subject sequences.

Chimeras here are defined as a cluster of SNVs (also in some cases

SNGs but at a much lower rate) at either the 5’ or 3’ end of a read that

originated from another sequence present in the pool as confirmed by

searches to the NCBI nr/nt database and comparison to outputs from

the pool of origin. Chimeras were tabulated as present or absent (1, 0)

in each read cluster. Each error type was calculated per cluster of reads

per index set and averaged across a flow cell, resulting in three estimates

of error. Read numbers per indexed sample (a single cell worth of feces

in most cases) were used to estimate average recovery rate per flow cell

given that a known concentration of gBlock was added to each

extraction (chimeric reads when present were included in these

estimates). Read recovery calculations included samples that did not

produce dodo bird reads whereas error calculations did not include

these zero values. Average absolute deviation around the arithmetic

mean was calculated for each error type for each flow cell. Results from

these calculations are given in Supplemental Table 1.
Potential prey analyses

Sequences were assigned to a taxon based on comparisons with

the BLAST NCBI (39) and the Barcode of Life (40) databases. All

trimmed and clustered reads were batch searched against the NCBI

nucleotide database using Geneious Prime (v2.1) with a 0.1 e-value

cutoff and default settings for BLASTn searches except for ‘max target

sequences’ which was set to 10. Taxonomic identities were only

accepted for reads with > 98% similarity to a reference sequence,

and resulting reads were compared to BOLD. In most cases, resulting

sequence identities were identical between both databases, however

the BOLD database was more definitive for Coleoptera and Diptera.

Since the goal of this study was to detect potential prey items, we did

not include sequences from V. mandarinia, Homo sapiens,

microorganisms, or algae. Data were analyzed as presence-absence

of each taxon by sample, nest, and comb, the frequency of occurrence

across sample units, and the number of reads of each taxon.
Results

All indexed samples were successfully amplified and sequenced.

After quality filtering and trimming, a total of 748,583 CCS reads were

obtained for the three nests. The output of high-quality reads per nest

was as follows: 347,625 (N1), 101,217 (N2), and 299,741 (N4). A total of

5,370 clusters were obtained from the high quality reads of all nests. Of

these, 47.5% were successfully assigned to an arthropod or allied taxon

(this percentage excludes controls, V. mandarinia, and various bacteria,

fungi, and other microorganisms). Although many studies do not

include low frequency reads in their analyses, we chose to evaluate

our resulting CCS reads that contained single sequences in the event

they represented low abundance prey items. While a majority of the

single reads did not add information, a few taxa were identified from

only single read sequences. The inclusion of single read sequences was
frontiersin.org
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also considered valid based on the results from the internal dodo bird

standard, where 25.2% of the recovered sequences were represented by

a single reads and in all cases could be identified even when chimeric,

albeit below the stringent 98% cutoff in such cases. Error rates inferred

from all internal standards were generally low across flow cells with

average SNVs per read ranging from 1.1 to 2.5%, and SNGs at 0.04 to

0.1% (Supplemental Table 1). Chimeric reads occurred in read clusters

from 0.2 to 0.5% of the sequences and in those cases only 14.3% of the

time were those chimeric reads the only reads recovered from an

extraction. Recovery rates averaged from 2.4 to 4.0 reads per extraction.

Fifty-six taxa were identified in the fecal analysis that are

conceivably giant hornet food items. They represented eight hexapod

orders, one arachnid, two vertebrates, and an earthworm (Table 2). The

insect taxa identified were distributed across 23 families, the most

species rich of which were the Vespidae (10 species) and Cerambycidae

(7 species). The number of species varied by nest, with 26 species

detected in nest one, 24 in nest two, and 29 in nest four. Social

Hymenoptera were the most frequently detected prey items.

Dolichovespula maculata, the largest yellowjacket in the Pacific

Northwest, was detected in 99% of samples. The next most common

species were the European paper wasp Polistes dominula (64%), the

yellow jacket Vespula pensylvanica (57%), and the European honey bee

Apis mellifera (57%) (Figure 2A). Species of Vespidae comprised 70% of

the prey items detected by sample. About half of the total species

identified were only detected once. Twenty of the species identified are

likely to be inquilines, common in decaying trees, or detected because

they were otherwise associated with actual prey species, such as

Apocephalus borealis Brues, 1924, a small phorid parasite of honey bees.

The abundance of reads per taxon (Figure 2B) did not always

track with the number of times a taxon was detected in a given

sample. The most reads were actually recorded for Triphleba lugubris

(>180,000), a phorid fly that has been associated with vespid nests.

This species was only recovered from 12 samples in N1. Excluding T.

lugubris, there was a generally positive relationship between the

frequency of detection per sample and the total number of reads

for most other taxa. However, this relationship was only evident when

the taxa with the ten next highest reads were considered.
Discussion

Field approaches to studying vespid foraging are laborious, and

will likely only detect a subset of the prey base. They require fortuitous

observations of foraging behavior or focused observations on known

locations that likely capture only a subset of foraging activity (18, 41),

or collecting food pellets from workers returning to the nest. Each of

these techniques is likely to under-sample hornet prey selection,

simply due to daily and seasonal limits on research time.

Identifying food pellets based on morphology is also challenging,

since most diagnostic morphological features are destroyed by the

foraging wasps. Because social Hymenoptera remain in the nest

during development and feces collect in brood chambers, advances

in eDNA analysis offer new techniques which can supplement other

approaches to determining prey species, and that can conceivably

capture data from the entire active season for the wasps (31).

This study identified 36 taxa that were likely prey items of V.

mandarinia in northwestern North America. An additional 20
Frontiers in Insect Science 05
detected species seem more likely to occur as inquilines, even

though they could have been eaten by larvae (e.g., Psocoptera). This

is probable based on what is known about their biology and their

small size. There was one taxon detected that was most likely to have

been associated with V. mandarinia prey species, but not preyed upon

itself. Apocephalus borealis was detected in two nests, with only a

single read for each. This species of Phoridae is a known parasite of

honey bees and bumble bees, and was likely parasitizing honey bees

that were preyed upon by V. mandarinia.

Relatively few studies of V. mandarinia foraging are available, with

many concentrating on foraging behavior in apiaries. Mastsuura and

Sakagami report V. mandarinia predation on 23 taxa in Japan, across

five arthropod orders. These observations come from a combination of

direct observation and identification of food pellets taken from

returning foragers. Our results identified more than twice as many

discrete taxa, although some of these (particularly species of Diptera)

may not have been directly preyed upon. Our data largely conform to

Matsuura’s observations, in that the dominant prey items as measured

by the number of reads and the frequency of positive samples were

comprised of social Hymenoptera. Apis mellifera was well-represented

in our results, but was less preyed-upon based on these data than

reported by Matsuura’s (although, an earlier version of their table

recorded fewer honey bee predation events, suggesting that observations

specific to apiaries may have raised these numbers). Aside from the

European honey bee, all of the putative prey items were novel. Vespa

mandarinia seemed to adapt well to preying upon the relatively large

yellowjacket Dolichovespula maculata. Matsuura and Yamane (1990)

report Vespa simillima as the second-most frequent observed giant

hornet prey item (no other species of Vespa are present in North

America). Both V. simillima and D. maculata create exposed nests,

usually in trees, suggesting that V. mandarinia is already well-adapted

to locating and feeding upon our largest yellowjacket. Interestingly,

Polistes (mostly just the introduced P. dominula) comprised the second-

most frequently detected prey species (although only the fourth most as

measured by the number of reads), yet in Japan Polistes was observed to

be less preyed-upon than honey bees, another Vespa species, and the

yellowjacket Vespula flaviceps. The North American data identified

species form ten insect families that have not been recorded as V.

mandarinia prey. The most speciose of these were the beetle families

Buprestidae and Cerambycidae. In contrast, the beetle family

Scarabaeidae, and the Mantidae (Mantodea), were both recorded in

Japan but did not appear in this data. This is likely because of differences

in the availability of prey items in each region; mantids are relatively

uncommon in northwestern North America, as are large scarabs in the

particular area where these nests were located.

Based on our estimates of error from the internal standard and the

use of stringent cutoffs for calling a taxon as present the conclusions

about prey items presented here are robust. However, such stringency

in calls likely lead to some amount of underestimation in diversity of

prey items where single chimeric reads would be filtered out.

Fortunately, based on our estimates of error, these reads likely occur

in very few samples. Future barcoding work of this typemight be able to

reduce the occurrence of chimeric reads and other PCR associated

errors by increasing the extension time in the first round PCR, reducing

the cycle number and excluding index sequences with high annealing

temperatures (36, 42). Additionally, excluded sequences could be

reanalyzed to omit the regions where unrelated sequences are
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TABLE 2 Species identified from sequencing hornet feces from three V. mandarinia nests.

Order Family Species Nest 1 Nest 2 Nest 4

Odonata

Aeshnidae Aeshna palmata X X

Aeshna sp. X

Blattodea

Archotermopsidae Zootermopsis sp.+ X

Psocoptera

Psocidae Unknown Genus X

Coleoptera

Buprestidae Agrilus anxius X

Buprestis aurulenta X

Buprestis laeviventris X

Buprestis lyrata X

Cerambycidae Etorofus obliteratus X X X

Etorofus vitiosus X

Ortholeptura valida X X

Rosalia funebris X X

Stictoleptura canadensis X X

Xestoleptura crassicornis X

Xestoleptura crassipes X

Elateridae Ampedus behrensi+ X

Hymenoptera

Formicidae Lasius pallitarsus X

Apidae Apis mellifera X X X

Megachilidae Megachile perihirta X

Vespidae Ancistrocerus albophaleratus X

Dolichovespula arenaria X X X

Dolichovespula maculata X X X

Polistes aurifer X X

Polistes dominula X X X

Vespula acadica X

Vespula alascensis X X

Vespula consobrina X

Vespula germanica X X

Vespula pensylvanica X X X

Lepidoptera

Noctuidae Noctua pronuba X

Sphingidae Paonias excaecata X

Smerinthus cerisyi X

Nymphalidae Vanessa atalanta X

(Continued)
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incorporated (e.g., 175 bp from the ends of each sequence). Recovery

rate may also have contributed to estimates of diversity where very low

abundance prey items might not have been detected; however, at 400

copies per extraction our internal standard is at the lower end of the

expected mitochondrial copy number (1,000–5,000 copies) for a single

animal cell (43, 44). Improvements to detection of rare prey items could

be made by decreasing the number of samples included in a pool, but

this would also lower efficiency. In total, the methods presented here

provide a flexible and accurate means for studying the prey of Vespa

and could be applied to the study of microbes or other taxa of interest

associated with Vespidae and similar insects.

The data presented here provide more evidence of the adaptability

of V. mandarinia to novel environments. Habitat suitability models
Frontiers in Insect Science 07
indicate that North America is climatologically suitable for V.

mandarinia (25, 27, 28), and the discovery of five nests from 2019-

2021 confirm this. The data presented here emphasize that V.

mandarinia will not only find suitable habitat in its introduced

range, but will readily adapt to novel prey species, including entire

families of insects that have not been previously recorded as prey items.

It is important to note, that research on giant hornet predation in its

native range has focused on their role as apiary pests, and comes from

the work of just a few researchers. It seems likely that future efforts to

document giant hornet predation will reveal a more diverse diet even

in its native range, whether through metabarcoding approaches or

more traditional field observations. The metabarcoding employed here

has advantages of generating what seem to be fairly complete prey lists
TABLE 2 Continued

Order Family Species Nest 1 Nest 2 Nest 4

Diptera

Dolichopodidae Unknown Genus X

Scatopsidae Coboldia fuscipes+ X

Sciaridae Cratyna keilini+ X

Corynoptera cuniculata+ X

Sciaridae sp. + X

Syrphide Eristalis flavipes X

Laphria sp. X X

Phoridae Apocephalus borealis* X X

Triphleba lugubris+ X

Phoridae sp. + X

Muscidae Muscina prolapsa+ X

Phaonia tuguriorum+ X

Conopidae Physocephala burgessi X

Polleniidae Pollenia pediculata+* X

Sarcophagidaes Ravinia querula+ X

Brachicoma devia+ X

Tachinidae Strongygaster triangulifera+ X

Collembola

Entomobryidae Willowsia buskii+ X

Tomoceridae Tomocerus minor+ X

Araneae

Araneidae Araneus diadematus X

Crassiclitellata

Lumbricidae Bimastos rubidus+ X

Artiodactyla

Bovidae Bos taurus* X X

Galliformes

Phasianidae Meleagris gallopavo* X X
front
Several species may be inquilines or associated with the decaying trees in which the nests were located (+) or may have been associated with prey species such as with parasitoids or scavenged protein
sources (*).
iersin.org
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for a relatively small investment of time. A caveat to this method is that

other species associated with hornets that are not prey are likely to be

detected, and it is hard to verify the provenance of some taxa without

direct observation of predation events. As vespids continue to be

introduced to new habitats across the globe, dietary metabarcoding

can be a helpful tool for estimating the ecological impacts these

predators can have upon native insect populations and help to guide

management decisions.
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FIGURE 2

(A) Frequency of prey taxa detected for each nest and for all nests combined. Percentages represent a weighted frequency of occurrence based on presence
absence counts. (B) Relative read abundance expressed as a percentage of all filtered reads for detected prey taxa per nest and for all nests combined.
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