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The ability to measure flying insect activity and abundance is important for

ecologists, conservationists and agronomists alike. However, existing methods

are laborious and produce data with low temporal resolution (e.g. trapping and

direct observation), or are expensive, technically complex, and require vehicle

access to field sites (e.g. radar and lidar entomology). We propose a method

called “Camfi” for long-term non-invasive population monitoring and high-

throughput behavioural observation of low-flying insects using images and

videos obtained from wildlife cameras, which are inexpensive and simple to

operate. To facilitate very large monitoring programs, we have developed and

implemented a tool for automatic detection and annotation of flying insect

targets in still images or video clips based on the popular Mask R-CNN

framework. This tool can be trained to detect and annotate insects in a few

hours, taking advantage of transfer learning. Our method will prove invaluable for

ongoing efforts to understand the behaviour and ecology of declining insect

populations and could also be applied to agronomy. The method is particularly

suited to studies of low-flying insects in remote areas, and is suitable for very

large-scale monitoring programs, or programs with relatively low budgets.

KEYWORDS

Camfi, population monitoring, flight behaviour, insect conservation, insect ecology,
remote sensing, computer vision, image analysis
1 Introduction

The ability to measure flying insect activity and abundance is important for ecologists,

conservationists and agronomists alike. Traditionally, this is done using tedious and

invasive methods including nets (e.g. 1), window traps (e.g. 2), light traps (e.g. 3, 4),

and pheromone traps (e.g. 5, 6), with the latter being favoured by agronomists for its
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specificity. The WWII development of radar led to the introduction

of radar ornithology (7, 8) and ultimately radar entomology (9, 10),

which facilitated non-invasive remote sensing of insects flying up to

a couple of kilometres above the ground, and became extremely

important for understanding the scale and dynamics of insect

migration (11). More recently, entomological lidar has been

introduced, which benefits from a number of advantages over

radar, in particular the ability to measure insects flying close to

the ground, without suffering from ground clutter (12, 13).

However, both entomological radar and entomological lidar

systems are relatively large (requiring vehicle access to study

sites), bespoke, expensive, and require expertise to operate,

reducing their utility and accessibility to field biologists.

We propose a method for long-term population monitoring

and behavioural observation of low-flying wild insects using wildlife

cameras. The proposed method, described herein, combines simple

and inexpensive field techniques with an advanced, open-source,

and highly automated computational processing workflow based on

Mask R-CNN (14). The method therefore lends itself to large-scale

studies and can generate substantial volumes of behavioural and

abundance data, allowing for the detection of subtle interactions

between external factors, and insect abundance and behaviour.

The method permits study designs in which cameras are

deployed at fixed points—potentially over long durations—which

are used to detect insects flying past the camera. It is therefore best

suited to studies which can make use of detection count and flight

telemetry data, but is not suitable for analysing inter-individual

interactions or individual trajectories over a larger area. Depending

on the research question, the method can make use of either still

images or video clips. The former enables long-term population

monitoring in remote areas with only occasional visits by the field

worker and produces (relatively) compact datasets which are

amenable to manual or automatic image-annotation, while the

latter enables rapid measurement of oriented flight behaviour

from large numbers of insects over short periods of time. Under

certain circumstances, the method also facilitates crude

measurements of wingbeat frequency, allowing the researcher to

exclude non-target species with very different wingbeat frequencies

from their analyses.

In this paper, we describe our new method, including

algorithms for automatic annotation of images of flying insects

and tracking multiple insects in video clips. We also present a

command-line program and python library, called Camfi, which

implements the described procedures and characterises the

performance of the automated annotation algorithm. In the

proceeding paper in this journal, we demonstrate the utility of the

new method by measuring activity levels and flight behaviour of

migratory Bogong moths (Agrotis infusa) over two summers in the

Australian Alps (15). The Bogong moth is an important source of

energy and nutrients in the fragile Australian alpine ecosystem (16),

and is a model species for studying directed nocturnal insect

migration and navigation (17–19). A dramatic drop in the

population of Bogong moths has been observed in recent years

(20, 21), adding it to the growing list of known invertebrate species

whose populations are declining (22). The present method will

prove invaluable for ongoing efforts to understand the behaviour
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and ecology of the Bogong moth, and to monitor the population of

this iconic species. The new method allows for straight-forward

training on new datasets and other flying insect species, giving it

promising applications within insect conservation and agronomy

beyond the Bogong moth study system to which it has currently

been applied.
2 Methods

Where indicated, the methods described below have been

automated in our freely available software and python library,

called Camfi. A full practical step-by-step guide for using these

methods along with complete documentation of the latest version of

the code is provided at https://camfi.readthedocs.io/.
2.1 Data collection

Images and video clips are collected in the field using wildlife

cameras equipped with an infra-red LED flash and a “time-lapse

mode” (we used BlazeVideo, model SL112, although most wildlife

cameras or other infra-red cameras may be suitable). The cameras

are positioned pointing towards the sky or other plain background

(see sample placement in Figure 1), and set to take photos or short

(e.g. 5 s at 30 frames per second, 1080p) video clips at regular

intervals during the night (the PIR motion sensors on wildlife

cameras generally do not trigger captures for invertebrates, as they

depend on body heat, which limits them to detecting endotherms).

The cameras are deployed in locations known for an abundance of

flying insects of a known target species. When deployed in areas

with a mixture of species, light traps can be deployed nearby to

characterise the composition of the insect population in the area.

To train the automatic annotation model described below, we

collected images from various locations known to be abundant in

Bogong moths in the alpine areas of south-eastern Australia. These

data are presented in further detail by Wallace et al. (15).
2.2 Image and video annotation

Our method permits three approaches to annotating the images

and/or videos captured by the cameras in the field: 1. Manual

annotation of still images using VIA (version 2; 23), 2. Automatic

annotation of still images using Camfi, with optional validation or

editing using VIA, and 3. automatic annotation of video clips using

Camfi. When the target insects are flying sufficiently fast and the

exposure time of the cameras is sufficiently long (which is typically

the case when capturing photos or videos during the night), the

insects appear as bright streaks on a dark background, due to

motion-blur (Figures 1B, C). In annotation approaches 1 and 2

(and approach 3 for each individual video frame), the path of the

motion-blur is annotated using a polyline for motion-blurs which

are fully visible within the frame of the camera, or an enclosing circle

when the motion-blur is partially occluded or out-of-frame. The

geometries of the polyline annotations are later used by the wingbeat
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frequency measurement procedure (defined in Supplementary

Material S2) and by the procedure for tracking multiple insects

between video frames, described below.

2.2.1 Approach 1: manual annotation of
still images

Images are manually annotated for flying moths using VIA (23).

A step-by-step guide to performing the annotations is provided in

Camfi’s documentation (https://camfi.readthedocs.io/). Examples

of polyline and circle annotations are displayed in Figures 1B, C

(orange annotations).

We manually annotated 42420 images for flying insects. We

reserved 250 images which contained annotations as a test set, and

the rest were used for training the automatic annotation model.

2.2.2 Approach 2: automated annotation of
still images

Although the process of manually annotating the images is

simple to undertake, it is also time-consuming, particularly for

large volumes of images. For large-scale studies, it may be

desirable to use automated annotation, either by itself or in

conjunction with manual annotation. To that end, we have

developed an automatic annotation tool, which is included with

Camfi, and used by running `camfi annotate` from the command-

line. The automatic annotation relies on Mask R-CNN (14), a

state-of-the-art deep learning framework for object instance

segmentation. The tool operates on VIA project files, allowing it

to serve as a drop-in replacement for manual annotation. The tool

also allows the annotations it generates to be loaded into VIA

and manually edited if required. Examples of the annotations

made by the automated procedure are displayed in Figures 1B, C

(blue annotations).

A full description of the automated annotation procedure,

including training, inference, and validation, is provided in the

Supplementary Material S1. In summary, the procedure for model

training uses the manual polyline annotations to create

segmentation masks and bounding boxes which are used together
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with the images from which those annotations come from as

training data for the Mask R-CNN model. Automated annotation

uses the outputs of Mask R-CNN model inference (which are again

segmentation masks and bounding boxes) to infer the geometries of

polyline or circle annotations.

It should be noted that the automated annotation method uses

polynomial regression to infer polyline annotations from the

segmentation masks produced by Mask R-CNN (the order of the

polynomial can be configured at run time). This is predicated on the

target insects’ flight trajectories (within the course of a single exposure,

e.g. 1/9 s) being able to be modelled with simple curves. In our

experience, 2nd order polynomials are sufficient, however a higher

order may be required for insects which fly very tortuous paths.

We have pre-trained the annotation model on the manual

annotations we made using approach 1 (above). Largely speaking,

these annotations are of Bogong moths (a noctuid with ca. 5 cm

wingspan). We expect the automated annotation to therefore work

well for moths which are of a similar size and have a similar

appearance while in flight. To simplify training of the model to

target other species, we have implemented a tool which automates

the training process, and this is described in the Supplementary

Material S1. This tool is packaged with Camfi and is used by

running `camfi train` from the command-line.

2.2.3 Approach 3: automated video annotation
An advantage of Camfi is its flexibility regarding the temporal

resolution of data collection. Depending on the research question,

cameras can be set to capture an image at relatively long intervals,

on the order of minutes, or they can be set to capture images at a

very high rate, which in the case of video clips is on the order of

hundredths of a second (typically 25-60 frames per second).

However, when analysing Camfi data which have been obtained

from high-rate captures (namely, videos), individuals will be

detected multiple times, since each moth will be seen in each of

many consecutive video frames as they pass by the camera. This

results in detection counts being inflated by insects which have

lower angular velocities relative to others from the perspective of the
FIGURE 1

Example images showing data collection procedures used in this study. (A). Wildlife cameras (BlazeVideo, model SL112) were set to capture still
photos and/or videos on timers and were deployed at the study sites known for their abundance of target flying insects. Typically, cameras were
placed facing the sky, but could also be placed on an elevated mount, such as a post (pictured). (B). Motion blurs of moths captured by the cameras
were marked with a polyline annotation. Manual annotation made in VIA (23) is shown in orange, and the annotation made by our automated
procedure is shown in blue (although since both annotations are very similar, they overlap and only the blue annotation is visible). (C). Circular or
point annotations were used for images of moths whose motion blurs were not fully contained within the frame of the camera, or where the length
of the motion blur was too short to see the moth’s wingbeat (latter case not shown). Manual annotation made in VIA (23) is shown in orange, and
the annotation made by our automated procedure is shown in blue.
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camera, and therefore spend more time in-frame. Therefore, to

facilitate the use of videos by Camfi, we need to be able to track

observations of individuals in a sequence of video frames, so we can

count each individual only once.

In the following sections, we introduce an extension to Camfi

which enables analysis of video data. This includes proper handling

of video files, as well as tracking of individuals through consecutive

frames. In addition to ensuring individual insects are only counted

once per traversal of the camera’s field of view, the new method

allows for measurement of the direction of displacement of insects

as they travel through the air.
2.3 Multiple object tracking

Multiple object tracking is a challenging problem which arises

in many computer vision applications, and which has been

approached in a variety of different ways (reviewed by 24).

A common approach to multiple object tracking is “detection-

based tracking” (also known as “tracking-by-detection”), in which

objects are detected in each frame independently, and then linked

together using one of a number of possible algorithms. Typically,

this requires the use of a model of the motion of the objects to be

tracked, along with a method which uses the model of motion to

optimise the assignment of detections to new or existing

trajectories. In many approaches, the modelled motion of tracked

objects is inferred by combining information about the position of

the objects in multiple frames. An obvious challenge arises here

because the model of motion requires reliable identity information

of objects detected in multiple frames, whereas the identity of the

objects usually must be inferred from their motion (including their

position). This circular dependency—between the inference of

object identity and the model of motion—can be dealt with in a

number of ways, including probabilistic inference via a Kalman

filter (25) or a particle filter (e.g. 26), or through deterministic

optimisation using a variety of graph-based methods.

Our approach to multiple object detection removes the

requirement of an explicit model of motion entirely, by utilising

two peculiar properties of the Camfi object detector. The first of

these properties is that the Camfi detector obtains information

about the motion of the flying insects it detects from the motion

blurs the insects generate, which it stores in the form of a polyline

annotation. Since this information is obtained from a single image,

and therefore a single detection, it does not depend on the identity

of the insect, solving the previously mentioned circular dependency

problem. The second property is that the Camfi detector is robust to

varying exposure times, owing to the fact it has been trained on

images with a variety of exposure times. This in turn means that the

detector is robust to the length of the insects’ motion blurs.

Ultimately, these two properties, along with the fact that the

insects appear as light objects on a dark background, mean that it

is possible to use the Camfi detector to make a single detection of an

individual insect traversing multiple consecutive frames. Thus, the

trajectories can simply be formed using bipartite graph matching of
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overlapping polyline annotations, using only information provided

by the detections themselves, using the method described below.
2.4 Automated flying insect tracking

The algorithm for tracking flying insects in short video clips

uses a detection-based tracking paradigm, relying heavily on the

Camfi flying insect detector described above. An example of the

sequence of steps taken by the tracking algorithm described in this

section is illustrated in Figure 2. For brevity, the example shows the

algorithm operating on three frames only, however the algorithm

can operate on any number of frames, up to the memory constraints

of the computer it is running on.

First, the video frames are prepared for flying insect detection. A

batch of frames is loaded into memory (e.g. Figures 2A–C, although

typically this would be a video clip). The maximum image of each

sequential pair of frames is then calculated by taking the maximum

(brightest) value for each pixel between the two frames (Figures 2D,

E). This produces images with lengthened motion blurs of the in-

frame flying insects, approximating the images which would be

obtained if the exposure time of the camera were doubled.

Importantly, the motion blurs of an individual insect in consecutive

time-steps overlap each other in these maximum images.

Detection of flying insects is performed on the maximum images

using the Camfi detector, producing candidate annotations of insect

motion blurs to be included in trajectories (Figures 2F, G). The Camfi

detector produces polyline annotations which follow the respective

paths of the motion blurs of flying insects captured by the camera.

Because the motion blurs of individual insects overlap in consecutive

frames, so too do the annotations of those blurs (e.g. Figure 2H). This

enables the construction of trajectories by linking overlapping

sequential detections.

Detections in successive time-steps are linked by solving the

linear sum assignment problem using the modified Jonker-

Volgenant algorithm with no initialisation, as described by

Crouse (27). In order to do this, a formal definition of the cost of

linking detections is required. We call this cost the “matching

distance”, which we denote by dM . Consider two polyline

annotations Pa and Pb, which are sequences of line segments

defined by the sequences of vertices (ai)
n−1
i=0 and (bj)

m−1
j=0 ,

respectively, where ai, bi ∈ R2 :. We define dM(Pa, Pb) as the

second smallest element in fd(a0, Pb), d(an−1, Pb), d(b0, Pa),

 d(bm−1, Pa)g, where d(x, P) is the Euclidean distance from a point

x ∈ R2 to the closest point in a polyline P ⊂ R2. This definition of

dM is efficient to compute, and allows us to discriminate between

pairs of detections which come close to each other by chance

(perhaps at very different angles) and pairs of detections which

closely follow the same trajectory (i.e. roughly overlap each other).

After solving the assignment problem, a heuristic is applied to

reduce spurious linking of detections into trajectories, where links

with dM values above a specified threshold are removed.

Trajectories are built across the entire batch of frames by

iteratively applying the detection linking procedure for each
frontiersin.org
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consecutive pair of time-steps (Figure 2I). Trajectories containing

fewer than three detections are removed (Figure 2J), as are

trajectories with low mean detection scores (Figure 2K). The

threshold for what is considered a low detection score can be set

by the user (e.g. a value of 0.8 might be reasonable). When analyses

relating to flight track directions are required, an additional filtering

step can be applied to constrain analysis to detections inside a

circular region of interest within the frame. This eliminates

directional bias arising from the non-rotationally symmetrical

rectangular shape of the video frames.

Diagnostic plots of tracking performance over an entire short video

clip can bemade by taking the maximum image of the entire video clip,

and plotting the detected trajectories as a single image using a different

colour for each trajectory (e.g. Figure 3). For example, we can see good

performance of the tracking procedure in Figure 3A, where all

trajectories except one appear to have been correctly built. The one

exception is an insect close to the centre of that figure which appears to

have had its trajectory split in three parts (seen as three different

coloured segments), most likely due to occlusion by another insect.

Figure 3B shows the result of constraining these trajectories to a

circular region of interest to remove directional bias (in this case, this

happened to solve the aforementioned split trajectory, but only by
Frontiers in Insect Science 05
coincidence—the orange and purple tracks were removed for

overlapping the edge of the circle).
2.5 Implementation

Our implementation of Camfi and its associated tools is written

in Python 3.9 (Python Software Foundation, https://

www.python.org/). The latest version of Camfi relies on (in

alphabetical order): bces 1.0. 3 (28), exif 1.3.1 (29), imageio 2.9.0

(30), Jupyter 1.0.0 (31), Matplotlib 3.4.2 (32), NumPy 1.21.1 (33),

Pandas 1.3.0 (34), Pillow 8.3.1 (35), pydantic 1.8.2 (36), Scikit-image

0.18.2 (37), Scikit-learn 0.24.2 (38), SciPy 1.7.0 (39), Shapely 1.7.1

(40), skyfield 1.39 (41), Statsmodels 0.12.2 (42), strictyaml 1.4.4,

PyTorch 1.9.0 (43), TorchVision 0.10.0 (44), and tqdm 4.61.2 (45).

Camfi is open source and available under the MIT license. The

full source code for the latest version of Camfi and all analyses

presented in this paper are provided at https://github.com/J-Wall/

camfi. The documentation for Camfi is provided at https://

camfi.readthedocs.io/. Camfi is under active development and we

expect new features and new trained models to be added as new

versions of camfi are released from time to time. All analyses
B C

D E

F G H

I J K

A

FIGURE 2

Automatic annotation is performed by Camfi on the maximum image of each pair of consecutive frames, allowing trajectories to be built from
overlapping detections. Here, an example of this process is shown for three consecutive video frames. (A–C). Three consecutive video frames
containing multiple flying insects. (D, E). The maximum image of each sequential pair of frames. (F, G). Flying insects are detected in the two-frame
maximum images using Camfi. (H). Detections from (F, G) together on a plain background. (I). Detections from sequential time-steps are combined into
trajectories using bipartite graph matching on the degree of overlap between the detections. (J). Trajectories containing fewer than three detections are
removed. (K). Finally, trajectories are filtered by mean detection score (trajectories with mean detection score lower than 0.8 are removed).
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presented in this paper were done using Camfi 2.1.4, which is

permanently available from the Zenodo repository https://doi.org/

10.5281/zenodo.5242596 (46).
3 Results

Automatic annotation performance was evaluated using a test

set of 250 images, as well as the full set of 42420 images. Contour

plots of evaluation metrics for both sets are presented in Figure 4.

The metrics presented are prediction score vs. intersection over

union, polyline Hausdorff distance, and polyline length difference

(Figures 4B–D, respectively; see Supplementary S3 for definitions of

these terms). These plots show similar performance on both the full

image set (42420 images) and the test set (250 images), indicating

that the model did not suffer from overfitting. Furthermore, they

show that prediction scores for matched annotations (automatic

annotations which were successfully matched to annotations in the
Frontiers in Insect Science 06
manual ground-truth dataset) tended to be quite high, as did the

intersection over union of those annotations, while both polyline

Hausdorff distance and polyline length difference clustered

relatively close to zero. The precision-recall curves of the

automatic annotator (Figure 4E) show similar performance

between the image sets and show a drop in precision for recall

values above 0.6. Training was completed in less than 2 h

(Figure 4A) on a machine with two 8-core Intel Xeon E5-2660

CPUs running at 2.2GHz and a Nvidia T4 GPU, and inference took

on average 1.15 s per image on a laptop with a 6-core Intel Xeon E-

2276M CPU running at 2.8GHz and a Nvidia Quadro T2000 GPU.
4 Discussion

This paper demonstrates the utility of inexpensive wildlife

cameras for the long-term population monitoring and

observation of flying behaviour in flying insects. We do not
B

A

FIGURE 3

Example summary of trajectories followed by insects flying past a camera during a 5 s video clip. Axes on both plots show pixel row and column
numbers. (A). Maximum (brightest) value of each pixel across every frame in the clip with annotations overlaid. Visible bright streaks are made by the
motion blurs of Bogong moths flying past the camera. The colour of an annotation indicates its membership in a unique trajectory, as predicted by
our method. (B). Annotations constrained to circular region of interest. Using only these trajectories eliminates directional bias resulting from the
non-rotationally symmetrical rectangular shape of the frame. Black circle shows region of interest.
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expect this method to completely replace other approaches for

monitoring insects, such as trapping, which enables precise

measurement of biodiversity and positive identification of species.

Likewise, it will not completely replace other remote sensing

approaches, such as radar and lidar, which facilitate detecting

targets at long distances. However, it is clear that this method has

significant potential for complementing these other approaches,

and in certain circumstances, replacing them. For instance, in

comparison to these other approaches, this method is particularly

suited to monitoring assemblages of known species in remote areas,

especially when it is known that the target insects are low-flying. An

advantage of the presented method over trapping is that much

greater temporal resolution is gained, and the sampling rate can

easily be adjusted depending on the research question, simply by

changing the settings on the cameras. This is in contrast to trapping

studies, where typically only one measurement of abundance can be
Frontiers in Insect Science 07
recorded per visit to the trap by the researcher. This provides an

opportunity to use the present method to answer a variety of

ethological research questions which may not be approachable

with previous methods.

This paper has presented a method for monitoring nocturnal

flying insects, however there is no reason it could not be used for

diurnal species as well, provided care is taken with regard to the

placement of cameras. Namely, it would be important to have a

relatively uniform background (such as the sky) in order to be able

to see insects in the images during the day. In this case, the infra-red

flash of the cameras would not be used and the insects would appear

as dark objects on a light background. During the day, the exposure

time of the cameras is much shorter than at night, so it would be

impossible to use this method to measure wingbeat frequencies of

day-flying insects. However, in some cases it may be possible to

identify day-flying insects in the images directly. It may also be
B C

D E

A

FIGURE 4

Automatic annotation evaluation plots. (A) Automatic annotation model training learning rate schedule (green) and loss function (black) over the
course of training. Epochs (complete training data traversal) are shown with dotted vertical lines. (B–E). Similar performance was seen for both the
full 42420-image set (red) and the test 250-image set (blue). Gaussian kernel density estimate contour plots of prediction score vs. (B) bounding box
intersection over union, (C) polyline Hausdorff distance, and (D) polyline length difference, for both image sets. Contours are coloured according to
density quantile (key at bottom of figure). In each plot, data which lie outside of the lowest density quantile contour are displayed as points.
(E) Motion blur detection precision-recall curve, generated by varying prediction score threshold. The precision-recall curve for the set of images
which had at least one manual annotation is shown in orange.
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possible to recreate the type of images seen during the night in any

lighting conditions by retrofitting the cameras with long-pass infra-

red filters, neutral density filters, or a combination of both.

A key advantage of the present method over other approaches is

that it can be readily scaled to large monitoring studies or programs,

thanks to the low cost of implementation and the inclusion of the tool

for automatic annotation of flying insect motion blurs. It is expected

that studies implementing this method for target species which

substantially differ in appearance from Bogong moths when in flight

(and where the use of automatic annotation is desired) may have to re-

train the Mask R-CNN instance segmentation model. We believe that

the tools we have implemented make that process highly accessible.
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