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Conservation of shibire and
RpII215 temperature-sensitive
lethal mutations between
Drosophila and Bactrocera tryoni
Thu N. M. Nguyen1, Amanda Choo2 and Simon W. Baxter1*

1School of BioSciences, University of Melbourne, Melbourne, VIC, Australia, 2School of Biological
Sciences, University of Adelaide, Adelaide, SA, Australia
The sterile insect technique can suppress and eliminate population outbreaks of

the Australian horticultural pest, Bactrocera tryoni, the Queensland fruit fly.

Sterile males mate with wild females that produce inviable embryos, causing

population suppression or elimination. Current sterile insect releases are mixed

sex, as the efficient removal of unrequired factory-reared females is not yet

possible. In this paper, we assessed the known Drosophila melanogaster

temperature-sensitive embryonic lethal alleles shibire (G268D, shits1) and RNA

polymerase II 215 (R977C, RpII215ts) for potential use in developing B. tryoni

genetic sexing strains (GSS) for the conditional removal of females.

Complementation tests in D. melanogaster wild-type or temperature-sensitive

genetic backgrounds were performed using the GAL4–UAS transgene

expression system. A B. tryoni wild-type shibire isoform partially rescued

Drosophila temperature lethality at 29°C by improving survivorship to

pupation, while expressing B. tryoni shits1 failed to rescue the lethality,

supporting a temperature-sensitive phenotype. Expression of the B. tryoni

RpII215 wild-type protein rescued the lethality of D. melanogaster RpII215ts

flies at 29°C. Overexpressing the B. tryoni RpII215ts allele in the D.

melanogaster wild-type background unexpectedly produced a dominant lethal

phenotype at 29°C. The B. tryoni shibire and RpII215 wild-type alleles were able

to compensate, to varying degrees, for the function of the D. melanogaster

temperature-sensitive proteins, supporting functional conservation across

species. Shibire and RpII215 hold potential for developing insect strains that

can selectively kill using elevated temperatures; however, alleles with milder

effects than shits1 will need to be considered.
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1 Introduction

Insect pests pose a constant and significant threat to the

agriculture sector and animal livestock industries, as they can

cause serious negative impacts on productivity, impose market

access restrictions, and threaten food security. Integrated pest

management strategies aim to keep insect pest populations below

levels that cause economic loss by combining environmentally

acceptable control methods and sustainable farming techniques

(1–3). These strategies help reduce the use of insecticides, which

often have adverse effects on non-target animals and result in the

development of insecticide resistance in pest populations (4, 5). The

sterile insect technique (SIT) is an efficient species-specific insect

biocontrol strategy that is used as a component of integrated pest

management (3). SIT involves the intentional release of large

numbers of sterile insects into regions with low to moderate pest

density to decrease or eliminate pest populations (6). Radiation

exposure to factory-reared pupae causes irreparable chromosomal

damage and sterility. Once development is complete, the sterile

insects are released, and males that mate with wild females produce

inviable embryos, causing reproductive failure and population

suppression. SIT was first developed to control New World

screwworm (7) and has since successfully been used to combat

numerous pest species worldwide, including several species of

tephritid fruit flies (8), moths (9), tsetse flies (10), and mosquitoes

(10, 11).

The Queensland fruit fly, Bactrocera tryoni (Diptera:

Tephritidae), can infest more than 200 fruits and vegetables and

is the most significant pest threat to Australian horticultural

industries (12). Females oviposit into soft and ripening host fruit,

resulting in puncture wounds that are susceptible to microbial

infection, and larvae feed on internal flesh, causing severe damage

(12). Controlling B. tryoni has traditionally relied on trapping

systems containing attractants or broad-spectrum insecticides that

have posed environmental and human health concerns (13). SIT

has been applied in the management of B. tryoni to restrict

reproduction and eliminate outbreaks (14). The current SIT

approach for B. tryoni releases both sterile males and females,

although females are not required. Developing strategies for sterile

male-only release will significantly enhance the efficacy and cost-

effectiveness of the program, which has been proven in another

tephritid species, the Mediterranean fruit fly (Medfly), Ceratitis

capitata (15).

Medfly SIT programs have benefited from genetic sexing strains

(GSS) that enable male-only releases. GSS females are homozygous

for a temperature-sensitive lethal (tsl) mutation causing embryonic

death when treated at 34°C for 24 h, whereas males survive heat

treatment as they carry a wild-type chromosomal genetic region

translocated to the Y chromosome (16, 17). The Medfly GSS has

taken decades to develop (8), and the tsl was generated by random

mutagenesis, with its genetic nature remaining unknown (18). This

female conditional lethal strategy has the potential to be replicated

in other tephritid species using precise CRIPSR/Cas9 genome

editing technology (19); however, this would require identification

of the Medfly tsl mutation and its ortholog in the target species. An

alternative strategy is the utilization of known temperature-sensitive
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mutations that have been characterized in the vinegar fly,

Drosophila melanogaster (20–22).

Three key requirements exist for temperature-sensitive

mutations to be considered as potential candidates for the

development of an ideal GSS: i) Lethality should occur at early

developmental stages, when embryos are treated at a restrictive

temperature; ii) homozygous mutant females must be viable and

fecund at permissive rearing temperatures for large-scale

production; and iii) the conditional mutation should be recessive

so that male fitness can be rescued using a wild-type allele

translocated to the Y chromosome. A number of temperature-

sensitive mutations have been identified in D. melanogaster

(20, 23–25), yet only a few of them meet these three important

requirements (26), e.g., shibire (shi) and the RNA polymerase II 215

(RpII215) genes (Table 1).

Using the mutagen ethyl methanesulfonate (EMS), Grigliatti

et al. (20) isolated six temperature-sensitive mutations in the D.

melanogaster X-linked shibire locus (shits1 to shits6), which encodes

a GTPase dynamin protein involved in synaptic vesicle recycling in

nerve terminals (29). Four of these mutations (shits1, shits2, shits3,

and shits6) had been reported to have partial or complete embryonic

lethality at 29°C and are unaffected when reared at 22°C (20). The

D. melanogaster shits1 (G268D) and shits2 (G141S) alleles are point

mutations resulting in amino acid substitutions at the boundary of

the shibireGTPase domain (30) and also cause paralysis at the larval

and adult stages at 29°C (20, 27). The mutations underlying shits3

and shits6 have never been reported.

Heat treatment of shits2 embryos at 29°C results in a less severe

phenotype than shits1 (26). Individually expressing six different shibire

wild-type isoforms in a shits2 background revealed that specific

isoforms were able to rescue some of the temperature-sensitive

phenotypes—this includes rescuing the lethality of shits2 larvae

subjected to heat pulses late in development (at 32°C, 34°C, and

some at 36°C) and adult paralysis at 27°C (31). The rescue of adult

paralysis was considered partial as the rescue flies were still paralyzed

at higher temperatures of 30°C and 32°C, suggesting that a single

isoform of the gene may not be sufficient to rescue completely (31).

The X-linked gene RpII215 encodes for a subunit of RNA

polymerase II, a multi-subunit enzyme catalyzing the

transcription process to synthesize various types of RNA (32).

The RpII215 temperature-sensitive (RpII215ts) mutation was

induced using EMS by Mortin and Kaufman (28). Initial reports

showed that the RpII215ts mutants were viable at the permissive

temperature of 22°C, whereas shifting embryos to a high

temperature of 29°C resulted in lethality at the late embryo or

first larval instar stages (23, 28). Nguyen et al. (26) found that 25°C

is also a suitable permissive temperature for rearing RpII215ts

homozygous mutants. The RpII215ts mutation is a single-base

substitution resulting in an amino acid replacement (R977C)

located in domain 6, which forms part of the shelf module (33, 34).

Here, we used the D. melanogaster GAL4-UAS system to

perform complementation tests by expressing B. tryoni transgenes

for shibire or RpII215 in Drosophila temperature-sensitive genetic

backgrounds to determine whether phenotypic rescue could be

achieved. We hypothesized that phenotypic rescue would occur at

29°C through the expression of B. tryoni wild-type alleles and that
frontiersin.org

https://doi.org/10.3389/finsc.2024.1249103
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Nguyen et al. 10.3389/finsc.2024.1249103
synthetic alleles containing shits1 (G268D) or RpII215ts (R977C)

substitutions would fail to rescue. This work advances our

understanding of temperature-sensitive alleles in B. tryoni and

provides new candidates for developing GSS for SIT.
2 Materials and methods

2.1 Drosophila melanogaster strains

The fly strains used in this study are listed in Supplementary

Table S1. All stocks were maintained on standard cornmeal media

at 25°C with 65% relative humidity at a 12:12 light/dark cycle unless

described otherwise. Crosses investigating shibire temperature

sensitivity were performed in the shits2 (DGRC 106754)

background, as attempts to obtain a D. melanogaster shits1 stock

(DGRC 106278) that survived the shipping process from the

Bloomington Drosophila Stock Center (BDSC) or Kyoto Stock

Center (DGRC) were unsuccessful.
2.2 Cloning of full-length Bactrocera tryoni
shi+, shits1, RpII215+, and RpII215ts cDNAs
into P-element transformation vectors

The D. melanogaster shibire (shi) and RNA polymerase II 215

(RpII215) proteins were queried against the B. tryoni genome

(GCA_000695345.1) using the tBLASTn algorithm in Geneious

(v7.1.7) to identify their orthologs. The predicted coding sequence

was obtained from a “gff3” genome annotation file (35). The NCBI

Conserved Domain Search (CD-search) was used to identify

signature motifs in B. tryoni orthologs. Codon optimization was

performed on the coding sequence using the Integrated DNA

Technologies (IDT, Coralville, IA, USA) online Codon

Optimization Tool (http://sg.idtdna.com/CodonOpt) to account

for D. melanogaster codon bias.

A Kozak sequence (CAAAATG) was placed in front of the start

codon to facilitate translation initiation, and the stop codon “TAA”
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was added at the end of the coding sequence. gBlocks for B. tryoni

shi, shits1, RpII215+, and RpII215ts were obtained from IDT as dried

oligos (1,000 ng), which were then resuspended in 20 mL of TE (10

mMTris, pH 7.5–8.0, 1 mM EDTA) to 50 ng/mL stock solutions and
stored at −20°C. gBlock fragments were cloned into the EcoRI site of

the pUAST-attB vector using Gibson Assembly Master Mix (NEB,

Ipswich, MA, USA). Cloned products were analyzed using Sanger

sequencing to ensure they did not contain non-synonymous

mutations. Validated constructs were transformed into D.

melanogaster by BestGene Inc. (Chino Hills, CA, USA).
2.3 Expression of Bactrocera tryoni
orthologs under Drosophila melanogaster
temperature-sensitive mutant backgrounds

The prefixQ distinguishes between B. tryoni (Queensland fruit fly)

transgenes and D. melanogaster alleles or genotypes. The UAS-Qshi+

and UAS-Qshits1 transgenic lines and da-GAL4 and nSyb-GAL4 driver

lines were crossed into the genetic background of the D. melanogaster

shits2 strain (DGRC 106754). The D. melanogaster transgenic lines

carryingUAS-QRpII215+ andUAS-QRpII215ts and the da-GAL4 driver

line were crossed into the genetic background of the D. melanogaster

RNA polymerase temperature-sensitive strain RpII215ts (BDSC 34755)

(Supplementary Tables S2–S4). The presence of UAS transgenes and

D. melanogaster mutant backgrounds was confirmed by PCR and

Sanger sequencing using the primers listed in Supplementary Table S5.

GAL4 driver expression was verified by crossing the respective line to

UAS-mCD8-GFP, then confirming the green fluorescent protein

(GFP) expression in the progeny (data not shown).

Crosses were performed using 3- to 6-day-old virgin flies with

three males and five females per vial. Egg laying occurred for 24 h at

25°C and the flies were then removed. Vials containing eggs were

maintained at either 18°C, 22°C, 25°C, or 29°C until pupal eclosion,

and the number of adult flies, either the GAL4 driver or the balancer

TM6B, was recorded. The percentage of progeny with the GAL4

driver (non-TM6B) was calculated for each treatment. Data were

analyzed using RStudio (v1.2.1335).
TABLE 1 Characterized Drosophila melanogaster temperature-sensitive mutations with potential to cause embryonic lethality when introduced into
other insect species.

Name
(symbol)

Chromosome
locationa Mutation

Amino
acid

substitution

Permissive
temperature

Restrictive
temperature

Phenotype
(restrictive

temperature)
References

shibire
(shi)

X 15,892,116 to
15,906,716 [+]

shits1 G268D 22°C 27–29°C Embryonic lethal

(20, 26, 27)
shits2 G141S 22°C 27–29°C

Semi-
embryonic lethal

RNA pol. II
215kD subunit
(RpII215)

X 11,562,800 to
11,570,326 [−]

RpII215ts R977C 22°C 29°C
Embryonic or early
larval lethalityb

(28)
Table was adapted from Nguyen, Choo (26).
[+] sense DNA strand, [−] anti-sense DNA strand.
aNCBI reference sequences for Drosophila melanogaster X are NC_004354.4.
bComplete lethality is observed when embryos are incubated for >9 h at 29°C.
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3 Results

3.1 Generating Drosophila melanogaster
transgenic lines carrying Bactrocera tryoni
shi or RpII215 orthologs

We generated D. melanogaster transgenic lines carrying the B.

tryoni wild-type (Qshi+ and QRpII215+) and putative temperature-

sensitive (Qshits1 and QRpII215ts) transgenes. Expression

was selectively controlled using the GAL4–UAS system

(Supplementary Figure S1) (36). Complementation rescue

experiments in the Drosophila temperature-sensitive lethal strains

shits2 and RpII215ts were then attempted with the B. tryoni

transgenes. Expressing wild-type allelic transgenes was expected

to rescue Drosophila temperature-sensitive phenotypes, while

putative temperature-sensitive alleles were not expected to rescue.

The B. tryoni shits1 (G268D) mutation was investigated as D.

melanogaster shits1 has complete embryonic lethality. The B. tryoni

ortholog of the D. melanogaster “short” isoform (Supplementary

Figure S2), which has 49 amino acids absent at the carboxy terminal,

was chosen for the transgenic complementation test. The D.

melanogaster shibire “short” isoform previously appeared to have

relatively consistent rescue phenotypes when expressed in the D.

melanogaster shits2 temperature-sensitive background at high

temperatures (31). Staples and Ramswami (1999) showed that a

single isoform was unable to completely rescue the temperature-

sensitive phenotypes across a broad range of restrictive temperatures,

although rescue could occur at specific temperatures and a

distinguishable level of rescue was still observable with each

isoform (31). Insertion of the entire B. tryoni genomic region of

shibire may have enabled alternate splicing of multiple isoforms;

however, this was not feasible due to the size of the genomic region

(30 kb). The coding sequence of B. tryoni shi “short” was obtained

from a gff3 genome annotation file provided with the draft genome

sequencing project (35). The shibire proteins from D. melanogaster

and B. tryoni share 91% identity, including conserved glycine amino

acids at positions 268 and 141, which are encoded by aspartate in

shits1 (G268D) and serine in shits2 (G141S) mutants, respectively.

The D. melanogaster RpII215 has only one protein isoform

(Supplementary Figure S3), which was used in a BLAST search

against the B. tryoni genome (JHQJ00000000.1) to identify B. tryoni

RpII215 on scaffold Btry263 (JHQJ01000312.1). The coding regions

of the two alleles share 78% identity and their protein sequences

share 93% identity. The amino acid that is mutated in D.

melanogaster RpII215ts (R997C) is conserved in B. tryoni.
3.2 Assessing the temperature sensitivity of
Bactrocera tryoni shi transgenes

The D. melanogaster shits2 strain was used as a temperature-

sensitive lethal genetic background to test for complementation

rescue with the B. tryoni shi+ wild-type construct. Complementation

tests using the B. tryoni shits1 were also performed, but not expected to

rescue the temperature-sensitive phenotype. According to

modENCODE (implemented in FlyBase r2021_05) (37) and Chen
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et al. (38), the D. melanogaster shi is expressed in all life stages, and its

major expression site is the nervous system.We obtained a stock of shi-

GAL4 (BDSC stock ID 42738) with the intention to drive the

expression of the UAS shibire constructs with the native promoter;

however, we were unable to detect the expression of the UAS responder

constructs with this specific driver. Consequently, the drivers da-GAL4

and nSyb-GAL4were chosen due to their similar expression patterns in

brain tissues according to single-cell transcriptomic analysis of D.

melanogaster (39).

Interspecific functional complementation tests were carried out

by crossing the UAS responder female lines with the male GAL4

driver lines to test the ability of B. tryoni transgenes to rescue the D.

melanogaster shits2 temperature-sensitive effect at 29°C. The

crossing strategy was designed with an internal control, meaning

that ~50% of progeny would inherit the GAL4 driver and express

the transgene and ~50% would inherit the visible phenotypic

marker TM6B and not express the transgene.

Males with the genotype shits2/Y; +/+; nSyb-GAL4/TM6B were

systematically crossed with six different homozygous female strains,

and progeny were reared at four temperatures (18°C, 22°C, 25°C, or

29°C). Crossing males with w1118 control females confirmed that

progeny survived under all experimental conditions and

approximately 50% of progeny inherited the TM6B marker

[Figure 1 (i)]. When males were crossed to shits2 female

homozygotes, strong survivorship was recorded at all

temperatures, except at 29°C where only 13 individuals developed

to the pupal stage, which is consistent with a previous observation

[Figure 1 (vi)] (20, 26). The UAS-Qshi+ and UAS-Qshits1 constructs

were then expressed in D. melanogaster to assess any negative

impacts of expressing the transgenes. Approximately 50% of

individuals expressed the transgene at all temperatures,

demonstrating that B. tryoni UAS-Qshi+ and UAS-Qshits1 do not

negatively affect fly viability under the nSyb-GAL4 driver [Figure 1

(ii and iii)].

A complementation cross was performed to determine whether

the Drosophila shits2 temperature sensitivity could be rescued with

the B. tryoni wild-type UAS-Qshi+ transgene. Flies expressing UAS-

Qshi+ under the nSyb promoter or lacking expression (TM6B) were

recovered in similar proportions at 18°C, 22°C, and 25°C. At 29°C,

only six adults expressing UAS-Qshi+ emerged from 11 replicate

vials, although there were 124 pupae that died in late-stage

development (P12–P14, wings were varied from gray to

completely black) (40). In comparison, only 13 pupae from 8

replicate vials were observed in the shits2 mutant background

[Figure 1 (vi)]. Expressing the B. tryoni shibire “short” isoform,

nSyb-GAL4:UAS-Qshi+, provided partial temperature-sensitive

rescue at 29°C in a Drosophila shits2 background.

Expression of UAS-Qshits1 in the D. melanogaster temperature-

sensitive shits2 background had no adult survival at 29°C. There

were seven early-stage pupae that died prior to stage P8, as eyes

were not visible [Figure 1 (vi)] (40). The B. tryoni shits1 allele

differed in function from B. tryoni wild-type shi+ at a high

temperature of 29°C [Figure 1 (v)]. These data indicate that

amino acid G268 is required for function at elevated temperatures.

Expression of UAS-Qshits1 and UAS-Qshi+ was also assessed

using the da-GAL4 driver. However, dominant lethal effects were
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observed when UAS-Qshi+ was expressed at 29°C, indicating that

the driver was not suitable for the expression of this transgene

(Supplementary Figure S4).
3.3 Assessing the temperature sensitivity of
Bactrocera tryoni RpII215 transgenes

The D. melanogaster gene RpII215 is expressed in all life stages

and tissues according to modENCODE (implemented in FlyBase

r2021_05) (37). The R977C mutation (RpII215ts) is temperature-

sensitive lethal at 29°C. We hypothesized that expressing B. tryoni

UAS-QRpII215+ in temperature-sensitive Drosophila (RpII215ts)

would rescue embryonic lethality at 29°C but that UAS-

QRpII215ts would fail to rescue. The da-GAL4 driver was used as

a ubiquitous driver to express UAS constructs, as RpII215-GAL4

drivers reproducing the complete endogenous expression pattern

have not been described.

Interspecific functional complementation tests were performed

by crossing experimental female lines with the same male driver

line. Similar to the crosses described in Figure 1, 50% of progeny

were expected to carry da-GAL4 and express the transgene, and

50% should carry TM6B and not express the transgene. Control

crosses confirmed that da-GAL4 expression of the B. tryoni wild-

type QRpII215+ protein did not have adverse effects [Figure 2 (i and

ii)]. Homozygous and hemizygous RpII215ts Drosophila only

survived at 29°C when the da-GAL4 allele drove the expression of
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UAS-QRpII215+, rescuing lethality and complementing loss of

function [Figure 2 (iv)].

Surprisingly, the expression of the putative temperature-

sensitive construct, UAS-QRpII215ts, showed a dominant lethal

phenotype as temperature increased, regardless of genetic

background. Drosophila carrying a wild-type RpII215+ allele were

unable to survive at 29°C [Figure 2 (iii)]. In the Drosophila RpII215ts

background, flies expressing the QRpII215ts transgene could not

survive at the lower temperature of 25°C and none survived at 29°C

[Figure 2 (v)].

In summary, the B. tryoni UAS-QRpII215+ was able to rescue

the lethality associated with D. melanogaster RpII215ts at 29°C. A

dominant negative effect occurred when expressing UAS-

QRpII215ts in D. melanogaster with one wild-type allele, as

expression of the RpII215ts itself resulted in reduced viability at

22°C and 25°C and complete lethality at 29°C. A more severe effect

was observed with the expression of B. tryoni UAS-QRpII215ts in the

D. melanogaster temperature-sensitive RpII215ts mutant

background, which resulted in lethality at 25°C. Amino acid R977

in the B. tryoni RpII215 protein was required for viability at

certain temperatures.
4 Discussion

Despite some success in genetic transformation and genome

editing capabilities using molecular technologies, investigating
FIGURE 1

Expressing Bactrocera tryoni shi wild-type (UAS-Qshi+) and mutant (UAS-Qshits1) transgenes driven by the shits2; nSyb-GAL4/TM6B driver. In each
standard food vial, F0 crosses were set up by placing three males that were hemizygous for the temperature-sensitive shits2 mutant allele on the X
chromosome, heterozygous for nSyb-GAL4, and balancer on the third chromosome (shits2/Y; +/+; nSyb-GAL4/TM6B) and five females of either
control wild type (w1118) (i), Qshi+ in the wild-type background (shi+; UAS-Qshi+) (ii), Qshits1 in the wild-type background (shi+; UAS-Qshits1) (iii),
Qshi+ in the temperature-sensitive background (shits2; UAS-Qshi+) (iv), Qshits1 in the temperature-sensitive background (shits2; UAS-Qshits1) (v), or
control temperature-sensitive (shits2) (vi). F0 parents were allowed to lay eggs for 24 h at 25°C, then eggs in vials were reared at either 18°C, 22°C,
25°C, or 29°C. In the F1, chromosomes are presented in order: sex determination chromosomes, chromosome 2, and chromosome 3. F1 flies with
non-TM6B expressed UAS-Qshi+ or UAS-Qshits1, while TM6B flies did not express these transgenes. The number of replicates and total counted F1
flies for each cross at each temperature were indicated. Box plots represent the interquartile range, and the median value is indicated. Error bars
represent 1.5 times the interquartile range.
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temperature-sensitive lethal mutations in B. tryoni remain

challenging (41, 42). Generating precise single-base substitutions

in B. tryoni using CRISPR/Cas9 technology via the homology-

directed repair (HDR) pathway is complex (19) and time-

consuming, with the potential of off-target effects causing genetic

variation. A minimum of three generations is required (which can

take up to 3 months) to establish homozygous mutant strains.

Therefore, using the D. melanogaster GAL4–UAS system can

advance functional studies of B. tryoni orthologs with the

advantage of performing experiments in the same genetic

background across all lines in a relatively short time frame.

Drosophila complementation tests were performed to determine

whether B. tryoni wild-type alleles could rescue known

temperature-sensitive lethal mutations for Drosophila shibire and

RpII215. Substitution of specific amino acids, which are known to

cause Drosophila temperature sensitivity, into B. tryoni alleles was

not expected to rescue.

Shibire is an essential gene for D. melanogaster development as

homozygous null mutants are non-viable (43). Multiple isoforms

are produced and are likely to be expressed within different tissues

at different development stages (31, 38). Staples and Ramaswami

(31) reported that temperature-sensitive paralysis in shits2 flies

occurred at 27°C, and partial phenotypic rescue was achieved

through transgenic expression-specific shibire isoforms. A series

of isoforms described as “short” lacked a 49-amino acid region at

the carboxy terminus and prevented paralysis up to 30–32°C. B.

tryoni is also known to express multiple shibire isoforms in RNA-

seq transcriptome datasets (Dr. Stephen Pierce, CSIRO, personal

communication). Expression of an equivalent “short” isoform of the

B. tryoni wild-type shibire partially rescued the D. melanogaster
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shits2 temperature-sensitive phenotype when expressed using the

nSyb-GAL4 driver. Insertion of the entire shibire genomic region

would have been ideal to enable the transcription of all isoforms and

may have then resulted in improved rescue efficiency; however,

plasmid construction and genomic integration were not feasible due

the insert size (approximately 30 kbp).

Expression of the shits1 mutant allele failed to show any level of

rescue of the associated temperature-sensitive lethality, supporting

the G268D amino acid substitution as an important site for viability

at restrictive temperatures. Choo et al. (19) have successfully

introduced this equivalent shits1 mutation into the B. tryoni

genome using CRIPSR/Cas9-mediated homology directed repair.

However, the mutation was found to be homozygous lethal at the

low rearing temperature of 21°C (19). This shows reduced fitness

compared to the equivalent mutation in Drosophila (27). The D.

melanogaster shits2 had been shown to have a milder temperature-

sensitive phenotype relative to shits1 (20, 27, 44). Although initial

reports showed no embryonic lethality in Drosophila, Nguyen et al.

(26) observed semi-embryonic lethality at 29°C (88% lethality), and

no adult survival if continually treated at 29°C. This indicates that

shits2 can also result in embryonic lethality, but appears less severe

than shits1. The B. tryoni shits2 could be a potential target for future

attempts at creating a GSS.

Dominant negative or semi-dominant effects have been

reported for the Drosophila UAS-shits1 transgene when the

construct was intentionally overexpressed at very high levels (45).

We did not observe a poisoning effect when the B. tryoni UAS-

Qshits1 was expressed via the da-GAL4 or nSyb-GAL4 drivers in

Drosophila wild-type genetic backgrounds at any temperature. A

dominant negative effect did occur when the ubiquitous da-GAL4
FIGURE 2

Expressing Bactrocera tryoni RpII215 wild-type (UAS-QRpII215+) and mutant (UAS-QRpII215ts) transgenes with the da-GAL4 driver. In each food vial,
F0 crosses were set up by placing three males that were hemizygous for the temperature-sensitive RpII215ts mutant allele on the X chromosome,
heterozygous for da-GAL4, and balancer on the third chromosome (RpII215ts/Y; +/+; da-GAL4/TM6B) and five females of either control wild type
(w1118) (i), QRpII215+ in the wild-type background (RpII215+; UAS-QRpII215+) (ii), QRpII215ts in the wild-type background (RpII215+; UAS-QRpII215ts)
(iii), QRpII215+ in the temperature-sensitive background (RpII215ts; UAS-QRpII215+) (iv), or QRpII215ts in the temperature-sensitive background
(RpII215ts; UAS-QRpII215ts) (v). F0 parents were allowed to lay eggs for 24 h at 25°C, then eggs in vials were reared at either 18°C, 22°C, 25°C, or 29°
C. In the F1, chromosomes are presented in order: sex determination chromosomes, chromosome 2, and chromosome 3. F1 flies with non-TM6B
expressed UAS-QRpII215+ or UAS-QRpII215ts, while TM6B flies did not express these transgenes. The number of replicates and total counted F1 flies
for each cross at each temperature were indicated. Box plots represent the interquartile range, and the median value is indicated. Error bars
represent 1.5 times the interquartile range.
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driver (but not nSyb-GAL4) expressed the B. tryoni shibire wild-

type allele at 29°C (Supplementary Figure S4ii). The toxic effects

appeared to be caused by the specific expression pattern of the da-

GAL4 driver, which overexpressed the shibire “short” isoform in

specific tissues. Alternatively, differences in the amino acid

sequences between the D. melanogaster and B. tryoni shibire

proteins may have functional consequences in specific tissues.

The D. melanogaster RpII215 gene encodes for a subunit of a

multi-subunit enzyme, RNA polymerase II, involved in

transcription catalysis (32). Expression of the B. tryoni wild-type

RpII215 was sufficient to rescue the lethality of D. melanogaster

RpII215ts at a high temperature of 29°C, indicating functional

conservation across species. The B. tryoni RpII215ts expressed a

dominant lethal effect in the D. melanogaster wild-type RpII215

background resulting in complete lethality at 29°C and had an even

more severe effect in the temperature-sensitive RpII215ts

background (when lethality was observed at 25°C). The reasons

behind the B. tryoni RpII215ts temperature-sensitive dominant

nature are unclear. Dominant negative effects have been observed

expressing other temperature-sensitive alleles. Overexpression of D.

melanogaster shits1 in different neuronal subsets using the GAL4–

UAS system can result in dominant temperature-sensitive effects

(41, 46). The D. melanogaster shits1 proteins block vesicle

endocytosis at high restrictive temperatures (30, 44). In the case

of overexpressing B. tryoni RpII215ts at 29°C, we propose two

hypotheses. First, RpII215ts produces a thermolabile product that

is inactivated or degraded at 29°C (23, 42). Alternatively, the

assembly of the RpII215ts subunit into an active RNA polymerase

II multi-subunit enzyme was temperature-sensitive (23). The B.

tryoni RpII215ts may or may not have a dominant effect when

introduced in the B. tryoni genome, which requires further

experiments to confirm.

Expressing B. tryoni RpII215ts in a D. melanogaster RpII215ts

temperature-sensitive lethal background caused complete lethality

at 25°C, suggesting that wild-type amino acid R977 in the B. tryoni

RpII215 protein has an important role in viability at certain

temperatures. Determining whether the RpII215ts mutation has a

dominant negative effect in B. tryoni will require transgenic

modification and further experimentation.
5 Conclusions

We provide evidence for the partial rescue of D. melanogaster

temperature-sensitive alleles of shibire, and strong rescue for

RpII215, using interspecific complementation tests with B. tryoni

wild-type orthologs. These results demonstrate a level of functional

conservation across species. The B. tryoni equivalent of the

temperature-sensitive alleles responded differently compared with

the wild-type alleles at specific temperatures, supporting the

replacement of amino acids (shibire G268D and RpII215 R977C)

that failed to rescue temperature-sensitive phenotypes. Shibire and

RpII215 hold some potential as candidate genes for studies aimed at

developing B. tryoni temperature-sensitive GSS. Effective sex

separation can be achieved when females homozygous for

temperature-sensitive alleles are killed at elevated temperatures,
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while heterozygous males survive through a functional wild-type

allele translocated or transgenically integrated onto the Y

chromosome (16). While the shibire shits1 G268D allele has

previously been shown to have a more severe effect in B. tryoni

than observed in D. melanogaster, other temperature-sensitive

shibire alleles can be explored.
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