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Alfalfa (Medicago sativa L.) is an economically important commodity in the

Intermountain Western United States. A major concern for alfalfa producers in

this region is the alfalfa weevil (Hypera postica Gyllenhal). Insecticide resistance

development coupled with regulatory changes in pesticide use has resulted in

renewed interest by producers in non-chemical control methods such as cultural

control. One such cultural control method is early harvest, which consists of

producers timing their harvests early in the season to decrease alfalfa weevil

damage. This method is thought to be effective by exposing weevil larvae to

adverse conditions before significant damage occurs. Still, early harvest can be

difficult to employ because recommendations are often vague. To better

understand how early harvest impacts both alfalfa weevils and their natural

enemies and how producers are using this method across the Intermountain

Western United States, we conducted a study in alfalfa production fields in

Colorado, Montana, and Wyoming over three growing seasons. We determined

that the timing of the initial alfalfa harvest spanned more than 1 month across

fields, and alfalfa plant stage at harvest ranged from late vegetative to early

bloom. Harvest was more impactful on reducing alfalfa weevil densities the

earlier it was implemented. Removing windrows in a timely manner is likely useful

to further decrease alfalfa weevil densities. Harvest timing was not associated

with parasitism rates of alfalfa weevil, but higher parasitism rates were associated

with lower post-harvest alfalfa weevil densities. This work has increased our

understanding of early harvest in an on-farm setting and to improve

recommendations for producers across the Intermountain Western

United States.
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1 Introduction

Alfalfa (Medicago sativa L.) is an important perennial forage

crop on both national and global scales. This productive legume

provides high-quality livestock feed (1). In recent years, the

economic value of alfalfa has substantially increased, especially in

the western United States (2). Insect pest control is a major

challenge in this system. Agricultural intensification and climate

change have the potential to negatively impact farming regions in

part through increased pest survival (3). Within the Intermountain

Western United States, the alfalfa weevil,Hypera postica (Gyllenhal)

(Coleoptera: Curculionidae), is of particular concern to growers (4).

Alfalfa weevils reduce both yield and quality through plant

defoliation, delay plant growth, and cause economic damage (5,

6). The chemical arsenal available to producers to combat alfalfa

weevil has diminished over the years due to increased insecticide

regulations and the development of pesticide resistance

selection (7).

In the western United States, pyrethroid insecticide use has been

the primary method of alfalfa weevil control, making the rise of

resistance in alfalfa weevil worrisome. Over the past decade, reports

of alfalfa weevil pyrethroid resistance have been sporadic across the

western United States and Canada (6–8). Recent work

demonstrated that although resistance is not found everywhere in

the western United States, it is strongly established across the region

(7). Thus, cultural methods of control, such as early harvest, can be

useful in mitigating alfalfa weevil damage while also managing

resistance development (7).

Taking the first harvest before weevils have completed their

lifecycle and caused substantial damage can be beneficial for

producers (9). Although this method has been recommended for

many years, it can be complicated to implement (10). Alfalfa yield and

quality generally have an inverse relationship to one another. Early-

growth alfalfa is associated with high quality but lower yields, while

more mature alfalfa has higher yields but lower quality (11).

Consequently, a critical part of early harvest is the determination of

the precise timing of harvest while considering the yield/quality trade-

off. Harvesting too early could result in inadequate yield and reduce

alfalfa plant fitness. Timing the initial harvest too late may result in

low-quality alfalfa and inadequate weevil control, causing damage in

subsequent harvests (12). Earlier first harvests have the potential to

target early instar alfalfa weevil larvae when they are likely more

susceptible to mortality. Recommendations are often vague on when

early harvest should take place and do not account for important

variables related to plant biology and climate (10). Some early work

used alfalfa plant height, weevil density, or weevil stage to provide

harvest timing recommendations but did not consider yield/quality

trade-offs (12–14). Updated recommendations from Onstad and

Shoemaker (12) factored in these trade-offs but used growing degree

days (GDDs). Alfalfa and weevils may develop at different rates across

wide geographic areas, which complicates the use of GDDs as a

reliable predictor (15, 16). Additionally, if the goal is to maximize the

non-chemical control of alfalfa weevil, determining how natural

enemies like parasitoids also interact with harvest timing is critical.
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Alfalfa weevil biocontrol in the United States has a long history

with parasitoid introductions beginning as early as the 1910s. One

of the most widely released biocontrol agents, Bathyplectes

curculionis (Thomson) (Hymenoptera: Ichneumonidae), was

established and dispersed rapidly but does not seem to adequately

manage weevil populations on its own (17). Currently, alfalfa weevil

biocontrol is moderately effective in some regions but not in the

western United States (5, 18). Bathyplectes curculionis are generally

present in the field when early harvest is being implemented (19).

By understanding how their activity impacts alfalfa weevil control

or if early harvest could be timed in a way that minimally impacts B.

curculionis, we may be able to optimize early harvest and maximize

non-chemical alfalfa weevil control.

This work examined the first alfalfa harvest of the season on

working farms across a wide geographic range in the Intermountain

Western United States. We recorded when producers harvested and

how this differed based on location. This study also measured the

efficacy of harvest for weevil reduction across various harvest timings.

Finally, we quantified how activity of the parasitoid B. curculionis

varied across producer fields and states, and in relation to harvest

timing. The overall goal of this work is to increase our understanding

of early harvest in an on-farm setting and build better

recommendations for producers across large geographic regions

that may help slow the development of insecticide resistance.
2 Materials and methods

2.1 Study location and design

Alfalfa production fields were sampled for three summers (2019,

2021, and 2022) across the Intermountain West in Montana,

Wyoming, and Colorado. Field work was not completed in 2020

due to travel and work restrictions related to the COVID-19

pandemic. Teams in each state located producer collaborators by

reaching out to previous producer connections and networking with

various government and extension professionals to locate additional

interested producers. Alfalfa fields were selected based on the

following outlined criteria and with producer input. Fields were

irrigated, insecticide-free within the year until sampling efforts

concluded, and at least 2 km away from one another to ensure

spatial independence of landscapes. In total, across 3 years, 10 fields

from Montana (or within 10 miles of the Montana state border), 17

fields from Wyoming, and 7 fields from Colorado met these criteria

and were included in analyses. Collection fields are not representative

of their entire state; within each state, fields were grouped into regions

based on geographic separation (Supplementary Figure 1). Montana

fields were located near the eastern part of the state, with regional

groups separated by major rivers in the region (Supplementary Table

1). Wyoming fields were located around southeastern Wyoming

and grouped into regions separated by non-farming regions

(Supplementary Table 1). Colorado fields were located east of the

Front Range in Colorado, with urban areas separating their regional

groups (Supplementary Table 1).
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To evaluate the impact of harvest on alfalfa weevil, we targeted

sampling to collect data in the week prior to harvest and up to 2

weeks following harvest. Communication with producers helped

determine when pre-harvest sampling should begin based on when

harvest would likely happen, as producers determined their own

harvest times for this project. We analyzed data collected from 1

week pre-harvest and 2 weeks post-harvest unless otherwise

specified. Generally, harvest takes place between mid-May and

mid-June in the Intermountain West. This often coincides with

when alfalfa weevil larvae are highly damaging, which is likely due

to a combination of later instar alfalfa weevil larvae inflicting

substantial feeding injury and alfalfa weevil densities around this

time (20, 21). This study design allowed us to determine how

harvest is impacting alfalfa weevils when they are most problematic.

In each field, both pre- and post-harvest data were collected along a

single transect set 30.5 m into the field to mitigate edge effects.
2.2 Pre-harvest sampling

In each field, sampling took place at 0.09-m2 (1-ft2) quadrats 15

m apart at five locations along a single 61-m transect. The specific

transect location within a field was chosen randomly. Stem density,

height, alfalfa plant stage, damage score, alfalfa weevil density, and

alfalfa weevil egg counts were quantified for each of the five

locations along the transect within a field. At each quadrat, alfalfa

height, stage, and damage were quantified visually. Plant stage

determination followed Fick and Mueller (22). Damage scores

ranged from 0 (no damage) to 5 (complete defoliation) and are

based on the damage scale from Berberet and McNew (23). Within

each quadrat, alfalfa was removed with a handheld harvest knife

while leaning over a canvas sheet. Alfalfa weevils were collected with

a modified shake bucket method (24). Stems were then placed into a

large plastic bag, and weevils collected from the shake bucket, on the

canvas, and from the ground within the quadrat were placed into a

separate plastic bag. To determine the parasitism rate, three

transects of 50 sweeps each were taken perpendicular to the

30.5-m collection transect. Each sweep sample was placed in a

plastic bag for transport. If weevil densities were too low to provide

50 larvae from three sweep collections, more samples were

collected. All collected stem, bucket, and sweep samples were

then transported to the laboratory for processing.

In the laboratory, stem density was determined, and 25 stems

from each quadrat were split to determine the alfalfa weevil egg

count. Stems were then examined for the remaining alfalfa weevils.

Weevils collected during this time were combined with the field-

collected alfalfa weevils to estimate total weevil density per 0.09 m2

(1 ft2). They were counted and staged as adult, pupae, or larval

instar (1–4) based on chaetotaxy (25). For analysis, larvae were

grouped into early instar larvae (sum offirst and second instars) and

late instar larvae (sum of third and fourth instars). If there were

more than 30 alfalfa weevil larvae in a sample, we employed

subsampling procedures. First, the total alfalfa weevil larvae count

was recorded. Then, a large 14-cm Petri dish was gridded into four

equal quadrants. Alfalfa weevil larvae were emptied into the dish

and were evenly spread across the dish. Weevils in the top right
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quadrant were staged up to 20. If less than 20 weevils were in the

quadrant, staging proceeded to the next quadrant in a clockwise

direction. Staging continued until a minimum of 20 larvae were

staged. The alfalfa weevil parasitism rate was determined by

randomly selecting 50 late-stage (third and fourth instar) alfalfa

weevil larvae from sweep collections to dissect under a microscope

and examine for parasitoid larvae.
2.3 Post-harvest sampling

Similar to pre-harvest, sampling took place along a 61-m

transect at five locations. Instead of a single 0.09-m2 (1-ft2)

quadrat being sampled at each of the five locations, either one or

two quadrats were sampled for each location based on whether

windrows were present and the team conducting the sampling.

Windrows are the gathered cut plant material that is left to dry on

the ground before baling, and there is evidence to suggest that alfalfa

weevils can use windrows as a refuge to increase their survivorship

(26). Regardless of the number of samples collected, when

windrows were present, we equally sampled under and adjacent

to windrows. A vacuum sampler (leaf blower with reverse suction

flow and a net placed inside, as in 27) was used at each quadrat to

collect from the ground and vegetation. Vacuum sampling is one of

the most effective methods of collecting alfalfa weevils from a

harvested alfalfa field with no mature vegetation. Vacuum

samples were transported to the laboratory and used to determine

alfalfa weevil counts from each quadrat. Additionally, we recorded if

windrows had been removed during sampling and if the sample was

collected from below or adjacent to a windrow for inclusion in our

statistical models.
2.4 Data analysis

All statistical analyses were conducted with R 4.2.2 project

software in R studio (28, 29). Producer management trends were

characterized through summary statistics. Analyses of variance were

employed to examine how these management trends vary between

Colorado, Wyoming, and Montana. Two negative binomial

generalized linear models with log links were conducted to

determine how post-harvest and pre-harvest weevil densities were

related to harvest Julian day. GDDs were not used as the response

variable due to a lack of field-specific weather data needed to

calculate this particular metric. Model predictions and 95%

confidence intervals were estimated using the “ciTools” package

(30). These were examined to determine how weevil densities pre-

and post-harvest compare and predict our response harvest Julian

day. The earliest harvested field was not included in these analyses.

This harvest took place over a week before the next earliest harvest,

and its removal improved both models’ performance as it had an

outsized impact on model fit. This field was included in subsequent

analyses unless otherwise noted. Assumptions of linearity,

normality, and homoskedasticity were assessed with diagnostic plots.

A generalized linear model with a quasibinomial error

distribution and logit link was run to determine the impact of
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timing and location on alfalfa weevil instar proportions before

harvest. Model predictors, which included harvest Julian day,

alfalfa stage, and state, were tested for collinearity. The initial

global model included all predictors as well as all possible two-

and three-way interactions with early instar alfalfa weevil

proportion as the response. The early instar alfalfa weevil

proportion is calculated by taking the total number of early (first

and second) instar alfalfa weevil larvae in a collection and dividing it

by the total number of all alfalfa weevils at any life stage in that

collection. We focused on the early instar alfalfa weevil because that

cohort, in particular, is targeted by early harvest practices. All non-

significant interactions were removed from the model. All model

assumptions were met.

To examine what impacted post-harvest alfalfa weevil densities,

we used field location information and pre- and post-harvest

collected data to create a set of generalized linear mixed models

(GLMMs). A negative binomial error distribution with a log link

function was employed for all models, and the “glmmTMB”

package was used for our GLMMs with random effects (31).

Post-harvest weevil density from week 2 was our model response

variable. Our starting global model included fields nested within

geographic regions as a random effect. Fixed effects included pre-

harvest weevil density, early instar alfalfa weevil proportion, alfalfa

stage, alfalfa damage score, alfalfa stem density, harvest Julian day,

alfalfa weevil egg count, windrow status (removed from field vs.

remaining on field), state, and year. Fixed effects were examined for

collinearity with visualizations and variance inflation factor; the

only correlation observed was between alfalfa height and alfalfa

damage. Taller alfalfa was correlated with lower levels of alfalfa

weevil damage. Alfalfa weevil damage is known to reduce

alfalfa growth, which explains this correlation (21). We removed

alfalfa height from the analysis because of this correlation.

Although alfalfa height could be used as a way to inform

producers when to harvest, plant height can be impacted by a

variety of factors we did not account for (e.g., weather or alfalfa

variety) (32, 33). Our global GLMM was simplified with backwards

selection to optimize AIC. Predictors for the final model included

Harvest Julian day, windrow status, pre-harvest alfalfa damage,

state, year, alfalfa weevil egg count, and early instar larvae

proportions. Assumptions were checked throughout modeling

with the DHARMa package (34).

Finally, to examine parasitoid activity during the first alfalfa

harvest and the potential impact on alfalfa weevil, we used two

different generalized linear models. We tested the effect of harvest

Julian day, pre-harvest weevil density, and the proportion of early
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instar larvae on our response, and determined the B. curculionis

parasitism rate prior to harvest using a quasibinomial generalized

linear model with a logit link. We also examined parasitism rate as a

predictor of post-harvest weevil density using a gamma error

distribution with a log link. The post-harvest density metric used

was the median number of weevils collected per 0.09-m2 (1-ft2)

quadrat in each field within a week after harvest. This was based on

all the subplot weevil collections in each field since parasitism rate

was a per-field metric. The median was used instead of the mean

because it is a metric that does not give outliers the same influence

as the mean, and outliers were present in our weevil counts. These

analyses only included fields from Montana and Wyoming because

parasitism rate was not collected the week prior to harvest for the

fields in Colorado.
3 Results

3.1 Producer management trends

The first harvest date was recorded for 34 field collections across

the Intermountain West where the harvest Julian day ranged from

145 to 183 (Table 1). This corresponds to just over a 1-month

period starting at the end of May until early July. The average and

median initial harvest day across all fields were both Julian day 165,

which falls in mid-June (Table 1). Alfalfa plant stage the week before

harvest ranged from stage 2 (late vegetative) to stage 6 (late flower).

On average, alfalfa was at a 3.6 stage before harvest, which falls

between the early and late bud stages (Table 1). Harvest Julian day

did not vary between states (p = 0.07; Appendix 1; Supplementary

Figure 2), and neither did alfalfa plant stage at harvest (p = 0.36;

Appendix 1; Supplementary Figure 3). Harvest Julian day was

related to both alfalfa weevil pre- and post-harvest densities

(Figure 1). Pre-harvest and post-harvest weevil densities were

lower at sites with later harvest dates (Appendix 1; pre-harvest: p

≤ 0.001; post-harvest: p ≤ 0.001). Differences between predicted

alfalfa weevil densities and their 95% confidence intervals were

larger at earlier harvest Julian days compared to later harvest Julian

days (see Supplementary Table 2).
3.2 Alfalfa weevil instar proportions

Harvest Julian day, alfalfa stage, and state were all significant

predictors of the pre-harvest proportion of the total number of
TABLE 1 Management trends observed for fields in Colorado, Montana, and Wyoming.

Harvest Julian
Average (s)

Harvest Julian
Median (IQR*)

Harvest
Julian Range

Harvest Plant Stage
Average (s)

Harvest Plant
Stage Range

Colorado 162.6 (± 9.0) 163.0 (± 7.5) 145–173 3.8 (± 0.6) 3.0–4.6

Montana 169.7 (± 4.3) 169.0 (± 4.3) 162–178 3.4 (± 0.6) 2.8–4.0

Wyoming 163.1 (± 8.2) 160.0 (± 8.0) 154–183 3.7 (± 0.7) 3.0–5.2

All fields 164.9 (± 7.9) 165 (± 9.8) 145–183 3.6 (± 0.6) 2.8–5.2
*IQR = interquartile range.
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alfalfa weevil (larvae, pupae, and adult) that were at the early (first

and second) instar stage. On average, the proportion of alfalfa

weevils that were early instar larvae decreased as harvest Julian day

increased (p ≤ 0.001; Appendix 1; Figure 2) and as alfalfa plant stage

increased (p ≤ 0.001; Appendix 1; Supplementary Figure 4).

Additionally, each state had significantly different alfalfa weevil

stage proportions, with Montana having, on average, the highest

proportion of early instar alfalfa weevil and Wyoming, on average,

having the lowest proportion (Appendix 1; CO-MT: p ≤ 0.001; CO-

WY: p ≤ 0.001; MT-WY: p ≤ 0.001). Finally, there was a significant

interaction between harvest Julian day and alfalfa stage (p = 0.004;

Appendix 1). The impact of harvest Julian day on the proportion of

early instar larvae is variable between different alfalfa plant stages.
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At most alfalfa plant stages, there is a negative relationship observed

between harvest Julian day and the early instar alfalfa weevil

proportion, but the strength of this negative relationship varies by

alfalfa plant stages (Supplementary Figure 5).
3.3 Post-harvest alfalfa weevil

Later harvest Julian days were associated with fewer alfalfa

weevils in post-harvest samples (p = 0.02; Appendix 1; Figure 3;

Supplementary Figure 6). This pattern was also observed in

previous analyses examining producer management trends.

Windrow status during post-harvest collections was also an

important factor for post-harvest weevil densities. Fields that had

windrows removed had approximately 0.5 fewer weevils per 0.09 m2

(1 ft2) than fields where windrows were still in place (Appendix 1; p

= 0.007). Higher alfalfa damage scores observed pre-harvest were

predictive of higher alfalfa weevil densities post-harvest (Appendix

1; p ≤ 0.001; Figure 4). Post-harvest alfalfa weevil densities also

varied between states and collection years. More post-harvest alfalfa

weevils were collected in Montana and Wyoming compared to

Colorado, and 2019 had higher post-harvest alfalfa weevil densities

compared to the other 2 years of collection (Appendix 1; CO-MT:

p = 0.01; CO-WY: p ≤ 0.001; 2019–2021: p ≤ 0.001; 2019–2022: p ≤

0.001). Pre-harvest alfalfa weevil egg count and early instar larvae

proportions did not significantly impact post-harvest alfalfa weevil

densities, but both contributed towards improving the overall AIC

of our model.
3.4 Parasitoid activity

Harvest Julian day, pre-harvest weevil density, and the

proportion of early instar larvae were not associated with

parasitism rates taken within a week prior to harvest. Overall,
FIGURE 2

The proportion of all pre-harvest collected alfalfa weevil in a subplot
that were at the first or second instar larvae stage plotted against
harvest Julian day. Each point represents a single 0.09-m2 (1-ft2)
subplot so there are multiple points per unique field. Model
predictions from Colorado (solid blue), Montana (dot-dashed
orange), and Wyoming (dashed green) are plotted.
FIGURE 3

Post-harvest alfalfa weevil counts plotted against harvest Julian day
with the average negative binomial regression line. Each point
represents a single 0.09-m2 (1-ft2) subplot so there are multiple
points per unique field. Point shape and color are representative of
collection year (2019, circle; 2021, triangle; 2022, square) and state
(CO, blue; MT, orange; WY, green).
FIGURE 1

Pre-harvest (red) and post-harvest (blue) alfalfa weevil counts
plotted against harvest Julian day with model predictions and their
95% confidence intervals. Each point represents a single 0.09-m2

(1-ft2) subplot so there are multiple points per unique field.
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lower post-harvest weevil densities occurred when pre-harvest

parasitism rates were higher (Appendix 1; Figure 5; p = 0.009).
4 Discussion

Initial harvest dates from fields sampled across the

Intermountain West spanned a little over a month with the

average day of first harvest in mid-June. Alfalfa stage at harvest

varied widely from vegetative to flowering. Although we worked

with a diversity of producers, our sampling is mostly representative

of fields where the likelihood of insecticide use was low for various

reasons, including potential producer perception that weevil

pressure did not merit insecticide application as well as certified

organic status. Moreover, producers in some regions harvested
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before sampling efforts began; thus, such samples were not

included in this work. Shoemaker and Onstad (35) recommended

harvesting between June 2 and 17 based on weather, weevil

densities, and parasitoid densities for optimal alfalfa weevil

control in central New York. GDDs are also a popular method of

providing early harvest recommendations, but these are variable

based on regions. A New York study found the optimal GDDs to be

340, whereas 507 was recommended in Michigan (9, 12). We did

not have precise weather data for each field; thus, alfalfa weevil

GDD models could not be obtained in this study. Early harvest

was a common practice for our producer collaborators in the

Intermountain West, with some harvesting a full week before

historical early harvest recommendations. These shifts to early

harvests could be due to various drivers: focusing on quality (i.e.,

higher nutritive value) rather than yield for particular markets,

changes in climate impacting alfalfa and weevil growth rates, or use

of newly developed alfalfa varieties (36, 37).

Alfalfa weevil densities, both pre- and post-harvest, decreased as

harvest Julian day increased. This relationship could be a function

of a few factors. Producers who have lower weevil pressure may

harvest later because they have the ability to maximize yield without

weevil damage trade-offs (11). In addition, alfalfa weevil

populations are seasonal, being most active early in the growing

season and then gradually decreasing from a variety of mortality

factors (18, 38, 39). We found that the difference between predicted

pre-harvest alfalfa weevil densities compared to predicted post-

harvest alfalfa weevil densities were higher earlier in the season—

highlighting that cutting a field later can result in smaller alfalfa

weevil reductions and less impact. Casagrande and Stehr (9)

previously found a similar trend, with the reduction in

ovipositing alfalfa weevils being less at later harvests.

Early harvest is thought to be an effective strategy because alfalfa

cutting happens before alfalfa weevil damage takes place while also

targeting early instar alfalfa weevil larvae that are vulnerable to

mortality (40, 41). Our finding that later harvest Julian days and

alfalfa plant stages are associated with a lower proportion of early

instar alfalfa weevil supports the notion that earlier harvests based

on either date or host plant development will target first and second

instar alfalfa weevils. Alfalfa weevil stages differed between states in

our study, with Wyoming having the lowest proportion of early

instar alfalfa weevil and Montana having the highest. This could be

influenced, in part, by the latitudinal differences between states and

associated climates found throughout the Intermountain West. For

example, De Frenne and colleagues (42) showed the importance of

latitudinal gradients in explaining variation in plant traits, which

could result from differences in temperature along such a gradient,

but also potentially other environmental drivers.

Alfalfa weevil post-harvest densities were impacted by a few

different variables that help us better understand the role of harvest

timing and alfalfa management. We found that higher levels of

alfalfa weevil damage were positively associated with higher post-

harvest weevil densities. Alfalfa weevil density and alfalfa weevil

damage have been shown to be positively correlated in previous

studies (21, 23). Since harvest does not completely eliminate all

alfalfa weevils in the field, the association between damage and post-

harvest weevil density is potentially due to increased alfalfa weevil
FIGURE 5

Post-harvest alfalfa weevil density plotted against pre-harvest
percent parasitism rate with model predictions and its 95%
confidence interval. Alfalfa weevil density is the median number
based on all 0.09-m2 (1-ft2) subplots collected in each field, so each
point represents a unique field.
FIGURE 4

Post-harvest alfalfa weevil counts plotted against the alfalfa damage
score pre-harvest with the average negative binomial regression
line. Each point represents a single 0.09-m2 (1-ft2) subplot so there
are multiple points per unique field. Point shape and color are
representative of collection year (2019, circle; 2021, triangle; 2022,
square) and state (CO, blue; MT, orange; WY, green).
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activity corresponding to higher weevil densities remaining in the

field after harvest (9, 43). Post-harvest weevil densities are a major

concern of producers who are critical of the efficacy of early harvest,

aligned with concerns that weevils will negatively impact their

second cutting.

In our study, the lower rates of alfalfa weevil densities on fields

without windrows may be associated with the potential of windrows

to serve as refuges for alfalfa weevil in harvested fields (26). If

windrows are not removed from a field quickly, alfalfa weevil can

potentially cause damage to regrowing alfalfa (44). Blodgett and

Lenssen (26) showed that as the windrows dried, alfalfa weevil likely

died or moved onto the field; removing windrows in a timely

manner could also remove the weevils in the windrows,

preventing them from moving into the field. Our work supports

the timely removal of windrows to decrease post-harvest alfalfa

weevil densities.

There were no clear associations between harvest Julian day and

the parasitism rate of alfalfa weevil by B. curculionis in our study.

However, harvest Julian day and weevil densities were associated in

our study (Figure 1), and others have documented a density-

dependent relationship between alfalfa weevil and B. curculionis

parasitism rates (19, 45). Our observation that a lower parasitism

rate measured pre-harvest was associated with higher post-harvest

alfalfa weevil densities agrees with other findings. Density-

dependent relationships are common in host–parasitoid

interactions (46, 47). Bathyplectes curculionis are efficient at

finding and parasitizing alfalfa weevil hosts. When densities are

low, they maintain high parasitism rates, but their rate of increase is

slower than the alfalfa weevil; thus, high levels of parasitism are not

maintained. Parasitism rates in our study were estimated within a

week of the harvest Julian day. Measurement of parasitism rates

over a longer time period, including the same day as harvest timing

and careful estimates post-harvest when densities are lowered,

could offer further clarity on how best to integrate harvest timing

recommendations with biological control. Nonetheless, the use of

early harvest rather than broad-spectrum insecticides is likely

advantageous for beneficial insects, including parasitoids.
5 Conclusion

Across the Intermountain West, the initial alfalfa harvest, as

decided by producers, spans over 1 month and a variety of alfalfa

plant stages. In general, we see greater predicted differences between

pre- and post-harvest alfalfa densities in producer fields that are

harvested earlier compared to fields with later harvests. Beneficial

management practices that producers would likely consider include

harvesting before substantial pre-harvest damage is present and

removing windrows as quickly as possible to lower post-harvest

weevil densities. The optimal harvest timing to maximize B.

curculionis impact remains unclear. This information would be

beneficial to future alfalfa weevil management given that B.

curculionis appear efficient at parasitizing alfalfa weevil at low

densities typical of those observed post-harvest.
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