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Climate change poses a significant threat to food security and global public

health with the increasing likelihood of insect pest outbreaks. Alternative ways to

control insect populations, preferably using environmental-friendly compounds,

are needed. Turmeric has been suggested as a natural insecticide with toxicity

properties in some insect groups. However, empirical evidence of the effects of

turmeric – and their interaction with other ecological factors such as diet – on

insect survival has been limited. Here, we tested the effects of turmeric and its

interactions with diets differing in protein source in the common housefly,Musca

domestica. We found that turmeric shortened lifespan independent of diet and

sex. Females in turmeric diets were heavier at death, which was likely driven by a

combination of relatively lower rates of body mass loss during their lifetime and a

higher percentage of water content at death. Each sex responded differently to

the protein source in the diet, and the magnitude of the difference in lifespan

between sexes were greatest in diets in which protein source was hydrolysed

yeast; individuals from both sexes lived longest in sucrose-milk diets and shortest

in diets with hydrolysed yeast. There was no evidence of an interaction between

turmeric and diet, suggesting that the toxicity effects are independent of protein

source in the diet. Given the seemingly opposing effects of turmeric in insects

and mammals being uncovered in the literature, our findings provide further

evidence in support of turmeric as a potential natural insecticide.
KEYWORDS

pesticide, environment, food security, contaminants, SDG
Introduction

Insect pests inflict damage to agricultural crops resulting in yield loss which causes

major economic losses worldwide. This damage is predicted to increase with climate

change (1, 2), as insects are sensitive to the rise in global temperatures and will pose further

threats to food security (3, 4). Pesticides are chemicals used to control insect outbreaks and

have been extensively used in agriculture. Approximately two million tonnes of pesticides

are used worldwide per year, which pollute ecosystems and pose serious health hazards for

living organisms (5, 6). For instance, dichlorodiphenyltrichloroethane (DDT) can remain
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in soils and water for years after exposure posing health risks for

humans and other living organisms (7, 8). Alternative ways to

control insect pest outbreaks are needed, which are affordable and

more environmental-friendly.

Natural compounds can have pesticide activity, making them

attractive for further studies as environmental-friendly alternatives

to chemical pesticides (9–11). Turmeric (Curcuma longa) is a spice

that is native to southeast Asia and is used worldwide as a medicinal

plant, food colouring agent, and an ingredient in supplements (12,

13). Studies have shown that turmeric is toxic to insects, likely in

part due to its main compound, curcumin, making this spice a

candidate as natural pest control agent (14–18). For example, a

study by Muhammad et al. (19) found turmeric extracts to be

effective against insect pests that were feeding on okra (Abelmoschus

esculentus). The results showed turmeric significantly protected the

okra plant from aphid (Aphis gossypii) attacks and was more

effective than synthetic pesticides that had been previously used.

Turmeric extracts have also shown to reduce the development of the

red flour beetle Tribollium castaneum, which helps to stop the

invasion of the beetle against wheat grains (20). Similarly, a study by

De Souza Tavares et al. (18) extracted ar-turmerone from C. longa

rhizomes to investigate its insecticidal effects against the cabbage

looper. This study found ar-turmerone reduced larval weight and

increased mortality of the cabbage looper which helped to stop the

insect from feeding on agricultural crops. Other studies have used

turmeric oils as a natural and effective insecticide to repel the grain

borer pest Rhyzopertha dominica from feeding on agricultural crops

(21, 22). These oils have been described as having insect repellent

properties and have been used as an insecticide against other indoor

pests including the acid flies Paederus fuscipes and the darkling

beetles Luprops tristis (23). These essential oils from turmeric also

show promising repellent activity against mosquito species (15).

Turmeric crude oil extract can also help to control cucumber

powdery mildew which is a toxic foliar disease caused by the

plant pathogen Podosphaera xanthii. This disease damages the

yield and reduces the quality of crops, but turmeric oils show

successful fungicidal effects against P. xanthii (24). Turmeric is

relatively cheap and more environmentally friendly alternative to

chemical pesticides. Thus, turmeric use as pesticide can contribute

towards more sustainable crop production that minimizes

environmental contamination and human health risks (25).

Nutrition is essential for insect growth and development but

can also act as – or modulate the effects of – toxic compounds (26,

27). For example, recent studies have shown that excess protein can

be toxic and shorten adult lifespan in flies and crickets (28–33).

Other studies have also shown that protein shortens lifespan in

different insect species including ants (34–36) and honeybees (37).

Diet also modulates insect survival and behaviour by playing an

interactive role with toxic bait compounds. For example, in the

German cockroach Blattella germanica, both protein-to-

carbohydrate ratios (PC ratio) and sugar type (glucose versus

fructose) interacted with the formulation of the bait containing

insecticide hydramethylnon to reduce survival of adult males and

first-instar nymphs (38). In fact, exposure to suboptimal, high-

protein diets improved bait effectiveness, suggesting that a high-

protein diet could potentialize the toxicity of the bait (38). Notably
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though, this study investigates the interaction of diet and a noxious

compound in the context of baits. Recent studies have broadened

this approach and investigated the interactive effects of diet and

toxic natural compounds. For example, Morimoto (39) showed that

urea was toxic for the development of Drosophila melanogaster

larvae but had no effect on oviposition choices by egg-laying

females. Moreover, it showed that high-sugar diets combined with

low and intermediate concentrations of urea were potentially more

detrimental to the development of the larvae than high-protein diets

with similar urea concentrations (39). Collectively, these results

suggest that (1) diet is a major ecological factor determining

development and health of insects, (2) diet modulates the toxicity

effects of chemical baits as well as (3) natural toxic compounds. To

date, however, we still need a better understanding of how diet and

natural toxic compounds interact in models other than D.

melanogaster (see e.g. past work by 14–18). Simpson and

Raubenheimer (40) showed that mortality was independent of the

allelochemical compounds tannic acid when locusts Locusta

migratoria were fed in near-optimum protein-to-carbohydrate

(PC) ratios, but the toxicity effect increased as the PC ratio

became more unbalanced. Insights into these sorts of interactions

can be invaluable when applying allelochemicals to modulate

survival and physiology of species with economic significance and

to better understand how herbivores interact with and adapt to

plant compounds (41).

To address this, we manipulated protein source in the diet and

turmeric levels to investigate how the toxicity of turmeric interacts with

diet to modulate housefly Musca domestica lifespan and body

composition. The common housefly, Musca domestica, is a

cosmopolitan species closely associated with humans, and is perhaps

one of the most common insect disease vectors of our societies (42–46).

With our changing climate, houseflies could become an increasing

threat to public health through the increase risks of disease

transmission (47, 48). Here, we tested whether turmeric interacted

with diet to shorten male and female lifespan, and then investigated

individuals’ body mass at death, loss of body mass over lifespan and

body water content at death.We predicted that turmeric would shorten

individual lifespan due to its known toxic effects.We also predicted that

flies feeding on sucrose alone would have a longer lifespan, based on

the findings in the literature for other insect species (28, 31). There was

not enough a priori information to conceptualise predictions about the

interaction between turmeric and diet. We predicted that body mass at

death, weight loss, and water content would be lower in flies in

turmeric diets, likely because of feeding avoidance due to the

presence of turmeric. Our results reveal how a noxious compound

and diet can be used to modulate lifespan and body traits in a

cosmopolitan insect species of public health interest.
Materials and methods

Fly stock and experimental flies

Houseflies were maintained in a large stock population (>700

individuals) at 25°C and 35% humidity, with a 12:12 hour light:dark
frontiersin.org
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cycle. Flies were obtained as pupae from a commercial supplier

(Blades Biologics Ltd) and were maintained in the laboratory for 5

generations prior to the experiments. Stock colonies were maintained

inside mesh cages (32cmx32cmx32cm) (BugDorm-4E4545;

MegaView science Co. Limited). Adults were given ad libitum

access to Hydrolysed Yeast (MP Biomedicals, Cat no: 103304) and

commercial sucrose (Tate and Lyle White Granulated Sugar). Water

was provided using a 500ml lidded Plastic Container with a slit cut

into the centre of the lid which gave access to water through a moist

surface and minimised drowning. We collected eggs to generate

experimental flies by introducing a plastic container (14cm x 9cm x

5cm) into the stock cage containing the larval diet used to maintain

our stocks. Larval diet recipe included 70g Organic Wheat Bran, 6g

Nestle Instant Full Cream Milk Powder, 15g Alfalfa meal from

Supreme Science Selective Guinea Pig Pellets (blended) and 300ml

water. Females were allowed to lay eggs freely for 12 hours, after

which containers were placed onto 1-2 cm of ground wheat bran

within a larger 3 litre container (23cm x 16cm x 8cm) and reserved at

controlled temperature (see above) to complete development. Larval

diet was monitored daily, and water was added to the container to

avoid desiccation. After 10 days, the larval diet was flooded with

approximately 200ml of water to encourage pupation. Pupae for the

experiments were retrieved from bran using a commercial sieve,

reserved in Petri dishes at controlled temperatures for 7 days, and

assigned to one of the experimental diets.
Experimental diets and turmeric

We randomly sampled 280 pupae collected and placed each

pupa in one of the experimental treatments. From those, 213 pupae

were weighted and randomly allocated to plastic vials (SARSTEDT,

Ref: 58.631, 75 x 23.5mm) containing 5mL of each of the four

experimental diets (henceforth ‘diets’) which varied in the protein

source that was available to the flies: Sucrose, Brewer’s Yeast (BY)

(MP Biomedicals, Cat no: 903312), hydrolysed yeast (HY) (MP

Biomedicals, Cat no: 103304) and whole milk (Nestle Instant Full

Cream Milk Powder, Nestlé) (M) diets. From manufacturer

specifications, HY was the diet with the highest protein content

(ca. 60%), followed by BY (ca 40%) and M (ca. 25.7%). Table 1
Frontiers in Insect Science 03
summarises the diet recipes. Each diet had two turmeric levels:

control (0%) and treatment (5%) turmeric (w/v) (Turmeric from

Sevenhills Wholefoods®). The product has a reported average

curcumin content of 2.5%.We selected 5% turmeric concentration

for this study to test whether similar toxicity levels were observed in

houseflies as we found in D. melanogaster (14). Our final sample

sizes per diet treatment with and without turmeric, respectively,

were for Sucrose (n = 30, 26), M (n = 34, 33), HY (n = 28, 24) and

BY (n = 19, 15), for a total of 213 data points. The sample sizes were

uneven due to the availability of consumables.
Survival and body water content

We investigated how adult diet composition and the presence

of turmeric affected survival time and body composition. Pupae

were weighted and allocated to treatments as mentioned above.

Adults in the experimental treatments were maintained in

isolation for the entire experiment and were monitored daily

which allowed us to measure lifespan. Once the individuals

died, they were frozen at -20°C within 24 h. We then processed

the individuals by measuring their weight at death and water

content at death. Water content at death was obtained by

subtracting the weight at death from the weight after individuals

were maintained at 65°C for 2 days; water content at death was the

difference between wet body weight at death minus dry body

weight at death, divided by wet body weight at death x 100 (for

percentage). All individuals were weighed in a SECURA124-1S,

Secura® Laboratory Balances, Sartorius (precision: 0.00001g).
Statistical analysis

All statistical analyses were conducted in RStudio version

4.2.2. We used the ‘ggplot2’ package version 3.4.3 (49) for data

visualisation (50). We wrangled the data using ‘stringr’ version

1.5.0 (51); ‘car’ version 4.0.0 (52); ‘dplyr’ version 1.1.3 (53);

‘survival’ version 3.5-7 (54); ‘ggfortify’ version 0.4.16 (55) and

‘tidyr’ packages version 2.0.0 (56). We fitted a survival model

with Weibull distribution to assess the effects of diet, turmeric,

and sex on fly survival. This model was selected for having lower

AIC values compared with a model with exponential (Gompertz)

distribution (Weibul: 1471.2 vs Exponential: 1804.36). We fitted

linear models with either adult weight at death, weight loss from

pupae to adult at death, and water content at death as response

variables, and the main, two-way and three-way interactions of

turmeric, diet and sex as explanatory variables. We also included

individual fly lifespan as a covariate to control for differential

survival effects on body weight and composition estimates. To

improve model fit, we transformed adult weight at death (weight

at death^2) and water content (square-root). P-values were

obtained from F-statistics using the inbuilt anova function in

R for all models except survival, where p-values were obtained

from a log-rank test using the ‘Anova’ function of the

‘car’ package.
TABLE 1 Diet recipes. Values given for a total volume of 100ml of diet.

Ingredients*
Sucrose
(n=80)

BY
(n=40)

M
(n=80)

HY
(n=80)

Sucrose (g) 8 5 8 5

Hydrolysed Yeast (g) – – – 8

Brewer’s yeast (g) – 8 – –

Milk powder (g) – – 8 –

Agar (g) 1.5 1.5 1.5 1.5

Nipagin solution (ml) 1 1 1 1

Water (ml) 100 100 100 100
*5% of Turmeric was added to each 100ml of diet.
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Results

Turmeric shortens lifespan in a diet- and
sex-independent fashion

We first tested whether turmeric addition to diets with varying

protein sources shortened individual lifespan. There was a

statistically significant two-way interaction between diet and sex

(c2 = 62.849, p < 0.001). This was driven by the fact that males had

substantially shorter lifespan than females when the protein source

was hydrolysed yeast (HY), but this effect disappeared in sucrose

only diets and diets with brewers’ yeast (BY) or whole milk (M) as

protein sources (Figure 1A). There were also statistically significant

effects of diet (c2 = 105.318, p < 0.001), turmeric (c2 = 15.884, p <

0.001) and sex (c2 = 16.949, p < 0.001). These effects were driven by

the fact that, on average, turmeric addition to the diet or HY as

protein source shortened lifespan of both males and females,

whereas males were on average shorter lived than females

(Figure 1A; Supplementary Table S1). The three-way interaction

between diet, turmeric, and sex was not statistically significant (c2 =
6.347, p = 0.096), neither were the two-way interactions between

turmeric and sex (c2 = 0.026, p = 0.872) and diet and turmeric (c2 =
6.412, p = 0.093). These results showed that turmeric addition

shortened lifespan in a diet- and sex-independent fashion,
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corroborating the potential role of turmeric as noxious compound

to shorten insect lifespan. Moreover, the results also showed that

protein source in the diet can have sex-specific effects on lifespan

despite the presence of turmeric.
Turmeric and diet modulate body traits,
although not necessarily interactively

Next, we investigated the effects of turmeric and protein source

in the diets on organismal traits such as body weight at death and

water content at death, which were used here as proxies for

individual condition. After controlling for differential survival

across treatments, there was a statistically significant effect of sex

(F1,123 = 7.159, p = 0.008) and turmeric (F1,123 = 6.536, p = 0.011),

whereby female flies on turmeric diets were on average heavier at

death (Figure 1B). This effect could have emerged from two factors.

First, female flies on turmeric diet could be heavier because they lost

relatively less weight over their lifespan. Indeed, after controlling for

differential survival, males lost more weight from pupae to adult

death (F1,123 = 5.163, p = 0.024), but turmeric had no effect on

weight loss (F1,123 = 0.035, p = 0.851; Supplementary Table S1;

Figure 1C). As a result, weight loss alone could not fully explain the

results the effects of turmeric and sex on adult weight at death.
B

C D

A

FIGURE 1

Turmeric shortens lifespan and affect body traits in houseflies. (A) Female (solid) and male (dashed) survival across diets varying in protein source
with (yellow) and without turmeric (grey). (B) Body weight at death across diets with and without turmeric. (C) Lifetime weight loss (from pupae to
adult death) across diets with and without turmeric. (D) Water content at death (square root-transformed) across diets with and without turmeric. M,
Whole Milk as protein source; BY, Brewers’ yeast as protein source; HY, Hydrolysed yeast as protein source.
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A second explanation for the effects observed for weight at

death could be due to differential water loss. Insect adult body

composition is primarily related to water content (57, 58). Thus,

turmeric could have affected individual hydration, which in turn

influenced their weight at death. After controlling for differential

survival, there was a statistically significant interaction between

turmeric and sex (F1,123 = 3.983, p = 0.048; Supplementary Table

S1), which was driven primarily by the fact that females on turmeric

diets had on average higher water content at death (Figure 1D).

There was also a small but statistically significant effect of diet

(F1,123 = 3.055, p = 0.0310), driven by lower water content at death

in M diets for both sexes and irrespective of turmeric (Figure 1D).

These results showed that body weight at death was higher for

females in turmeric diets likely due to a combination of lower body

weight loss over lifespan and a relatively higher water content at

death for females in turmeric diets. There were no other statistically

significant three-way, two-way or main effects in the models of

weight loss and water content (Supplementary Table S1).
Discussion

We set out to test the additive and interactive effects of turmeric

in diets with varying protein sources in houseflies. Our data showed

that turmeric shortened lifespan in a diet- and sex-independent

fashion. This confirms our prediction that turmeric is a toxic

compound which could potentially be used to control the

development of houseflies. We also found that turmeric and diet

independently modulated organism traits such as body mass loss

during their lifetime and a higher percentage of water content at

death. There was no evidence that turmeric interacted with diet. We

also found that females had longer lifespan than males across all

diets with and without turmeric, but the magnitude of the difference

was diet-dependent but turmeric-independent. Together, our

findings show that a natural compound such as turmeric can be

used as an insecticide in a cosmopolitan fly species.

Our findings corroborate the role of turmeric in shortening

lifespan from previous studies (Figure 1A). For instance, Uysal et al.

(17) found that turmeric shortened lifespan in D. melanogaster

adults. Similarly, von Hellfeld et al. (14) found that increasing

turmeric concentration in the diet decreased oviposition in adult

females and subsequently reduced egg-to-adult viability in the

developing larvae in D. malanogaster. In fact, the study showed

that high turmeric levels (>5%) could lead to complete

developmental arrest (14). The molecular mechanisms through

which turmeric – or compounds therein – leads to toxicity in

insects is uncertain but Rahman et al. (59) found that higher

concentrations of turmeric (>1%) in the diet decreased b-tubulin
levels in the brain and affected a range of physiological traits of D.

melanogaster. The study also found that an optimal dosage of 0.5%

of turmeric could maintain healthy aging by increasing b-tubulin
expression. Moreover, 0.5% turmeric also improved survivability,

locomotor activity, fertility, tolerance to oxidative stress, and eye

health (59). Taken together, these results suggest that turmeric has a

non-linear effect on insect health: at lower concentrations, turmeric
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might be beneficial by increasing b-tubulin and protecting the

physiology of the individual up to a point, after which turmeric is

toxic and leads to negative effects that decrease survival. This could

occur if turmeric has a hormesis-like effect in the individuals (i.e.

beneficial effect of low exposure to a toxic compound). Hormesis-

like benefits upon exposure to stressors have been described in

Drosophila species in terms of temperature (60–62), radiation (63)

and larval crowding (64, 65), showing that hormesis-like responses

can be ubiquitous. As turmeric can be used as an insecticide, and

hormesis is known to occur in response to insecticides in other

species (66), future studies should investigate the molecular

underpinnings of the responses described here to ascertain

hormesis-like molecular profiles. This leads us to hypothesise that

the relationship between turmeric concertation in the diet and b-
tubulin expression in the brain is a concave parabola. Having said

that, von Hellfeld et al. (14) conducted a discrete dose-response

study and found that turmeric was harmful for the developing

larvae at concentrations above 1% but found no evidence of

beneficial effects. Dose-response studies for turmeric in other

species are needed to uncover the nuances of the toxic vs

beneficial effects of turmeric in insects.

Curcumin, one of the main components of turmeric, was found

to extend the lifespan in D. melanogaster (67–69). Curcumin

prolongs lifespan in D. melanogaster by enhancing superoxide

dismutase (SOD) activity. Similarly, Chen et al. (68) also found

that under heat stress conditions, adding curcumin to diet eased the

effects of increased oxidative stress by increasing SOD expression

and resulting in longer lifespan. Shen et al. (69) found that D.

melanogaster fed diets with either 0.5 or 1.0mg/g of curcumin in the

diet also increased the enzyme activity of SOD in both adult male

and females. Curcumin extended the lifespan and improved the

physiological traits that are related to aging. It is therefore possible

that turmeric effects on survival are modulated directly by

curcumin, and that curcumin might itself be beneficial while

other compounds in turmeric may be triggering toxicity. The

benefits of curcumin are likely observed due to its antioxidant

role. It is unclear why an excess of curcumin could lead to toxicity,

and this is an important area for future studies, which should

conduct a dose-response experiment with both curcumin and

turmeric to disentangle the roles of each of these compounds in

the beneficial vs toxic effects in insects.

Our findings that females on turmeric diets were on average

heavier at death contradicts a previous study by Rawal et al. (70)

which showed that flies feeding on turmeric had no noticeable effect

on body weight in D. melanogaster, although there was a slight

decline in body weight in their experiment which was attributed to

the process of aging. More studies are needed to corroborate

whether turmeric feeding affect body traits in insects.

Nevertheless, our data supports previous findings in nutritional

research and showed that flies feeding on protein-rich diets had

shortened lifespan. This is because amongst the protein sources

used here, hydrolysed yeast contained the highest protein

concentration (~60% according to manufacturer report). This

corroborates previous findings in other flies that protein-rich

diets shortened lifespan (28, 30–33), which has also been found in

other insect species (e.g. 29, 34–37, 71). In fact, a recent comparative
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nutrition study showed that lifespan is maximized at lower protein-

to-carbohydrate ratios, and that Dipterans often survive the longest

in sugar-rich diets (72). It is important to note that, because there

are no holidic diet developed for houseflies in the literature, we

cannot interpret our results in relation to protein and carbohydrate

ratios alone since our manipulation of protein source also varied

other micronutrients which might be important for survival. Future

studies manipulating these micronutrients will shed light into their

relative contributions to the survival and body composition effects

found here. Nonetheless, our results add to this body of literature by

showing that houseflies also survive longer in sugar-rich diets.

Conclusion

Our study shows that turmeric can be an important ally to

shorten lifespan of houseflies, a species with public health interest.

This adds to the growing literature showing that turmeric can be

used to manage insect pests of agriculture. Notably, turmeric has

known health benefits to mammals and humans (e.g. 73, 74). This

makes turmeric the perfect candidate to be used in agricultural

insect pest control because it can have no – or even positive – effects

on animals and humans that consume the food treated with

turmeric. Overall, turmeric is emerging as a potent natural

pesticide in both fundamental and applied entomology and our

study corroborates the potential uses of turmeric for insect control.
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