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Voltage-gated ion channels as
novel regulators of epithelial ion
transport in the osmoregulatory
organs of insects
Jocelyne Dates and Dennis Kolosov*

Department of Biological Sciences, California State University San Marcos, San Marcos, CA,
United States
Voltage-gated ion channels (VGICs) respond to changes in membrane potential

(Vm) and typically exhibit fast kinetic properties. They play an important role in

signal detection and propagation in excitable tissues. In contrast, the role of

VGICs in non-excitable tissues like epithelia is less studied and less clear. Studies

in epithelia of vertebrates and invertebrates demonstrate wide expression of

VGICs in epithelia of animals. Recently, VGICs have emerged as regulators of ion

transport in the Malpighian tubules (MTs) and other osmoregulatory organs of

insects. This mini-review aims to concisely summarize which VGICs have been

implicated in the regulation of ion transport in the osmoregulatory epithelia of

insects to date, and highlight select groups for further study. We have also

speculated on the roles VGICs may potentially play in regulating processes

connected directly to ion transport in insects (e.g., acid-base balance,

desiccation, thermal tolerance). This review is not meant to be exhaustive but

should rather serve as a thought-provoking collection of select existing

highlights on VGICs, and to emphasize how understudied this mechanism of

ion transport regulation is in insect epithelia.
KEYWORDS
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1 Introduction

Insects are themost diverse group of animals with approximately 1million species that span

all geographical, aquatic, and terrestrial environments. In order to overcome their physiological

disadvantage of having a large surface-to-volume ratio, insects have evolved and conserved a

diverse range of systemic osmoregulatory functions to maintain internal homeostatic conditions

(1, 2) that protect against unfavorable environmental challenges (3). Many insects face frequent

and rapid salt-and-water imbalance due to their environmental ion availability changes, feeding
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habits, alterations in acid-base balance, desiccation, changes in

environmental temperatures, and even buoyancy.

For instance, a blood-feeding mosquito must get rid of extra

water ingested with a blood meal rapidly to address the post-

prandial salt-and-water imbalance. A caterpillar eating ~5 times

its own body weight in food daily must excrete gargantuan amounts

of metabolic wastes and plant-based xenobiotics and be able to

adjust ion transport within minutes when necessary. To add insult

to injury, the only way for a caterpillar to digest plant-based food

and tap into the nutritional potential of plants is to raise midgut pH

to ~11 to dissociate plant proteins from tannins (4). Some insects

(e.g., beetles) possess a sophisticated “desiccation tolerant”

physiological adaptation to cope with intermittent or evaporative

water loss by accumulating and storing water in the haemolymph

(2, 5, 6). Many insects face rapid and drastic changes in the

temperature of their environment. Chill-susceptible insects

experience chill injury or chill coma with exposure to unfavorable

thermal conditions when key osmoregulatory and active ion

transport mechanisms decline, disturb membrane polarization

and ion balance, and negatively impact energy budgets as

temperatures decrease (1, 7, 8). Chaoborus midge larvae control

buoyancy by manipulating pH levels using ion-transporting

endothelia adjacent to the air-sac’s pH-sensitive protein resilin,

which encourages the passive diffusion of gases across the

endothelium that covers air-sac (9). All of these processes involve

epithelia/endothelia that may benefit from employing fast ion
Frontiers in Insect Science 02
transport-regulating mechanisms like the one discussed in

this review.

Epithelial tissues simultaneously serve as: (i) a barrier between

internal and external environment, and (ii) as a conduit for selective

exchange of ions, nutrients, and wastes. Integral membrane

proteins, like ion pumps, channels, aquaporins, and transporter

are embedded in the membrane and form complexes that regulate

Vm (10, 11) and provide a transmembrane pathway for ions and

fluid (12).

Ion channels can be activated by temperature, osmolarity,

ligand binding, mechanical change in the cell membrane, pH,

neuroendocrine signals, and Vm (13–15) and display a spectrum

of ion selectivity (Na+, K+, Cl, and Ca2+) (16). For the purpose of

this review, voltage-gated ion channels (VGICs) are broadly defined

as channels belonging to the voltage-gated ion channel superfamily

regardless of whether they’re actually activated by changes in Vm,

which is considered on a case-by-case basis. The primary function

of VGICs is to generate action potentials in excitable tissues in

response to changes in the cell Vm (17–23). Since the development

of patch-clamp electrophysiology, protein purification and

molecular and biochemical techniques, >250 types of ion

channels have been identified (24, 25).

Interestingly, expression of many CaV, KV, NaV, and non-

selective cation permeable VGICs has been reported specifically in

epithelia of animals ranging from early divergent Placozoans to

vertebrates (e.g., 26) (See Table 1). The genesis of the study of how
TABLE 1 Voltage-gated ion channels (VGICs) expressed in non-insect epithelia with potential roles they may play noted (where available).

Animal
clade Species Tissue/Organ

Differential Factor/
Proposed Role VGICs Ref.

Placozoa Trichoplax adhaerens

dorsal epithelium – CaV1 (27)

outer edge of
dorsal epithelium

– CaV2 (28)

Asteroidea Patiria pectinifera coelomic epithelium – CaV3, HVCN1, TRPA, TRPM (29)

Mollusca,
bivalves

Tridacna squamosa gill/ctenidium light exposure CaV1 (30)

Crassostrea gigas mantle epithelium
salinity, exposure to

dilute seawater
CaV3 (31)

Teleosts, eels

Anguilla japonica gill epithelia
environmental salinity (freshwater

vs seawater)
PVC - SCN3B, CaV1, TRPA1,
HVCN1; MRC - CaVa2d3

(32)

Anguilla anguilla
swim

bladder epithelium
metabolic activity
(rest vs. exercise)

CaV1, CaV2, CaV3, CaVa2d2,
CaVb, CLCN, HCN, HVCN1,
KCNA, KCNB, KCNC, KCND,

KCNF, KCNG, KCNH,
KCNMA1, KCNN, KCNQ,

KCNT, KCNV, NaV,
TRPC, TRPM

(33)

Amphibia Rana esculenta

Basolateral in distal
convoluted tubule and
intercalated cells of
collecting duct in
kidney nephron

K+ secretion/reabsorption KCNQ1 (34)

Chondrichthyes Squalus acanthias Rectal gland function unclear KCNQ1 (35)

(Continued)
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TABLE 1 Continued

Animal
clade Species Tissue/Organ

Differential Factor/
Proposed Role VGICs Ref.

Mammals

Homo sapiens

HK-2 kidney
epithelial cells

cytokine TGF-b1 stimulation
HCN, KCNA, KCNH,

KCNMA1, KCNQ, KCNS, TRPA,
TRPC, TRPM, TRPV

(36)

Intestinal and gastric,
skin, lung, liver, and
kidney epithelia

– CaV1 (37)

Vascular endothelium
KV channels contribute to

K+ transport
Irk/Kir, BK, TRPC (38)

lung epithelia H+ secretion HV1 (39)

adrenal gland, lung function unknown KV4.3/erg (40)

Mus musculus

distal lung epithelium development
CaVb, CLCN, KCNA,

KCNH, TRPM
(41)

collecting duct
epithelial cells

–
CaVb, CLCN, KCNQ, KCNS,

TRPM, TRPV
(42)

Gastric, thyroid,
intestinal and
choroid plexus

K+ transport KCNQ channels (43)

kidney nephron K+ reabsorption and recycling KCNQ1 (44)

kidney, stomach,
exocrine pancreas

K+ secretion and recycling, in
maintaining the resting potential,
and in regulating Cl- secretion

and/or Na+ absorption

KCNQ1 (45)

kidney and
colon epithelium

K+ secretion BK (12)

primary cilia in
renal epithelia

osmotic stress response TRPM3 (46)

Canis lupus familiaris
cultured

kidney epithelia

osmolality stress
SCN1B; CaV2.3, 3.1; KCNQ4,

KCNC4, HCN2,
TRPV1,2; TRPM6

(47)

salt stress
SCN1B; CaV3.1; KCNQ4;

KCNC3; HCN2;
TRPC1; TRPV1,2

Didelphis virginiana
opossum kidney

(OK) cells

maturation

SCN9A; CACNA1C;
CATSPER2; CATSPER3;

KCNAB2; KCNB2; KCNQ2;
KCNH4; HVCN1; TRPM7;
TRPM8; TRPC3; PKD2,1L2;

TRPV4; HCN2
(48)

orbital shear stress

SCN9A; CACNA1C;
CATSPER2; CATSPER3;

KCNAB2; KCNB2; KCNQ2;
KCNH4; HVCN1; TRPM7;

TRPM8; TRPC3; PKD2, PKD1L2;
TRPV4; HCN2

Oryctolagus cuniculus and
Ratus norvegicus

kidney and colon
ion transport and stabilization of
the resting membrane potential

KV1.3/Shaker (10)

Ratus norvegicus
pancreas, intestine,
airway, kidney

provides the driving force for Cl–

transport across basolateral
membrane of pancreas, airway,

and intestinal epithelia

KCNQ1 (49)
F
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VGICs in red decrease in mRNA abundance, while VGICs in purple increase in mRNA abundance (where available).
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VGICs regulate ion transport in insect epithelia traces itself to a

recent collection of studies that investigate the topic in the

Malpighian tubules (MTs) of lepidopterans. Analogous to

the mammalian kidney, the MTs of insects, together with the

hindgut, serve as the primary osmoregulatory and excretory

organs carefully balancing the uptake and recycling of vital ions

and fluid while efficiently excreting ingested xenobiotics/toxins, and

metabolic wastes (50).

One phenomenon is common to all insect MTs – they must

secrete ions into their lumen to osmotically draw water in, and drive

excretion and osmoregulation (see Figure 1) (51). Evolving

approximately 350 million years ago, the highly conserved two-cell-

type structure of insect MT epithelium, comprised of stellate cells
Frontiers in Insect Science 04
(SC) and principal cells (PCs), employ physiologically distinctive cell-

specific transepithelial cation and anion transporting mechanisms

(2). Although, the MTs of Drosophila melanogaster have been used as

the insect model of study for human renal pathologies (52, 53), there

are substantial differences in complexity of the insect MTs between

different clades of insects (54), highlighting the need for clade-specific

investigation of ion transport mechanisms in osmoregulatory

epithelia (see Figure 1A). For instance, how PCs and SCs transport

ions does not translate between insect clades, and in many cases blind

ends of MTs are either closely associated with the hindgut or are

embedded into a specialized structure (15, 55, 56).

In lepidopteran larvae, the distal end of MT is embedded into a

specialized structure, the rectal complex (see Figure 1B). This allows

the larvae to extract ions and water from their diet that they use to

secrete fluid in the MTs. The remainder of the tubule (not

embedded into the rectal complex) reabsorbs ions. However,

when the gut is empty (e.g., during moulting or cessation of

feeding), ions and water cannot be procured from the gut. A

downstream region called the distal ileac plexus rapidly switches

from ion reabsorption to ion secretion to enable osmotic secretion

of fluid into the MTs, and to ensure that MTs function is not

interrupted. This process is regulated in part by VGICs, which likely

contribute to how rapidly (~10 min) the switch takes place in the

MTs (Figure 1C). Given profound differences in the structure and

function of MTs in insect clades, this begged the question of

whether VGICs may be present in the MTs of other insects?

Perhaps, even in other osmoregulatory epithelia of insects?

In addition to the MTs and the hindgut, many insects employ

epithelia/endothelia that either play a direct role in osmoregulation

(e.g., anal papillae of mosquitoes (e.g., 57, 58), collophore epithelia

of springtails (e.g., 59)), or employ ion transport that is tied to other

functions - e.g., gas bladder endothelia that regulate buoyancy in

midge larvae (e.g., 9), blood-brain barrier endothelia that maintain

the ion content of neuron-bathing fluid (e.g., 60). Caution must be

used, however in the study of whether VGICs regulate ion transport

in many of these organs, as excitable tissues layers (nerves, muscles)

may confound results obtained in whole-organ studies.

Lastly, MTs epithelia play important roles in the immune

response, oxidative stress, and response to xenobiotics and toxins

(61). A speedy response to any of these using fast-acting VGICs

would surely be of benefit to insects.
2 Voltage-gated Ca2+ channels

CaV channels are selectively permeable to Ca2+ and open in

response to membrane depolarization (62, 63). In the

osmoregulatory epithelia of insects, CaV1 has been detected in the

MTs of Drosophila melanogaster, and implicated in intracellular

signaling, directional Ca2+ transport and the regulation of diuresis

(64). Likewise, CaV1 was shown regulate epithelial ion transport in

the MTs of larval Trichoplusia ni (65), and larval and adult Aedes

aegypti (58). Additionally, the same study has localized CaV1 in

hindgut epithelium of the blood-fed adults of Aedes aegypti, where it

may play a role in the regulation of post-prandial diuresis. The
A

B

C

FIGURE 1

(A) Malpighian tubules (MTs) are blind outpouchings between the
midgut and the hindgut of an insect - they secrete fluid by secreting
ions into the lumen, and allowing water to follow by osmosis, with a
paracellular junction leak component. Structure and functional
adaptation depends on the insect clade. (B) In the larval lepidopterans,
the distal end of each tubule is embedded into the rectal complex (in
longitudinal section, dashed blue line, top panel). Each embedded
tubule connects to the ‘free’ (unattached) region, suspended in the
hemolymph and closely juxtaposed to the gut. Larvae have two
options as a source of ions and water for secreting fluid in their MTs.
The reabsorptive option (in purple) sources ions and water from the
gut by way of the blind embedded tubules when the caterpillars are
well fed. Some ions reabsorbed from the gut are transferred into the
hemolymph across the unattached MTs. The secretory option (in red)
sources ions and water from the larva’s hemolymph, when dietary
ions and/or water are unavailable or are in short supply (e.g.,
postprandially or during molting). (C) The switchover between
reabsorption and secretion takes as little as 10 min.
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function of other CaV channels in insect epithelia remains unclear.

In most animals studied to date, CaV channels demonstrate

conserved biophysical properties across clades, and CaV2 has

different properties from CaV1 and CaV3 (66). The use of

isoform-specific inhibitors may help discern the roles of other

CaV3 isoforms in the MT of insects. Typical Vm of epithelial cells

in MTs varies depending on the insect clade and osmoregulatory

status of the animal (e.g., post-prandial, ion-rich diet). The use of

high- and low-voltage activated CaV channels may provide an

additional link between the regulation of ion transport and Ca2+

signaling. Ca2+ as a second messenger whose role is to maintain Ca2

+ stores and concentration, a powerful activator of potassium

transport mechanisms (14).

In addition, as Ca2+ is a general second messenger, there is

potential for CaV channels to be involved in the regulation of

epithelial processes other than ion transport, such as acid-base

balance, desiccation and thermal tolerance, buoyancy control, and

regulation of blood-brain barrier.
3 Voltage-gated K+ channels

KV channels belong to a diverse superfamily of proteins (67,

68) distinguished by their K+ selectivity (21), and their role in K+

transport, recycling, and intracellular signaling (69–71). Within the

K+ channel superfamily, KV channels and at least 9 of their

subfamilies are widely expressed in the membranes of excitable

and non-excitable tissues (10, 72). KV channels can also be activated

by Na+ or Ca2+, can be inwardly rectifying or delayed rectifying, and

display fast or slow kinetics of opening and closing (68, 73–76). KV

channels (KV1-KV4) named Shaker/KV1.3, Shab/KV2, Shaw/Kv3.1,

and Shal/KV4, based on Drosophila studies, vary in biophysical

properties (77–82).

Inward-rectifying potassium (Kir) channels received their name

from the fact that the inward flow of K+ into the cell at any given

voltage is greater than the outflow at same voltage but opposite in

polarity (83). Kir channels play a role in K+ secretion into MTs of the

yellow fever mosquito Aedes aegypti, the fruit fly Drosophila

melanogaster, and larval lepidopteran Trichoplusia ni (84). In

Drosophila, three Kir homologues irk1, irk2 and irk3 are involved

in PC-based K+ secretion (85, 86). In the MTs of yellow fever

mosquito Aedes aegypti, transepithelial secretion of K+ is regulated

by Kir1 located in the SC’s basolateral membrane and by Kir2B in the

basolateral membrane of PC’s (87, 88). Together Kir1 and Kir2B are

credited with conducting 66% of total transepithelial K+ secretion in

Aedes MTs. Additionally, Kir1 has been shown to play a role in K+

secretion in the basolateral membrane of principal cells of a larval

lepidopteran T. ni (55). Notably, there are pronounced differences in

cellular localization of Kir isoforms in the MTs of different insects but

have been detected in the MTs of larval lepidopterans using

transcriptomic approaches (56, 89).

KCNQ/KV7.1 are VGICs found in excitable and non-excitable

cells that are sensitive to extracellular [K+], providing constant

repolarizing force that controls Vm (21). Interestingly, the

membrane protein Potassium Voltage-gated Channel Subfamily E
Frontiers in Insect Science 05
Regulatory Unit 3 (KCNE3) regulates the function of K+ channel

KCNQ1 channel by co-assembling with its ɑ subunits preventing

channel closure and converting it into a voltage-independent

channel (90), while remaining constitutively active and open (43)

at a negative voltage that would typically close the channel (91, 92).

In insect epithelia, KCNQ1 was found to be enriched specifically in

Drosophila MTs, although its function in the renal tissue has not

been investigated to date (93). Recently, several studies detected

KCNQ channels in MTs of larval lepidopteran T. ni (89, 94).

KCNQ1 has also been detected in the MTs of larval dipteran Ae.

aegypti where this channel may contribute to K+ secretion in the

MTs of brackish water (BW) larvae, helping the larvae rid

themselves of extra K+ and preventing K+ loading with BW

exposure. KCNQ1 was also found in anal papillae of larval Ae.

aegypti, where it may play a role in uptake of environmental K+ by

the AP of larvae in freshwater (FW), aiding larvae in retention of

hemolymph K+ in the face of diffusional K+ loss to FW (58).

In addition to being directly involved in ion transport in

osmoregulatory epithelia, KV channels may be involved in

response to extracellular hyperkalemia observed in chill-injured

insects (e.g., 95). Low levels of K+ are essential for the proper

function of the brain in insects (96), and potential use of KV

channels by the blood-brain barrier endothelia (especially in K+-

feeding herbivores) may be advantageous for rapid rebalancing of

K+ between body compartments.
4 Voltage-gated Na+ channels

The ability to rapidly regulate natriuresis may be advantageous to

certain insects – e.g., the female mosquito can rapidly increase

diuresis to efficiently remove excess Na+ post ingestion of a blood

meal (97). In blood-feeders, the electrochemical potential of Na+ is

what drives Na+-rich fluid secretion (98). Transcripts encoding NaV
channels like Para and Nalcn have been detected in the MTs of larval

lepidopterans T. ni (89, 94) and Helicoverpa armigera (99) as well as

that both MTs and anal papillae of larval dipteran Ae. aegypti (58).

Previous pharmacological studies suggested that apical Na+ channels

regulated Na+ uptake in anal papillae (57, 100) and Na+ channels

present in the MTs ofAe. aegypti transport Na+ from haemolymph to

lumen via voltage gradients created by V-type H+ ATPase (88, 101,

102). A recent study demonstrated that Nalcn is present in the water-

facing membrane of anal papillae in the larval Ae. aegypti (58).

Although a significant number of neuropeptide toxins specific to NaV
channels have been identified among vertebrates, insect NaV channels

are remarkably different, which may prove mechanistic study of their

function in insect epithelia rather challenging (103).

Na+ balance is especially important to plant-feeding insects as

all excitable tissues require Na+ for producing action potentials, but

it can be quite low in the diet, necessitating bizarre behaviors like

puddling in adult moths aimed at supplementation of low dietary

Na+ with that acquired frommud puddles of vertebrate urine. Thus,

in addition potentially contributing to epithelial Na+ transport NaV
channels could be used by blood-brain endothelia to quickly

rebalance Na+ between body compartments.
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5 Cation-selective VGICs

5.1 Transient receptor potential channels

TRP channels are cation-permeable (Na+, K+, Ca2+) voltage-

dependent channels (104). TRP channels are activated through a

range of gating mechanisms including Vm depolarization (105).

TRPA channels carry out functions in many excitable and non-

excitable tissues like those found in Drosophila gut epithelia (106,

107). Several families of TRP channels have been reported in the

osmoregulatory epithelia of in insects, including insect-specific

Painless and Pyrexia TRPA channels. TRPA channels have been

detected in MTs of larval T. ni (89), Pieris rapae (108) and

Bactrocera dorsalis (109). TRPA1, TRP/Painless and TRP/Pyrexia

are more permeable to K+ than to Na+, with well-established roles in

nociception and thermotaxis in excitable tissues of insects (110–

112). Six TRPA channels have been detected in MTs and AP of

larval Ae. aegypti and mRNA abundance of every channel was

altered as a result of BW exposure in MTs or anal papillae (58). TRP

channels may provide an additional link between epithelial Vm, ion

transport, Ca2+ signaling, and activation of other VGICs in

insect MTs.

In addition to playing a role in the regulation of epithelial ion

transport, TRP channels like Painless may serve as peripheral thermal

sensors since they have been shown to respond to increased

temperatures in vitro (i.e., regardless of the context of which tissue

they’re expressed in) (113). Attuning the function of osmoregulatory

epithelia to changes in environmental temperature may be

particularly advantageous for these small ectothermic animals.
5.2 Hyperpolarization-activated cyclic
nucleotide-gated channels

Whereas most VGICs open in response to depolarization, a

stand-out group of VGICs is activated by hyperpolarization - the

HCN channels, which are permeable to both Na+ and K+, and are

additionally activated by cyclic nucleotides, where the latter

overrides dependence on Vm changes (114). In osmoregulatory

epithelia of insects, the HCN channels have been detected in the

MTs of larval lepidopteran T. ni (57, 58, 88, 89, 94) and when

HCN1 channels are blocked in MTs, ion transport switches

direction from K+ secretion to K+ reabsorption (89). Cyclic

nucleotides are known to alter fluid secretion in the MTs of larval

and adult insects (e.g., 115–117). HCN channels can provide an

additional link between direct activation of ion transport and

second messenger-based hormone action.
6 Select unstudied VGICs detected in
osmoregulatory epithelia of
multiple insects

Transcriptomic studies on osmoregulatory epithelia of

lepidopterans and dipterans uncovered the presence of many more
Frontiers in Insect Science 06
VGICs (e.g., HV, ClV, BK, KCNA, KCNC, KCNS, TRP M, TRP V

channels), expression of which has not been confirmed using direct

molecular, protein-based, or pharmacological approaches to date (26,

58, 65, 89, 94). Whether these VGICs play a role in the regulation of

ion transport in insect epithelia remains unexplored. HV and ClV
channels may play a role in acid-base balance regulation since acid H+

transport can contribute to acid equivalents, and Cl- is often

transported by epithelia in exchange for HCO3
- – to the best of our

knowledge, these have not been examined in osmoregulatory

epithelia of insects to date. TRP channels may serve as peripheral

sensors of allelochemicals and xenobiotics in herbivores as many

TRPs are activated by noxious plant-based chemicals, as well as

peripheral temperature sensors (see above). Many TRP channels are

volume-sensing and mechanosensitive (118), both of which would

offer insect epithelia an additional mechanism for fine-tuning their

ion transport rapidly.
7 Discussion

7.1 Current gaps in research – what
remains to be explored

7.1.1 Are VGICs connected with
mechanosensation in epithelia?

The role of VGICs in excitable tissues of animals has been well

established (37). In insect epithelia however, VGICs seem to play an

integral role in the regulation of ion transport and of Vm yet studies

on this topic remain largely scarce.

A likely advantage of the presence of VGICs in animal epithelia

is the ability to quickly respond to changing ion concentrations. In

the MTs of insects, this may be relayed via mechanosensation of

fluid flow and hydrostatic pressure, which may result from

alternating bouts of diuresis and anti-diuresis, changing epithelial

cell volume by applying pressure to the cells against the basal lamina

that encases the MT epithelia. Mechanosensitive ion channels

found in insect epithelia (e.g., 58, 89, 94) can detect mechanical

changes in the epithelial cell membrane caused by changes in fluid

flow, hydrostatic pressure and cell volume, and open resulting in

changes in Vm and setting off intracellular second messengers

(cAMP, Ca2+) cascades (119). VGICs have been shown to

respond transcriptionally to mechanical stress at least in some

epithelia and can be used to amplify this signal (see Table 1). An

instance of this has been described in intestinal epithelia, where

TRPM5 channel triggers membrane depolarization in response to

nutrient levels and opening of CaV channels amplifies the Ca2

+ signal.

7.1.2 How are VGICs activated in insect epithelia?
Mechanisms of VGIC activation in insect epithelia remain

largely unexplored. Peptide toxins extracted from metazoan

venoms that target the specific subtypes of animal VGICs may

prove to be a useful pharmacological tool to gaining a better

understanding of insect VGICs (103). Do VGICs respond directly

to the changes in epithelial cell Vm resulting from altered

intracellular and extracellular ion concentrations? Are VGICs
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activated by other upstream mechanisms (e.g., mechanosensitive

and/or ligand-gated ion channels)? When luminal fluid flow

decreases, cell volume may increase, activating mechanosensation

and recruiting additional directional ion transport. MTs of insects

have recently been shown to react to changes in hydrostatic

pressure (120). Ligand-gated ion channels have similarly been

detected in the MTs of multiple insect clades (e.g., 121, 122) and

epithelial Vm can change in response to stimulation of

neurotransmitters and endocrine ligands. VGIC can also be used

to amplify activation of ligand-gated ion channels.

7.1.3 Do VGICs remain voltage-gated in epithelia?
Voltage sensitivity varies between the different types of VGICs

with KV, NaV, and CaV displaying high sensitivity, activating and

opening following membrane depolarization (43), and TRP channels

demonstrate comparatively low voltage sensitivity (16). It is widely

accepted that the biophysical properties of VGICs, although

conserved in the same channel across many taxa, may be modified

by channel subunit assembly for VGICs that are made up of multiple

subunits. For instance, KV ɑ subunit complexes can also co-assemble

with b subunits of KV channels creating isoforms with different

biophysical properties (19, 21, 22, 72, 90, 123).
8 Conclusions

It has been decades since the first VGIC was reported in animal

epithelia. Recent studies in osmoregulatory epithelia of insects point to

an abundance of VGICs, several of which have already been

demonstrated to regulate ion transport. Further study of the roles

specific VGICs play in the regulation of ion transport in insect epithelia

may prove a fruitful ground for basic knowledge needed for instance to

design better targeted integrated pest management strategies.

Important questions remain about the role of VGICs in the

osmoregulatory epithelia of insects. Do VGICs demonstrate the

same ion selectivity in epithelia as they do in excitable tissues? Do

VGICs directly contribute to directional ion transport? Do VGICs

establish the driving force for ion transport? Do VGICs establish/set

Vm in insect epithelia? Do VGICs assemblages in insect epithelia

differ based on external salinity, dietary ion availability, and ions

used to drive diuresis in MTs (e.g., K+-eating herbivores vs Na+-
Frontiers in Insect Science 07
eating omnivores/carnivores/puddlers)? Are VGICs used to

regulate processes connected to the osmoregulatory function in

insects – e.g., acid-base balance, desiccation, thermal tolerance,

buoyancy control, regulation of blood-brain barrier?
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Tamkun MM, et al. The carboxy terminal domain of Kv1.3 regulates functional
interactions with the KCNE4 subunit. J Cell Sci. (2016) 129:4265–77. doi: 10.1242/
jcs.191650

24. Neher E, Sakmann B. Single-channel currents recorded from membrane of
denervated frog muscle fibres. Nature. (1976) 260:799–802. doi: 10.1038/260799a0

25. Chen AY, Brooks BR, Damjanovic A. Ion channel selectivity through ion-
modulated changes of selectivity filter p k a values. Proc Natl Acad Sci USA (2023) 120:
e2220343120. doi: 10.1073/pnas.2220343120

26. Kapoor D, Khan A, O’Donnell MJ, Kolosov D. Novel mechanisms of epithelial
ion transport: insights from the cryptonephridial system of lepidopteran larvae. Curr
Opin Insect Sci. (2021) 47:53–61. doi: 10.1016/j.cois.2021.04.001

27. Gauberg J, Elkhatib W, Smith CL, Singh A, Senatore A. Divergent Ca2
+/calmodulin feedback regulation of CaV1 and CaV2 voltage-gated calcium channels
evolved in the common ancestor of placozoa and bilateria. J Biol Chem (2022)
298:101741.

28. Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, et al.
Conserved biophysical features of the CaV2 presynaptic Ca

2+channel homologue from
the early-diverging animal Trichoplax adhaerens. J Biol Chem. (2020) 295:18553–78.
doi: 10.1074/jbc.RA120.015725

29. Kim CH, Go HJ, Oh HY, Jo YH, Elphick MR, Park NG. Transcriptomics reveals
tissue/organ-specific differences in gene expression in the starfish Patiria pectinifera.
Mar Genomics. (2018) 37:92–6. doi: 10.1016/j.margen.2017.08.011

30. Cao-Pham AH, Hiong KC, Boo MV, Choo CYL, Wong WP, Chew SF, et al.
Calcium absorption in the fluted giant clam, tridacna squamosa, may involve a
homolog of voltage-gated calcium channel subunit a1 (CACNA1) that has an apical
localization and displays light-enhanced protein expression in the ctenidium. J Comp
Physiol B. (2019) 189:693–706. doi: 10.1007/s00360-019-01238-4

31. Sillanpää JK, Cardoso JCDR, Félix RC, Anjos L, Power DM, Sundell K. Dilution
of seawater affects the Ca2+ transport in the outer mantle epithelium of crassostrea
gigas. Front Physiol (2020) 11:1. doi: 10.3389/fphys.2020.00001

32. Lai KP, Li J-W, Je G, Chan T-F, Tse WKF, Wong CKC. Transcriptomic analysis
reveals specific osmoregulatory adaptive responses in gill mitochondria-rich cells and
Frontiers in Insect Science 08
pavement cells of the japanese eel. BMC Genom (2015) 16:1. doi: 10.1186/s12864-015-
2271-0

33. Schneebauer G, Lindemann C, Drechsel V, Marohn L, Wysujack K, Santidrian E,
et al. Swimming under elevated hydrostatic pressure increases glycolytic activity in gas
gland cells of the European eel. PloS One. (2020) 15:e0239627. doi: 10.1371/
journal.pone.0239627
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