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The impact of non-lethal doses
of pyriproxyfen on male and
female Aedes albopictus
reproductive fitness
Sri Jyosthsna Kancharlapalli and Corey L. Brelsfoard*

Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
Introduction: Control of the mosquito Aedes albopictus is confounded by its

behavior due to females preferring to oviposition in small natural and artificial

containers that are often difficult to remove or treat with insecticides.

Autodissemination strategies utilizing highly potent insect growth regulators

(IGRs) have emerged as promising tools for the control of this container-

inhabiting species. The intended goal of autodissemination approaches is to

use mosquitoes to self-deliver an IGR to these cryptic oviposition locations.

Previous studies have focused on the efficacy of these approaches to impact

natural populations, but little focus has been placed on the impacts on

mosquitoes when exposed to non-lethal doses of IGRs similar to the levels

they would be exposed to with autodissemination approaches.

Methods: In this study, the impact of non-lethal doses of pyriproxyfen (PPF) on

the reproductive fitness of Ae. albopictus was investigated. Female and male Ae.

albopictus mosquitoes were exposed to non-lethal doses of PPF and their

fecundity and fertility were measured. To examine the impact of non-lethal

doses of PPF, the expression of the ecdysone-regulated genes USP,HR3, and Vg,

which are involved in vitellogenesis, was determined.

Results:Our results demonstrated a significant reduction in female fecundity and

in the blood feeding and egg hatching rates upon exposure to non-lethal doses

of PPF. Oocyte development was also delayed in PPF-treated females.

Furthermore, exposure to non-lethal doses of PPF altered the expression of

the genes involved in vitellogenesis, indicating disruption of hormonal regulation.

Interestingly, PPF exposure also reduced the sperm production in males,

suggesting a potential semi-sterilization effect.

Discussion: These findings suggest that non-lethal doses of PPF could enhance

the efficacy of autodissemination approaches by impacting the reproductive

fitness of both males and females. However, further research is needed to

validate these laboratory findings in field settings and to assess their practical

implications for vector control strategies.
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Introduction

Aedes albopictus is a vector of dengue, chikungunya, and Zika

viruses. Unfortunately, there are no vaccines and therapeutics

available to limit the transmission of the aforementioned viruses;

therefore, vector control remains one of the only effective measures

to limit transmission (1). Ae. albopictus is considered a container-

inhabiting species, preferring to oviposit in natural and artificial

containers found to be associated with human activity. Locating and

treating these often abundant and cryptic habitats can present a

challenge for mosquito control professionals (2–4). Hence, there is a

definitive need for novel approaches to supplement the traditional

vector control methods for the effective control of Ae. albopictus

and other container-inhabiting species.

Autodissemination strategies have been suggested as a potential

novel method for the control of Ae. albopictus (3, 5–13). Two

approaches have been successful in reducing natural populations of

Aedes spp. The first is autodissemination augmented by males

(ADAM), which utilizes laboratory- or factory-reared male

mosquitoes that are treated with an insect growth regulator (IGR)

and released into the natural environment, where they can directly

deliver an IGR to cryptic larval habitats or indirectly by copulating

with naturally occurring females (14, 15). The second is

autodissemination stations, which rely on attracting females to a

station wherein they are then exposed to non-lethal doses of an IGR

and leave the station to disseminate the IGR to cryptic larval

habitats (5, 7, 10, 11, 13, 16–18).

While autodissemination approaches have been demonstrated

to impact mosquito populations, there may also be unintended

effects on the male and female mosquitoes exposed to IGRs

associated with the application of these approaches. One

commonly used IGR that has been used for autodissemination

approaches is pyriproxyfen (PPF). PPF is a juvenile hormone analog

(JHA). JHAs act similarly to a natural juvenile hormone (JH) in

insects. In general, JH and 20-hydroxyecdysone (20E) are two

hormones that regulate the developmental, physiological, and

reproductive processes in insects. JH interferes with the

metamorphosis of the immature stage to the adult stage by

retaining the juvenile characteristics in insects, whereas 20E elicits

metamorphosis. The antagonistic action of JH and 20E plays an

important role in inhibiting important physiological processes,

including reproduction and development (19). JH production

promotes the primary follicle cells in the ovary to start developing

approximately 3 days after eclosion until the production of 20E after

a blood meal, which results in oogenesis. In Aedes species, 20E plays

a major role in upregulating the key genes, such as EcR (ecdysone

receptor), HR3 (hormone receptor), USP (ultraspiracle), and Vg

(vitellogenin), that are involved in oogenesis and vitellogenesis.

Previous research has demonstrated that exposure to IGRs can

disrupt the antagonistic action of these hormones impacting

mosquito reproduction, resulting in other unintended physiological

effects. The topical application of methoprene, another JHA,

downregulated the expression of the ecdysone-regulated genes USP,

HR3, and Vg, which are involved in 20E action and oogenesis (20).

Furthermore, exposure to PPF has been demonstrated to result in
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sterilization and fertility effects in adult male and female Anopheles

arabiensis, Anopheles gambiae, Aedes aegypti, and Culex

quinquefasciatus (12, 21–24). In addition, exposure to non-lethal

doses of PPF as larvae has been previously demonstrated to increase

the susceptibility of Ae. aegypti to dengue virus (25).

In this work, experiments were conducted to examine whether

non-lethal doses of PPF will reduce the fertility and fecundity of

male and female Ae. albopictus, respectively. Specifically, these

experiments examined the effects of non-lethal doses of PPF

on the fecundity and the blood feeding and egg hatching rates of

PPF-treated Ae. albopictus females and the fertility of males. The

results are discussed in the context of the unintended impacts of

these non-lethal doses of PPF on male and female mosquitoes

associated with the use of autodissemination approaches for

mosquito control. The results highlight the potential benefits of

non-lethal doses to the effectiveness of autodissemination

approaches for mosquito control.
Materials and methods

Mosquito rearing and PPF effects on
female fecundity, blood feeding, and
egg hatching

The Ae. albopictus used in the experiments were from a colony

established from eggs collected in Lubbock, TX, 33.5846° N, 101.8456°

W, and were reared and maintained for ~20 generations in laboratory

conditions prior to starting the experiments. The mosquitoes were

maintained at 28 ± 2°C temperature and 80% ± 5% relative humidity

(RH) in a 16:8 light/dark cycle. The eggs were hatched in a 1:1 solution

of deionized water and fermented liver powder (0.6 g/L) (MP

Biomedicals, Santa Ana, CA, USA). Larvae were fed a 60-g/L bovine

liver powder slurry ad libitum. Pupae were collected and placed in 24.5-

cm × 24.5-cm × 24.5-cm BugDorm-4S2222 insect rearing cages

(MegaView Science Co., Taichung, Taiwan) and provided with a

10% sucrose solution.

For the experiments, Esteem 35WP (Valent Biosciences,

Libertyville, IL, USA) was used to treat mosquitoes. Esteem 35WP is

formulated with 35% PPF as the active ingredient and was mixed with

an inert fluorescent powder (Yu Mingjie pigments, Longdong,

Shenzhen, China) to dilute the initial formulations for different adult

doses (0.015, 0.03, 0.06, and 0.12 ng). As an untreated control for the

PPF dust formulation, the mosquitoes were dusted with only the

fluorescent powder, with no Esteem. A total of 30 newly emerged

females were treated with each different concentration using a

handheld bellow duster (Harris Manufacturing Co. LLC, Cartersville,

NC, USA) in a cardboard mailing tube (63.5 mm wide and 20.3 cm

long), capped on both ends with No-See-Um netting (Equinox,

Williamsport, PA, USA). The mosquitoes were transferred into the

rearing cages, with the females fed bovine blood with Na-citrate using

an artificial blood feeder and a sausage casingmembrane once per week

for 3 weeks. A 140-mL Souffle cup (Pactiv, Lake Forest, IL, USA)

containing 100 mL deionized water lined with a seed germination

paper (Anchor Paper Company, St. Paul, MN, USA) was placed in
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each cage as an oviposition container. The egg papers were collected for

three gonotrophic cycles and the number of eggs counted. The number

of blood-fed females was recorded for each cycle. The egg hatching

rates were determined for only the first gonotrophic cycle by

calculating the mean of three replicate patch counts of approximately

370–1,800 hatched and unhatched eggs. Each treatment consisted of

three replicates.
PPF effects on oocyte development

To visualize the impact of PPF on oocyte development, Ae.

albopictus females were treated with 0.12, 0.06, 0.03, and 0.015 ng

PPF approximately 24 h post-emergence. The treated females were

blood-fed 48 h post-exposure and separated into different cages. A

total of 10 females from each treatment were collected at 48 and

72 h post-blood feeding. Subsequently, the female mosquitoes were

dissected and the ovaries extracted on a small drop of 1×

phosphate-buffered saline (PBS). The extracted ovaries were

immediately visualized using a Leica S9i stereomicroscope (Leica

Microsystems Inc., Buffalo Grove, IL, US), and images were taken

using an integrated camera at ×40 magnification.
PPF effects on the expression of the
JH-20E regulated genes

A total of five females were treated with a single dose of PPF at

different concentrations (0.015, 0.03, 0.06, and 0.12 ng) and were

collected 48 h after blood feeding for each treatment. Each treatment

consisted of three replicates. The total RNA was extracted using the

Qiagen RNeasy kit following the manufacturer’s instructions

(Qiagen, Hilden, Germany). cDNA synthesis was performed using

the LunaScript®RT SuperMix Kit (#E3010; New England Biolabs,

Ipswich, MA, USA) from 1 mg of extracted RNA following the

manufacturer’s instructions. The quantitative reverse transcription

PCR (qRT-PCR) of the target genes and all the reactions were

performed in a 20-mL total reaction volume containing 1 mL cDNA

with 1.6 mL primer mix with 10 mM each of a forward and a reverse

primer and 10 mL 2× PowerUp™ SYBR™ Green Master Mix

(Applied Biosystems, Foster City, CA, USA). All of the samples

were analyzed using a qPCR master mix on an ABI 7300 Real-Time

qPCR System (Applied Biosystems, Foster City, CA, USA). The

temperature profile of the qRT-PCR consisted of 10 min at 95°C,

35 cycles of 30 s at 95°C, 30 s at 54°C, and 1 min at 72°C, followed by

a 10-min extension step at 72°C. The relative expression levels of EcR,

HR3, USP, and Vg were normalized to that of the ribosomal protein

S7 (RPS7) using the 2−DDCt method. The primers for the specific genes

are listed in Supplementary Table S1. Each gene was amplified for

four biological and two technical replicates at each time point.
Male fertility determination

Sperm quantification was performed as described in Ponlawat

and Harrington (26). In brief, Ae. albopictus males were collected
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<5–6 h post-emergence and were treated topically with 0.03, 0.06,

0.12 ng of Esteem. After approximately 24 h, 10 mosquitoes were

selected, and the testes were dissected in 50 mL PBS using a Leica S9i
stereomicroscope (Leica Microsystems Inc., Deerfield, IL, US). Each

pool of 10 males was replicated three times. A total of 10 dissected

testes were then combined with 150 mL of PBS for a total volume

of 200 mL. The testes were gently sheared using a dissection probe,

and the sample was mixed well with the P10 pipettor to dislodge

any sperm clumps. Eight 5-mL aliquots from the total volume

were added to a new microscope slide. Each separate aliquot from

the replicate pools was then air-dried for 1–2 h and then fixed

with 70% ethanol. Immediately thereafter, the slides were stained

with 1 mg/mL DAPI for 10–15 min and the excess stain washed

off. The total number of sperm was observed using a Leica

fluorescence microscope at ×200 magnification and was counted

using ImageJ.
Statistical analyses

The fecundity, egg hatching, and sperm count data were

examined for equality of variance and normal distribution to

meet the assumptions of a parametric test. A general linear model

with a normal distribution was used to examine for differences in

the female fecundity and the number of blood-fed females for the

different PPF treatments and gonotrophic cycles. The differences in

female fecundity and blood-fed females for each treatment within

each gonotrophic cycle were examined using t-tests. A repeated

measures ANOVA was used to determine differences in the total

egg number produced for each cage replicate when combining the

data from all three gonotrophic cycles. The egg hatching rates of the

females from all three gonotrophic cycles were compared by

performing an arcsine square root transformation of the

proportion of eggs hatched and an ANOVA. ANOVA was also

used to compare the sperm production of males after PPF exposure.

Pairwise comparisons of the sperm counts between treatments were

performed using t-tests. Differences in the gene expression were

examined using the non-parametric Kruskal–Wallis multiple

comparisons followed by pairwise Wilcoxon tests between the

PPF treatments for each gene. All statistical analyses were

performed and the graphs designed using JMP Pro 16.
Results

Effects of PPF on female fecundity, blood
feeding, and egg hatching

Non-lethal doses of PPF were demonstrated to affect the fecundity

of Ae. albopictus females over the three gonotrophic cycles (c2 = 10.7,

DF = 3, p = 0.01) (Figure 1A). When the effects of PPF dose were

examined, a reduction in fecundity was observed (c2 = 3.6, DF = 1, p =

0.05), but not for each gonotrophic cycle (c2 = 2.4, DF = 1, p = 0.12)

(Figure 1A). The effect of the interaction of gonotrophic cycle and PPF

dose was also associated with a reduction in the fecundity of Ae.

albopictus females (c2 = 5.6, DF = 1, p = 0.01) (Figure 1A). Non-lethal
frontiersin.org
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doses of PPF were also demonstrated to impact the number of Ae.

albopictus females that blood fed (c2 = 11.4, DF = 3, p = 0.0096)

(Figure 1B). Examination of the effects of PPF dose revealed an effect of

a reduction in the number of females that took a blood meal (c2 = 6.6,
Frontiers in Insect Science 04
DF = 1, p = 0.01) and over each gonotrophic cycle (c2 = 5.4, DF = 1,

p = 0.01) (Figure 1B). The effect of the interaction of gonotrophic cycle

and PPF dose was not associated with a reduction in the number of

females that blood fed (c2 = 0.14, DF = 1, p = 0.69) (Figure 1B).
A

B

C D

FIGURE 1

(A) Effect of non-lethal doses of pyriproxyfen (PPF) on Aedes albopictus fecundity. Different colored bars represent the mean ± SEM number of eggs
laid per female treated with different concentrations of PPF and untreated females. Asterisks and lines above each bar represent significant
differences determined using t-tests (*p < 0.05). (B) Number of blood-fed females post-PPF treatment compared with untreated females over three
gonotrophic cycles. Different colored bars represent the mean ± SEM number of females seeking blood post-treatment with different PPF
concentrations and those with no treatment. Asterisks with lines above each bar represent significant differences between treatments determined
using pairwise Wilcoxon test (*p < 0.05). (C) Total fecundity of females when combining all eggs from blood females over the three gonotrophic
cycles and replicates. Different colored bars represent the mean ± SEM number of eggs in replicate treatments. Asterisks and lines above each bar
represent significant differences determined using different t-tests (*p < 0.05). (D) Percentage of egg hatching collected from females from the first
gonotrophic cycle. Data are represented as the mean of three patch counts ± SEM. Asterisks with lines in each mean represent significant
differences between treatments according to pairwise t-tests (*p < 0.05).
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When combining the egg production over all three gonotrophic cycles,

a significant effect of PPF treatment on female fecundity was also

observed, where PPF-treated females produced fewer eggs (repeated

measures ANOVA: F = 6.1, DF = 1, p = 0.03) (Figure 1C). The data also

suggest that, when females were treated with PPF, they produced eggs

with significantly lower hatching rates than the untreated females

(ANOVA: F = 3.9, DF = 4, p = 0.04) (Figure 1D).
PPF effects on oocyte development

PPF exposure was also observed to affect ovarian maturation

and oocyte development. Images of the dissected ovaries
Frontiers in Insect Science 05
demonstrated the effect of increasing PPF exposure rates

on adult females, showing a delay in ovarian maturation and

oocyte development compared with the ovaries of the control

mosquitoes (Figure 2A).
Impacts of non-lethal doses of PPF on the
vitellogenesis pathway

As an additional support for the impact of PPF on the egg

production and the hatching rates, the relative expression levels of

the 20E-regulated genes involved in vitellogenesis were measured using

qRT-PCR. Comparison of the relative expression of EcR (Kruskal–
A

B

FIGURE 2

(A) Effects of pyriproxyfen (PPF) on Aedes albopictus follicle morphology and oocyte development. Labels on the left of the images refer to the
number of hours post-blood meal, while the labels on top of the figure refer to the amount of PPF exposure. (B) Effects of PPF treatment on the
expression of the 20-hydroxyecdysone (20E)-responsive genes after PPF exposure 48 h after a blood meal. Data are presented as the mean ± SEM
of four independent replicates. Paired Wilcoxon tests (Bonferroni corrected: p < 0.02) were used to determine differences among treatments for
each gene. Significant differences between treatments are represented by asterisks and lines above bars.
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Wallis test: c2 = 5.6, DF = 4, p = 0.23), HR3 (Kruskal–Wallis test: c2 =
4.4, DF = 4, p = 0.35), USP (Kruskal–Wallis test: c2 = 9.4, DF = 4, p =

0.052), and Vg (Kruskal–Wallis test: c2 = 8.6, DF = 4, p = 0.07) showed

that the overall gene expression was not impacted by the non-lethal

doses of PPF (Figure 2B). While there were no significant differences in

the overall gene expression, a downregulation of EcR, HR3, and USP

and an upregulation of Vg were observed when comparing the effects

between different doses of PPF 48 h post-blood feeding (Figure 2B).
Effect of PPF on adult male fertility

Using the previously described methodology, the sperm

production of Ae. albopictus males was determined by diluting the

pooled male testes dissections (Figure 3A) into quantifiable amounts

that could be counted onmicroscope slides (Figure 3B). Comparison of

all treatments showed no effect of PPF on the fertility and sperm

production of Ae. albopictusmales (ANOVA: F = 2.1, DF = 3, p = 0.1)

(Figure 3). However, in the pairwise post-hoc comparisons, the mean

number of sperm produced by males (mean ± SE = 268.6 ± 43) in the

0.12-ng treatment dose was significantly lower than that of untreated

control males (mean ± SE = 387.9 ± 42) and the 0.03-ng treatment dose

(mean ± SE = 435.25 ± 24.2) (Figure 3C).
Discussion

The results presented here suggest that non-lethal doses of PPF

impact the reproductive fitness of Ae. albopictus females. The impact of

PPF was observed to bemore pronounced in the first gonotrophic cycle

than the second and third cycles. This reduction in egg production in

the first gonotrophic cycle could be the result of the topical application

of PPF. Specifically, PPF could be falling or rubbed off the scales of

adult females as they age, consequently decreasing the impact on the

fecundity in each subsequent gonotrophic cycle. The observed results

are similar to those of earlier studies that reported a reduction in

fecundity due to PPF exposure in Ae. aegypti, An. arabiensis, An.
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gambiae, andC. quinquefasciatus (23, 24, 27–29). In addition, this work

revealed a non-significant concentration-dependent decline in the

number of females that blood fed. The responses of Ae. albopictus

females to PPF could be due to an undetermined behavioral effect on

the blood seeking ability. This is not surprising considering the impacts

JH and 20E have on the physiology of insects. It appears likely that,

when the JH titers are high in female mosquitoes, they would not be

host seeking for a blood meal. This is in accordance with a study

reporting that the injection of methoprene and JH III resulted in a

lower proportion of females choosing a blood meal over honey

compared with the untreated adult female mosquitoes (30).

The observed PPF dose-dependent decline in the egg hatching

rates suggests the indirect impact of PPF on the production of viable

eggs. Previous studies have demonstrated that, when An. gambiae

came in contact with the PPF-treated bed nets, ovary development

was delayed and females had reduced fecundity (24, 31). JH also

affects adult insects by controlling different physiological functions,

including vitellogenin, an egg yolk precursor of protein production

and synthesis in Tribolium castaneum males (32). The JH titers are

higher during the previtellogenic stage or 48 h post-eclosion, and

the levels drop during blood feeding when the ecdysteroid and Vg

synthesis begin (33). In the present study, the observed impacts to

follicle development post-blood feeding and the reproductive

impacts of the non-lethal doses of PPF are expected to be related

to the 20E-responsive gene cascade and the associated genes

involved in vitellogenesis. These studies demonstrated a non-

significant downregulation in EcR, HR3, and USP, which are

involved in Vg synthesis, possibly due to the inhibition of 20E

action by PPF treatment in adult females. Conversely, we observed

an increase in the mRNA levels of Vg in the PPF-exposed female

mosquitoes during the previtellogenic stage, which is responsible

for egg yolk protein synthesis in females. These results are similar to

those of previous studies that reported an increase in the level of Vg

in PPF-treated mosquitoes 24 h after a blood meal (20, 34).

Conversely, the action of two hormones, JH and 20E, regulate

the reproductive maturation in mosquitoes; in this study, the

expression levels of the 20E-responsive genes in PPF-treated
A B C

FIGURE 3

(A) DAPI-stained sperm extracted from the dissected testes of an undiluted sample. (B) Sperm extracted from the dissected testes of a diluted
sample. The number of sperm was counted from the diluted sperm extractions, which were used as a proxy for production by males. (C) Effect of
pyriproxyfen (PPF) on the sperm production of Aedes albopictus males. Paired t-tests (Bonferroni corrected: p < 0.02) were used to examine the
effect of PPF dose on sperm production in males. Significant differences are indicated by a line and asterisk above the sperm counts for the
different treatments.
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mosquitoes were significantly lower than those of untreated

mosquitoes. This disruption in the normal hormonal responses

due to exposure to non-lethal doses of PPF appeared to impact

oocyte development and to reduce the potential for viable progeny

of the Ae. albopictus females.

Previous studies have also focused mainly on the effects of

PPF on the fitness of female mosquitoes. In this study, the

effect of PPF on sperm production in male mosquitoes was

also investigated. A reduction in sperm production in the

PPF-treated mosquitoes, when treated with 0.12 ng of PPF,

was observed compared with the untreated control. Fertility

reduction in the male mosquito population could subsequently

impact the viable hatching embryos in females if they were to

mate with PPF-exposed males. These results are similar to

those of a previous study that observed a significant reduction

in sperm production in the PPF-treated laboratory-reared

population compared with field populations in Thailand (35).

The PPF-induced reduction in male fertility could be interpreted

as a semi-sterilization effect. In this work, the males were

exposed to 0.12 ng of PPF, the highest dose. Previous work

demonstrated that males associated with the use of ADAM

approaches were exposed to up to 5 ng of PPF, suggesting that

an increased dose of PPF would possibly have an additive effect

on lowering the fertility of males (36). This result could be

beneficial to increasing the success of autodissemination

approaches, particularly ADAM approaches, by inducing a

sterilization effect if PPF-treated males were to mate with

naturally occurring females. Subsequently, this will impact the

population growth rates, in addition to the effects on larvae

associated with the dissemination of PPF to larval habitats, and

increase the efficacy of autodissemination approaches.

The observed impacts of non-lethal doses of PPF on the

reproductive fitness of females and males are a potential benefit to

autodissemination approaches. When females and males are exposed

to low doses of PPF in autodissemination stations, when males are

dosed with PPF as part of an ADAM approach, and when females are

indirectly exposed via copulation attempts, these non-lethal impacts

could improve the success of these approaches. For example, in either

of the aforementioned approaches, females that produce fewer eggs

and hatching eggs and males that are semi-sterilized by PPF could

have an unintended impact on population growth and consequently

have an impact on population control. However, it remains to be seen

whether these results observed in laboratory studies can be translated

to field studies and measurable impacts as part of autodissemination

control approaches. More studies are needed to determine the

transfer of PPF to mosquitoes in the field and its persistence on

exposed mosquitoes in more natural conditions.
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