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Insect trap networks targeting agricultural pests are commonplace but seldom

optimized to improve precision or efficiency. Trap site selection is often driven by

user convenience or predetermined trap densities relative to sensitive host crop

abundance in the landscape. Monitoring for invasive pests often requires

expedient decisions based on dispersal potential and ecology to inform trap

placement. Optimization of trap networks using contemporary analytical

approaches can help users determine the distribution of traps as information

accumulates and priorities change. In this study, a Bayesian optimization (BO)

algorithm was used to learn more about the optimal distribution of a fine-scale

trap network targeting Helicoverpa zea (Boddie), a significant agricultural pest

across North America. Four years of pheromone trap monitoring was conducted

at the same 21 locations distributed across ~7,000 square kilometers in a five-

county area in North Carolina, USA. Three years of data were used to train a BO

model with a fourth year designated for testing. For any quantity of trap locations,

the approach identified those that provide the most information, allowing

optimization of trapping efficiency given either a constraint on the number of

locations, or a set precision required for pest density estimation. Results suggest

that BO is a powerful approach to enable optimized trap placement decisions by

practitioners given finite resources and time.
KEYWORDS

Helicoverpa zea, sampling efficiency, adaptive sampling, eco-efficiency, integrated
pest management
1 Introduction

Efficient management of agricultural pest insects requires accurate and timely

information about the relative abundance of populations from plant to landscape scales.

Understanding where populations occur is also important because many insect pests have

uneven distributions within fields and across agroecosystems. For decades, Integrated Pest
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Management (IPM) practitioners have used pest trap networks as

one tool to monitor pest activity and inform growers about

infestation risk during the growing season. Pest density

estimation using traps informs grower management decisions

when used in combination with traditional crop scouting, but

collecting this information is costly and rarely optimized for

specific cropping systems. Examples of management thresholds

using traps exist, but as pest management practices change or

monitoring tools evolve (e.g., trap technology, pheromone blend),

the relevance of these decision tools decreases. Improving analytical

approaches through contemporary modeling will make trap

networks more adaptable to enable better management decisions.

This improvement addresses a central principle of IPM, which seeks

to maximize sustainability of pest management through diversified

management practices in the context of agroecosystems (1).

A central challenge to the continued refinement and adoption of

trap network information arises from the translation of pest activity

to direct negative impacts on crops. Recent literature has explored

trap network optimization for agricultural or medical pest

populations in simulated landscapes that include parameters to

include varying ecological complexity and stakeholder goals (2–6).

A general theme of this work is that pest populations can be viewed

as processes and monitored using simulation techniques developed

to detect changes or abnormalities. However, pest populations in

agroecosystems are often aggregated in space in addition to being

temporally dynamic. Contagion is also a feature of wild insect

populations that can challenge assumptions involved in risk

assessment. This results in a need to monitor pest populations

through time, but it also necessitates attention to the spatial

distribution of trap network sites. Techniques useful for

generating expectations of pest densities at unsampled geospatial

locations exist. For example, Gaussian process regression or Kriging

approaches can be useful to combine spatial with temporal aspects

of sampling optimization and may increase efficacy of trap networks

if users are willing to reconfigure distributions based on stakeholder

goals (i.e., detection of large populations). Although these studies

can accommodate complex simulations and multiple objectives,

they rarely use the abundance of observational data being collected

in real agricultural systems to better understand how the efficiency

of existing networks can be improved.

Here we develop an application of Bayesian Optimization (BO)

(7) to select from a finite number of trapping locations involved in

monitoring an agricultural pest lepidopteran insect, Helicoverpa zea

Boddie. Bayesian Optimization has become a popular tool for

optimizing complicated objective functions and has found success

in many domains, particularly environmental monitoring and sensor

selection. Practical examples of Bayesian Optimization approaches

include selecting the optimal weather sensors from a predefined set to

predict the maximum rainfall at unobserved locations (8), selecting

sensors to monitor ozone concentrations (9), and selecting sensors

for temperature monitoring in a given area (10). In our study, there

preexists a certain number of locations from which adult H. zea

abundance data have been collected using pheromone-baited Texas

Hartstack traps (11). We hypothesize that the information yield of

different trap locations varies and the number of traps in a network

can be optimized to a smaller subset of high-value locations. In other
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words, for any predetermined precision requirement, trapping effort

can be minimized, and for any predetermined amount of available

effort, precision can be maximized. Through this application, we

optimize the subset of locations at which to trap to maximize

information return (coverage, precision) while minimizing costs.

Important additional benefits arise from this approach, for example

improvements to the expedient distribution of traps when

monitoring for novel or invasive pests, or to the identification of

geospatial areas or place-time combinations that are inconsistent with

their surroundings in ways that expedite research into the

system’s biology.

Bayesian Optimization is used to address a combinatorial

problem in which the goal is to choose an optimal K locations

from a possible set L, meaning there are  L CK possible sets of

locations that can be chosen. Problems in combinatorics inherently

require efficiency to address because of the expansive search spaces

they present to brute force approaches: a realistic example of 50

potential locations from which to choose a subset of 20 to receive

traps results in more than 1013 combinations, which is not practical

to search, even if the datum at each trap site is simple and affordable

to obtain. However, the necessity of efficiency is increased in this use

case because the quantity to be optimized is complicated and

expensive to calculate. Bayesian Optimization is thus a well-suited

approach to this problem, because it can approximate a complicated

loss function with a simple statistical model. In our approach, a

model is fit with Bayesian regression and then maximized with an

acquisition function. We evaluate the original loss function with the

optimum from the surrogate model, add it to our data set, and then

refit the model. A relatively simple surrogate model is more efficient

to optimize in comparison to the complicated original

objective function.
2 Materials and methods

2.1 Pest ecology and trap network

In the southeastern U.S., H. zea completes several generations

that cycle through non-crop weeds and then crops that include corn

(Zea mays L.), upland cotton (Gossypium hirsutum L.), soybean

(Glycine max (L.) Merr.), and several other minor crops (12–15).

Larvae are the economically important life stage because they

consume vegetative and reproductive plant structures that result

in crop yield loss (e.g., cotton bolls, soybean pods, and corn kernels).

As the season progresses, populations grow when high-quality crop

hosts become abundant in the landscape, with some of the largest

seasonal populations originating from corn (15). The adult flight

originating from corn often coincides with blooming cotton and

soybean in early August.

To provide an early warning system forH. zea flights, university

extension researchers maintain trap networks to monitor H. zea

adults across the region (16). Resulting trap data is used as an early

warning system to incentivize intensive in-field H. zea egg and

larval monitoring. Importantly, growers often infer H. zea activity

for their locations based on a small number of traps distributed

across large geographic regions. For example, the North Carolina
frontiersin.org
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trap network has included 22 unique black light trap locations in

2024 that span approximately 36,000 km2 of land area from central

to eastern North Carolina. Traps in this network are concentrated

in major agricultural regions with the goal of providing growers

with timely pest activity information (data available at: https://

www.ces.ncsu.edu/trap-data/). These networks provide useful H.

zea activity information each year but may not account for

population variation across spatially and temporally heterogenous

agricultural landscapes (17, 18).

This study documented variation in H. zea adult activity in an

experimental trap network distributed across 21 locations in a major

row crop production landscape from 2020-2023. The trap network

spans approximately 700 km2 of agricultural land in five North

Carolina counties (i.e. Northampton, Halifax, Nash, Edgecombe, and

Wilson). The fine-scale trap network monitored adult male H. zea

using commercially available pheromone lures (PHEROCON® CEW,

Trécé Inc., Adair, OK) and fabricated metal Texas Hartstack traps (11).

We collaborated with row crop growers to select 21 trap locations that

were distributed across the study extent and located in open areas

adjacent to agricultural fields. Each year, traps were installed at the

same location late in July and monitored weekly for 6-11 weeks during

the peak flight period (Figure 1). Capturedmoths from individual traps

were returned to the laboratory and counted each week.
2.2 Trap data

Our dataset includes n = 705 observations, L = 21 locations,

T = 4 years (2020-2023). We have 83 site-year combinations (site

3 did not participate in 2020) and 6 - 11 weeks of observations per

year. In 2020 there were 6 weeks of trapping, 2021 had 7 weeks,
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2022 had 10 weeks, and 2023 had 11 weeks. In 2023, Trap 13 was

missing an observation for week 2, so for this observation we

imputed the average value of all other sites for this same week. Let

S = s1,…, sLf g be the set of all sampling locations. Our response

variable of interest is the cumulative pest count for each week. In

particular, if Ztsx is the pest count (in hundreds of pests) for

location s in year t at week x, then our response variable, Ytsx , is the

cumulative pest count for location s in year t at week x, i.e.,

Ytsx =ox
j=1Ztsj

Note that by definition, Yt,s,x ≤ Yt,s,x+1.
2.3 Logistic growth model

The logistic growth curve represents biological population

growth by including both exponential increase and a density-

limiting carrying capacity. It is defined as

f (x) =
b

1 + exp −(x − g )=kf g (1)

for all x, where x represents the week of the observation. The

model is defined by three parameters. b is supremum of the function,

and here represents the maximum number of cumulative pests. A

larger value of b means a greater number of pests. The growth

parameter, k, represents how quickly the pest population is

increasing, and is inversely correlated with growth rate. If k is large,

then the growth is slower, while a small k indicates fast growth.

Finally, g is the midpoint and represents where the function attains

half of its supremum, i.e., f (g ) = b=2.  Alarger g means that the

midpoint is later in the growing season, and vice-versa for a smaller g .
FIGURE 1

Sampling locations distributed across an intensive row crop production landscape in five North Carolina counties. Numbers correspond to trap ID
used in Figure 6.
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As formulated in Equation 1, the logistic growth curve is the

same at each trapping location. Because spatial dependencies

among trapping locations are expected, b and g depend on

location. Mathematically, the model becomes

Ytsx eNormal(m(x; s),s 2) (2)

where

m(x; s) =
b(s)

1 + exp½− x − g (s)f g=k�
The asymptote parameter, b , has been replaced with a spatially-

varying parameter, b(s). Similarly, the midpoint g , is now modeled

spatially with g (s). Spatial terms are modeled as a Gaussian Process

with exponential correlation, i.e.,

b(s1),…, b(sL) eNormal(0,sb2Sb )

and

g (s1),…, g (sL) eNormal(0,  sg 2  Sg ),

where Sb and Sg represent exponential correlation structures, a

special case of Matern correlation. If S is an exponential correlation

matrix, then

Sij = exp( − jjsi − sjjj=r)
where r is the spatial range parameter, and jj � jj is the Euclidean

distance between trapping locations. In this correlation function, points

are more correlated if they are closer together, and the correlation

decreases exponentially fast with distance. This model was then fit

using all locations and all years (before 2023) via Bayesian inference.

Please see the Supplementary Materials for full prior specification.

There are several noteworthy points about this model. First, the

model has spatial variation, but is the same for each year, i.e., there is

no temporal component. There were not enough years of data to

accurately learn a parameter differentiating years, and the model thus

overfit on year when such a parameter was included. Next, the model

has spatial variation in the supremum and midpoint, but not in the

growth parameter. Additional models were tested with spatial

variation in k, but there was very little variation among sites. Thus,

the growth parameter was fixed across space. Additionally, both b(s)
and g (s) have exponential correlation structures, but are allowed to

have different spatial range parameters, rb and rg . Finally, covariates
were not included in the model (e.g., landscape composition), because

we found that models including candidate covariates tended to overfit

to the data and did not provide good out-of-sample prediction.While

we might reasonably assume that covariates such as landscape

composition weather, etc. do affect the pest population, the current

model implicitly accounts for such factors in the spatial processes.

Moreover, the focus of this paper is selecting the optimal trapping

locations, not necessarily the reason that these sites were chosen. We

consider this latter question an important avenue for future work.
2.4 Optimal sampling locations

After empirically establishing the model form, we proceeded to

determine how to select the optimal trapping location sets. We seek
Frontiers in Insect Science 04
a small number of trapping locations, K , with K < L, such that if we

fit a model on these K locations, then the model can most accurately

predict at the L − K unobserved sites. For now, we consider K as

known and fixed but we wil l general ize this in the

experimental results.

We seek to minimize the mean log error (MLE) between the real

and predicted cumulative counts at the unobserved locations in

2023. Let Si = si1 ,…, siK
� �

be a set of K locations where Si ⊆ S, and

let Ŷ tsx(Si) be the predicted value at site s ∉ Si in year t = 2023 for

week x ∈ 1,…, 11f g, using the locations in Si to fit the logistic

growth model. Thus, Ŷ tsx(Si) are out-of-sample predictions. Then

our loss function is the MLE on the sites we did not train on for

2023, defined as

L(Si) =
1

11(L − K)os∉Sio
11

x=1
log( Ytsx − Ŷ tsx(Si)

�� �� + 1) (3)

where log() is the natural logarithm. Optimization thus seeks

~S = arg m in
Si , Sij j=K

L(Si) (4)

In this case, the optimum is the set of sampling locations, ~S,

such that, if the model is trained on this set of locations from 2020-

2023, and then used to predict trap data from other locations in

2023, MLE will be minimized for predictions of these out-of-sample

points. 2023 was chosen as the testing data subset to simulate

forecasting of future data using past data. MLE was chosen for our

loss function due to the following observation. The observed

cumulative counts vary in orders of magnitude, i.e., the first week

may have tens of counts while the cumulative sum at the end of the

season can be in the thousands. By taking the logarithm of the

difference between the observed and fitted values, it ensures that all

errors are on the same scale, such that each component of the sum

in (3) contributes approximately equally to the loss function. Please

see the Supplementary Materials for further discussion on the loss-

function as well as potential other options.
2.5 Bayesian optimization

The loss function in Equation 3 is complex enough to

complicate optimization in practice. Indeed, it is not easy to

minimize this loss function directly, primarily because it is a

combinatorial optimization problem with L choose K many

solutions. Because fitting the logistic growth curve model takes a

nontrivial amount of time, a brute force approach is not feasible.

Thus, we employ Bayesian Optimization (BO) to approximate the

optimal trapping locations ~S. There are three main steps to a BO

schema: the objective function, statistical model, and acquisition

function, after Yanchenko (19). Please see Figure 2 for an overview

of the modeling workflow.
2.5.1 Objective function
The first step is to evaluate the objective function at some initial

points. While it is too costly to evaluate the loss function at every

possible sampling set Si, we can evaluate it at N0 points in a
frontiersin.org
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reasonable amount of time, if N0 is small. Let xi ∈ 0, 1f gL be such

that xij = 1 if sj ∈ Si, and 0 otherwise. Since we can only choose K

locations, we impose the constraint that oL
j=1xij = K .

Then we define f (xi) as the MSE for all sites sj ∉ Si and for years

2020-2022, i.e.,

f (xi) =
1
~n o

2022

t=2020
o
s∉Si
o
x
log( Ytsx − Ŷ t sx(Si)

�� �� + 1) (5)

Where ~n is the number of terms in the sum. We stress that our

goal is the sampling locations ~S which minimize the MSE at all

locations s ∉ ~S for the year 2023. To train the BO algorithm,

however, we cannot use the 2023 data, so our choice of optimal

sampling points can only depend on the data before 2023. For our

initial evaluation, we randomly sample K locations to construct

each xi, and define X = (xT1 ,…, xTN0
)T ∈ 0, 1f gN0�L. For each xi, we

fit the logistic growth model in Equation 2 and evaluate the loss

function, f (xi), using Equation 5.

2.5.2 Statistical model
Next, we need a model for the objective function in Equation 5.

Let fb(xi) be a surrogate model for f (xi) parameterized by b. We

assume that the surrogate model is linear in its parameters,

fb(xi) =o
L

j=1
xijbj = xib (6)

for b = (b1,…, bL)
T . Since L is small, we use a Bayesian multiple

linear regression to fit the model in Equation 6 with standard non-

informative priors. The coefficient bj represents the marginal
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contribution of site sj to the overall MLE. So if bj is large and

positive, including sj in Si will likely lead to a large MLE on our

hold-out predictions. Conversely, if bj is negative, then the MLE will

be smaller when sj is used to train the model. The interpretation of

bj − bj 0 is the increase in MLE if we used site j to train the model

instead of site j 0, with all else being equal. In this sense, the

coefficient bj yields a sense of the relative increase/decrease to the

testing MLE if site sj is used to train the model.

2.5.3 Acquisition function
Lastly, we need to optimize our surrogate model fb( � ). Recall

that each coefficient bj represents the marginal contribution to the

MSE when site sj is used to train the model. So, if bj is large in

absolute value and negative, we can expect that training on this site

will lead to a lower MSE. Therefore, selecting the K sites with lowest

bj will minimize fb( � ). For given b̂ , the optimal sampling locations

are ~x = argm in
x

fb̂ (x)where exj = 1 if b̂ j ≤ b̂ (K)f g where b̂ (K) is the Kth

order statistic of b̂ 1,…, b̂ L. After solving for ~x, we evaluate f (~x) and

then re-fit (6) by appending ~x and f (~x) to X and f (x1),…, f (xN0
),

respectively. This step is repeated B times, and the optimal seed set

is x* = arg m in
x∈ x1,…,xN0+Bf g

f (x), where the minimum is found over the

N0 + B sampled points. Then x* corresponds to our approximate

optimum of (3) and therefore (5) as well.

2.6 Experiment

We now apply the BO method from Section 2.4 to our H. zea

trap data. For a fixed K , we follow the method outline in Section 2.4
FIGURE 2

Overview of data pipeline and algorithm structure.
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to obtain our approximate optimum x*. We then use the trap

locations S* corresponding to x* to fit a logistic growth model based

on the data from 2023 and compute the MLE on the hold-out sites

for 2023, i.e. L(S*). We do this for K = 5, 6,…, 14. For comparison,

we also randomly select K trap locations and compute the out-of-

sample MSE for 2023, which serves as a baseline method. Both the

BO algorithm and random sampling are repeated for 50 Monte

Carlo (MC) samples, and the average MLE is reported. We use the

standard Kriging estimate to predict cumulative counts at new

locations, and all Bayesian models are fit using Stan in R (20).
3 Results and discussion

3.1 MLE results

The main results show that the proposed BO approach greatly

outperforms randomly sampling locations with a lower MLE for all

K (Figure 3). Additionally, the MLE monotonically decreases as the

number of training sites increases for the BO algorithm. We plot the

proportion of MC samples for which a trap location was chosen in

the optimal set for K = 5, 10 (Figures 4A, B), we also plot the

proportion of samples a trap was chosen in the optimal set averaged

over all K (Figure 4). The central traps are chosen for the optimal set

more often when K = 5, whereas the spread of optimal sites for K =

10 is biased toward the south. When the results are averaged over all

K , the southern and central locations have a higher proportion of

MC samples for which they are in the optimal set.

While Figures 4, 5 show the proportion of MC samples for

which a site was chosen in the optimal set, Figure 6 considers the

binary inclusion/exclusion of sites in the optimal set. For each value

of K , the proportion of samples for which each site was chosen in

the optimal set was calculated. Then the K sites with the largest

proportion are chosen as the optimal sites. This is represented in

Figure 6 as a black tile if the trap has one of the K largest

proportions, and a white tile otherwise. In case of ties, both sites

have a black tile. Traps 1, 5 and 14 are included in the optimal site
Frontiers in Insect Science 06
for every value of K . Conversely, traps 13, 15, 16, 18, and 21 are

never selected. The plot also shows a substantial amount of nesting

in the optimal sites, i.e., trap i is selected in the optimal set for K ,

then it is also selected in the optimal set for K + 1.
3.2 Model extension

As an extension of this work, we could explicitly include money,

time, distance, etc. into our loss function if we wanted these to factor

into our optimal choice (e.g., 9). For example,

L(Si) =
1

11(L − K) os∉Si
o
11

x=1
log( Ytsx − Ŷ tsx(Si)

�� �� + 1) + lC(Si)  

where C(Si) is the cost to sample at locations Si and l is a tuning

parameter which controls how much we weigh fit (small l) versus
cost (large l) in the loss function.
3.3 Model performance and interpretation

The general implication of these empirical findings is that

optimization enriches the information provided per unit trap in a

multi-site network. First, the magnitude of the MLE associated with

an optimized set is appreciably smaller than that for random

sampling. For example, a MLE of 1.2 means that the predicted

count was within 230 units of the true cumulative count value, on

average. In the Supplementary Materials, we also compare the

results of the BO algorithm with a brute-force computation for K =

5 and find that the BO results are close to the global optimum with

similar trap combinations detected by each method (Supplementary

Table S1). This establishes the utility of the method for efficiently

selecting trapping locations.

The BO algorithm was run 50 times and the average MLE was

recorded. Ideally, the algorithm would be run once and the global

optimum would be found, such that running multiple MC iterations

would be unnecessary. The necessity of running the BO algorithm
FIGURE 3

Mean log error for hold-out 2023 locations for Bayesian Optimization (black line) and random sampling locations (gray line) against number of
training sites. Averaged over 50 Monte Carlo samples.
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multiple times could be because the algorithm is finding a local

optimum and/or because the objective function surface is relatively

“flat.” This would mean that several different sets of K trap locations

yield comparable MLEs. While these considerations and the

computational expense of running the BO algorithm multiple

times are relevant, running the algorithm multiple times also has

advantages. The proportion of MC samples that a trap is included in

the optimal set yields a continuous measure of importance as

opposed to a binary result. This allows for some uncertainty

quantification in the optimal sites and a richer understanding of

which sites to choose for maximum precision in pest density

estimation, and perhaps which sites to choose for research to

understand why they are inconsistent or otherwise different from

the optimal set.
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In general, the optimal trapping locations appear in the

southern and central locations. This could be interpreted one of

two ways. It could mean that knowing the number ofH. zea at these

locations is very informative for knowing the number of moths at

other locations. On the other hand, it could mean that these

locations are very difficult to predict so we should trap at these

sites to ensure an accurate value. For example, trap 1 could be

included in every optimal set because knowing its value helps

predict at the other sites, or because predicting the number of H.

zea at trap 1 is extremely difficult. In the Supplementary Materials,

we looked for systematic reasons why some trapping locations were

chosen more than others. We found a moderate relationship

showing that traps with a high probability of being included in

the optimal set tended to have larger amounts of corn and soy
A B

FIGURE 4

Proportion of Monte Carlo samples a trap was chosen in the optimal set for K = 5 (A) and K = 10 (B).
FIGURE 5

Proportion of times a site was chosen in the optimal set averaged over all K.
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planted within a 1 km radius. These are initial findings, however,

and require further study.

Together, these steps toward optimization are important, as the

costs of monitoring H. zea are immediately clear. Establishing

which traps in the network provide the most return on

investment would be a significant step toward sustainable

monitoring approaches that continue to provide useful

information to agricultural stakeholders. In the future, this

approach would also apply to invasive species monitoring, which

is a common approach when outbreaks occur. The persistent threat

of pests with similar ecology as H. zea (i.e., Helicoverpa armigera) is

a major focus of regulatory agencies tasked with responding to

incipient threats of invasive species in the United States (e.g.,

USDA-APHIS). Ecological niche modeling suggests that

H. armigera could establish in the southern U.S. and would pose

a significant threat to agriculture across broad geographies (21).

Effective monitoring strategies would be a first step toward effective

management of a widespread invasive outbreak. The BO approach

is one tool which could be adapted to model effective monitoring

networks that are informed by the current distribution and activity

of a closely related species.
3.4 Extending BO modeling to understand
pest ecological drivers and
sampling efficiency

These results suggest that understanding these contrasting

motivating factors will help to assess which locations are

informative and/or what about these locations make them

informative. Future studies focused on assessing location-wise

characteristics from the perspective of H. zea could generate new

context for the optimized dataset. For example, overwintering

temperatures limit H. zea survival during the pupal stage (22)

which contributes to regional trends in population abundance over
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time (16). Moreover, soil conditions which vary at much smaller

spatial scales are also linked to overwintering survival which affectsH.

zea population size in the spring (23, 24). During the growing season,

the abundance of highly suitable host plants for H. zea development

across multiple generations may also explain variation among traps

across the relatively small geographic region where we established our

trap network (12–14, 18). Although these studies independently

assessed specific aspects of H. zea ecology, they are unable to

account for multiple variables influencing these insects in

agricultural systems. Absent an optimized network, it is difficult to

learn what factors at key trap sites are responsible for those sites’

providing information that can positively affect grower management

decisions. Next steps connecting optimized networks to relevant

ecological and environmental drivers would further refine our

understanding about H. zea population dynamics in the context of

realistic agroecosystems. In short, the improvement of observational

efficiency results in the improvement of any study or application that

relies on precision estimates of the observed process. Optimizing the

provision of evidence used to describe biological systems, to make

system management decisions, or to discover novel or incipient

events in those system is a valuable step to take early in a study or

management program.

This study builds on a deep body of literature focused on

improving sampling optimization for insect pests in agriculture.

Entomologists apply numerous sampling techniques for the

purpose of estimating arthropod population densities, sometimes

adapting from methods used in engineering (25) or analysis of data

from clinical trials (26, 27). A commonly applied sampling

technique in entomological pest management is sequential

sampling, first developed in the 1940’s (28), for the purpose of

increasing the efficiency of estimation for values important to

industrial processes. The primary motivation for the development

of sequential sampling techniques was efficiency: the potential to

accelerate estimation or increase precision per sample, while

minimizing wasted sampling effort. In pest management, this
FIGURE 6

Inclusion/exclusion of traps in optimal set for each value of K. A black square indicates that trap was selected in the optimal set for the particular
value of K. In case of tie, both sites are included.
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translates to iterative sampling and interim analysis based on

observations. Samplers use pre-established stopping conditions to

determine when sufficient pest density or crop damage information

has been collected to make a management decision. This level of

tolerated pest activity is informed by the economic thresholds,

which is a pest density or other damage metric above which not

managing the pest is expected to result in net economic loss. For

example, the threshold at which the value of the expected yield loss

to H. zea larval herbivory exceeds the cost of management.

Effectively, this effort becomes a statistical hypothesis, and

sequential sampling proceeds until the hypothesis is rejected or

fails to be rejected under pre-established tolerances for Type I and

Type II error rates. While some important developments have

extended the rationale of increasing sampling efficiency for

decision support (e.g. 25, 29–31, 32), efficiency gains through

innovative statistical approaches continue to represent a major

opportunity for improving the environmental compatibility and

economy of agricultural pest management. The BO algorithm

developed in this study enhances sampling in a way parallel to

existing practices of sequential sampling or interim analysis, but

adds a substantial amount of value to data in the process by showing

the aforementioned nesting of high-value sites within larger optimal

sets, by providing a measure of uncertainty around the importance

of individual sites, and by including correlation structure that allows

nonrandom associations between sites to be exploited for

optimization. Similar approaches could be developed for other

pest species and geographic regions but will require initial

investment to collect activity data for model development

and validation.
4 Conclusions and future directions

In this study, BO provided useful insight into the optimization

of a trap network targeting a key agricultural pest. Our results

showed that we can achieve H. zea monitoring objectives without

sampling at every trapping location. Moreover, the BO approach

greatly outperforms the baseline method of random sampling.

These empirical results provide several key takeaways for

practitioners and stakeholders. First, if budgets limit the number

of traps in a study area, then our BO procedure yields the optimal

locations for these traps, while initial monitoring still may be

required to validate the experimental set-up. Second, our

methodology can also suggest how many traps to use, as in

prospective power analysis. For example, if there is some pre-

determined error tolerance or pre-specified desired coverage level,

then the BO procedure can be used, not only choose the locations of

the traps, but also how many to deploy. Indeed, the results in

Figure 3 show a clear monotonically decreasing error as the number

of traps increases, so this must be chosen carefully. Being able to

afford just one more trap in the best location may lead to high

payoff. Collecting data from all 21 traps in the existing network

currently requires a ~700 km trip for two entomologists for 10

weeks. Because time and distance are considerable, we also

discussed an extension to the BO analysis that includes flexibility
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to optimize networks based on user-defined criteria. Finally, once

the number and location of the traps are chosen, further analysis

can be performed to understand why these sites were selected. This

question is slightly beyond the scope of this work, so we only took a

first step toward this end looking at landscape information which

aligns with previous work suggesting that the abundance of soybean

in the landscape is an important predictor of H. zea abundance in

this region (33). The proposed statistics framework, however,

facilitates principled study of this question.
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