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Evidence of horizontal
transmission of Wolbachia
wCcep in rice moths parasitized
by Trichogramma chilonis and its
persistence across generations
C. T. Lai †, Y. T. Hsiao † and Li-Hsin Wu *

Department of Plant Medicine, National Pingtung University of Science and Technology, Neipu,
Pingtung, Taiwan
The horizontal transmission of endosymbionts between hosts and parasitoids plays

a crucial role in biological control, yet its mechanisms remain poorly understood.

This study investigates the dynamics of horizontal transfer of Wolbachia (wCcep)

from the rice moth, Corcyra cephalonica, to its parasitoid, Trichogramma chilonis.

Through PCR detection and phylogenetic analysis, we demonstrated the presence

of identical wCcep strains in both host and parasitoid populations, providing

evidence for natural horizontal transmission. To investigate thoroughly,

Wolbachia-free colonies were acquired through tetracycline treatment, and the

initial density ofwCcep in host eggs significantly influences transmission efficiency.

High-density wCcep infections led to rapid transmission, with F1 parasitoid titers

increasing by as much as 100-fold, while low-density infections exhibited more

gradual increases. Additionally, without continuous exposure to infected hosts,

wCcep density in T. chilonis diminished over generations. These findings enhance

our understanding of Wolbachia’s transfer dynamics and have important

implications for developing effective and sustainable biological control strategies

using parasitoid wasps, particularly in managing Wolbachia-related pest

populations in agricultural systems.
KEYWORDS

Wolbachia acquisition, symbiosis, Wolbachia persistence, biological control,
climate impact
1 Introduction

Wolbachia, an extensively studied endosymbiotic bacterium present across diverse

arthropod taxa, has emerged as a crucial focus in biological control research due to its

capacity to manipulate host reproduction. This maternally inherited endosymbiont is

estimated to infect over 50% of insect species (1). Although Wolbachia primarily spreads
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through vertical transmission from mother to offspring,

accumulating evidence indicates that horizontal transfer—the

acquisition of Wolbachia by a novel host from an unrelated

donor—occurs with greater frequency than previously recognized

across phylogenetically diverse insect taxa. (2).

Wolbachia was first discovered in the mosquito Culex pipiens

(3). Within insect hosts, Wolbachia is primarily found in

reproductive tissues but can also be present in somatic cells and

tissues like salivary glands, hemolymph, and the gut (4). To increase

its prevalence within host populations,Wolbachiamanipulates host

reproduct ion through mechanisms such as inducing

parthenogenesis, feminization, male-killing, and cytoplasmic

incompatibility (CI), which confers a reproductive advantage to

infected females (5). Beyond reproductive manipulations,

Wolbachia’s potential to enhance host fitness is a fascinating area

of research, as it can protect against pathogens like dengue virus (6)

andWest Nile virus (7) and influence mitochondrial DNA variation

(8), prompting interest in its use for vector-borne disease control

(9, 10).

Horizontal transfer events have been documented in various

insect orders, including Diptera (11), Hymenoptera (12–14),

Lepidoptera (15, 16), Araneae (17), and Hemiptera (18). These

events have been observed within and across different species,

facilitated by various mechanisms such as parasitism, predation,

and shared ecological niches (19). The potential for horizontal

transfer is further supported by the discovery of highly similar

Wolbachia strains in distantly related insect species, suggesting

possible shifts between host lineages (15). Additionally, novel

Wolbachia strains have been identified as inducing reproductive

incompatibility in previously uninfected hosts, as observed in

whiteflies (16). Furthermore, research on parasitoid wasps has

demonstrated the horizontal transfer of parthenogenesis-inducing

Wolbachia in laboratory settings (20), highlighting the adaptability

and transferability of Wolbachia across different insect species.

Intriguingly, studies have reported highly similar Wolbachia

strains (>95% sequence similarity) infecting phylogenetically

distant butterfly species from the families Papilionidae and

Nymphalidae (2). Likewise, ant species have been found

harboring identical Wolbachia strains to their kleptoparasitic ant

cricket hosts, indicating potential horizontal transfer events (19).

Frydman et al. (21) demonstrated that Wolbachia could migrate

from the hemolymph to reproductive tissues in Drosophila

melanogaster following microinjection, reaching the oocytes

within 15 days. These findings highlight the ability of Wolbachia

to spread across species boundaries.

While horizontal transfer events have been documented, the

factors governing the successful establishment and persistence of

acquired Wolbachia strains within novel hosts remain poorly

understood. Sanaei et al. (22) proposed a four-stage model for

successful horizontal transfer: (1) contact and entry into the new

host, (2) survival and practical replication within the new host, (3)

efficient vertical transmission within the new host lineage, and (4)

spread and maintenance within the new host population. Each stage

presents unique challenges, including overcoming the host’s

immune response, adapting to the new cellular environment, and

ensuring vertical transmission and long-term persistence. Previous
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molecular evidence has shown that T. chilonis and other

Trichogramma species collected in Taiwan harbor the same

Wolbachia strain (wPip) as their factitious host, the rice moth

(23, 24).

In this context, the current study explores the possibility of

horizontal transfer of Wolbachia between the rice moth and its

parasitoid, the Trichogramma wasp. To validate the dynamics of

this potential horizontal transfer, rice moth eggs with different titers

of wCcep were provided to T. chilonis. To assess the successful

acquisition and persistence of wCcep in T. chilonis across

generations. The current study contributes to the understanding

of Wolbachia horizontal transfer dynamics, elucidating the factors

that facilitate or impede the successful acquisition and maintenance

of novel Wolbachia strains within new hosts.
2 Method

2.1 Collection of insect sources and
rearing conditions

Egg masses of Ostrinia furnacalis (Asian corn borer) parasitized

by Trichogramma wasps were collected from corn fields in Yanpu

Township, Pingtung, Taiwan, in July-August 2020. The collected

egg masses were placed in a growth chamber at 25°C. One day after

adult emergence, individual female rice moths were isolated and

reared on eggs of the factitious host, rice moth, Corcyra cephalonica,

in 50 ml centrifuge tubes at 25°C, 20 ± 5% RH, and 12:12 h (light:

dark) photoperiod to establish the laboratory population of the

parasitoid, Trichogramma chilonis.
2.2 PCR detection

To confirm the infection status, ten female T. chilonis from each

iso-female line were collected, and their genomic DNA was

extracted using the ALS Tissue Genomic DNA Extraction Kit.

PCR amplification of Wolbachia wsp and ftsZ genes was

performed using wsp81F/691R and FtsZBf/Br primers,

respectively. The primers amplify the Trichogramma COI gene as

an internal reference (5, 25, 26). The PCR reaction mixture

consisted of 2 mL of template DNA, 0.5 mL of each forward and

reverse primer, 4 mL of FIREPol®MasterMix, and 13 mL of ddH2O.

The PCR reactions were performed under the following conditions:

initial denaturation at 95°C for 2 minutes, followed by 35 cycles of

95°C for 30 seconds, 55°C for 1 minute, and 72°C for 1 minute, with

a final extension at 72°C for 7 minutes. The same protocols were

also used to determine the Wolbachia infection rate of the

laboratory population of C. cephalonica.
2.3 Phylogenetic analysis of
Wolbachia, wCcep

The wsp and ftsZ gene sequences of Wolbachia from the iso-

female lines and the laboratory population of C. cephalonica were
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analyzed using maximum likelihood estimation (MLE) with 1,000

bootstrap replicates (33), and compared with Wolbachia strains in

the NCBI database.
2.4 Establishing Wolbachia, wCcep-free
(wCcep-) C. cephalonica and T.
chilonis populations

C. cephalonica was reared on rice bran treated with 4.8 mg/g

tetracycline under conditions of 30°C, 20 ± 5% RH, and 12L:12D

photoperiod. After the fifth generation,Wolbachia absence in the C.

cephalonica population was confirmed by qPCR. T. chilonis were

reared on C. cephalonica eggs free of wCcep. TheirWolbachia status

was monitored by qPCR each generation to establish a wCcep- T.

chilonis population. To minimize the potential effects of tetracycline

residues, the antibiotic-treated C. cephalonica population was

reared on untreated rice bran for at least one generation before

being used in subsequent experiments.
2.5 Evaluation of horizontal transfer of
Wolbachia, wCcep in T. chilonis

2.5.1 Quantity of Wolbachia, wCcep in T. chilonis
With the 49th generation of T. chilonis reared on wCcep- hosts,

wCcep density in parasitoids was monitored by qPCR for 15

generations to determine if wCcep could persist without infected

hosts. Each generation was tested, and each sample was run in

triplicate. T. chilonis individuals with wCcep were used as the

control group. The qPCR reaction mixture consisted of 5 mL iQ

SYBR Green Supermix (Bio-Rad), 0.25 mL of each primer, 2.5 mL
ddH2O, and 2 mL extracted DNA, for a total volume of 10 mL. The
target gene, wsp, was detected using the qWspcc5R and qWspcc5F

primers, while the reference gene, COI, was detected using the

qTcCOI5R and qTcCOI5F primers (Supplementary Table 1). The

qPCR conditions were 95°C for 3 minutes, followed by 40 cycles of

95°C for 10 seconds and 59.5°C for 30 seconds.

The density of Wolbachia, wCcep, was determined using the

DDCt method. First, by subtracting the Ct value of the reference

gene from the Ct value of the target Wolbachia, wCcep gene, the

DCt value was calculated for each sample. Then, the DDCt value was
calculated by subtracting the DCt of the control group from the DCt
of the treatment group. Finally, the fold change in wCcep density

was determined using the formula: Fold gene expression = 2-(DDCt).
2.5.2 Effect of Wolbachia, wCcep density on
horizontal transmission efficiency

After 15 generations of rearing T. chilonis on wCcep- hosts, they

were then provided with either (1) wCcep-infected C. cephalonica

eggs (high Wolbachia titer treatment) or (2) tetracycline-treated

(2.4 mg/g) C. cephalonica eggs (low Wolbachia titer treatment). To
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compare the differences, qPCR at each generation monitored the

density and replication rate of wCcep in the parasitoids.

2.5.3 DNA extraction and quantification of
Wolbachia, wCcep density in C. cephalonica

Eggs were collected from two populations of C. cephalonica: one

infected with wCcep and one treated with antibiotics for five

generations. To extract DNA from C. cephalonica eggs, they were

crushed with a pestle in 1.5 mL microcentrifuge tubes. Then 50 mL
of 5% Chelex solution and 1 mL of Proteinase K solution were

added, and the samples were incubated at 56°C for 40 minutes,

followed by incubation at 95°C for 10 minutes.

Each generation was tested with twenty samples, each run in

triplicate. The qPCR reaction mixture was composed of 5 mL of iQ

SYBR Green Supermix (Bio-Rad), 0.25 mL of each primer, 2.5 mL of

ddH2O, and 2 mL of extracted DNA, for a total volume of 10 mL.
The primers qWspcc5R and qWspcc5F were utilized to detect the

target wCcep product, while the qCcCOI1R and qCcCoI1F primers

were used for the reference gene (refer to Supplementary Table 1).

Statistical analyses were performed using R software (version 4.3.0;

27). Kruskal-Wallis tests followed by post-hoc comparisons using

the Benjamini-Hochberg correction to control for multiple testing

and maintain the false discovery rate at 0.05.
3 Results

3.1 Phylogenetic analysis of
Wolbachia, wCcep

After discovering stableWolbachia infection in T. chilonis from

Yanpu, Pingtung, phylogenetic analyses confirmed that the

Wolbachia strain detected in our T. chilonis iso-female lines

belongs to supergroup B, specifically the wCcep strain, identical

to the strain found in their laboratory host, C. cephalonica. This

suggests that the wCcep detected in T. chilonis was likely transferred

from the laboratory-maintained C. cephalonica population. When

comparing the wsp gene fragments, there were no differences

between the wPip infection recorded in 2016 and wCcep, with

only a 1% divergence detected in the ftsZ gene fragment (Figure 1).
3.2 Establishing Wolbachia, wCcep-free
(wCcep-) C. cephalonica and T.
chilonis populations

Analysis revealed significant variation in wCcep density across

five generations of C. cephalonica maintained on tetracycline-

supplemented artificial diet (4.8 mg/g) (Kruskal-Wallis chi-

squared = 63.613, d.f = 5, p = 2.173 × 1012). As treatment

generations increased, Wolbachia density consistently decreased

compared to the infected population. A significant decline in wCcep

density was observed from the first generation and continued to
frontiersin.org

https://doi.org/10.3389/finsc.2024.1519986
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Lai et al. 10.3389/finsc.2024.1519986
decrease in subsequent generations. By the fifth generation, wCcep

was no longer detectable, indicating that continuous tetracycline

treatment for five generations effectively eradicated wCcep infection

in C. cephalonica. This procedure successfully established a

Wolbachia-free (wCcep-) strain of C. cephalonica (Figure 2).

Further, qPCR of wCcep titers in T. chilonis iso-female lines

revealed significant variations among different iso-female strains;

male individuals exhibited significantly higher wCcep titers than

females (Figures 3A, B). In a laboratory-maintained population of

T. chilonis reared for 49 generations, parasitizing wCcep-free C.

cephalonica eggs led to a gradual decrease in wCcep density as

parasitism generations increased (F1-F15) (Kruskal-Wallis chi-
Frontiers in Insect Science 04
squared = 32.908, d.f = 4, p = 1.248 × 10-6). The decline in

wCcep density within T. chilonis was observed starting from the

first generation. These findings suggest that without additional

supplementation of wCcep, the bacterial density in T. chilonis

progressively diminishes, indicating the necessity of continuous

parasitism of C. cephalonica to maintain wCcep levels (Figure 3C).

Our investigation into wCcep transmission dynamics revealed

significant titer variations depending on the initial infection levels in

host eggs. The F15 generation of T. chilonis, parasitizing high-

density wCcep eggs (2-DDCt = 1), showed dramatic titer increases,

with some F1 individuals exhibiting nearly 100-fold higher densities

compared to controls (Kruskal-Wallis chi-squared = 36.43, d.f = 7, p

= 6.013 × 10-6). In contrast, parasitization of tetracycline-treated,

low-density wCcep eggs (2-DDCt = 0.014) resulted in a slower, more

gradual increase in wCcep titers (Kruskal-Wallis chi-squared =

22.757, d.f = 7, p = 1.879 × 10-3). Notably, both scenarios

demonstrated significant titer fluctuations across generations F1

to F10, with the high-density treatment showing more pronounced

variability, notably a marked decrease after F1 followed by a

resurgence around F7 (Figures 4A, B).
4 Discussion

This study demonstrated thatWolbachia strain wCcepundergoes

horizontal transmition from C. cephalonica to uninfected T. chilonis

through host-parasitoid interactions. This transmission occurred and

led to successful proliferation within the new host. The 100%

sequence similarity in the ftsZ gene between wCcep strains from

field-collected C. cephalonica and T. chilonis in southwestern Taiwan.

The comparison of existing wsp and ftsZ sequences in the PubMLST
FIGURE 1

Neighbor-joining tree for Wolbachia strains based on partial sequences of (A) wsp gene and (B) ftsZ gene. Distances were calculated using the
Maximum Likelihood Estimation in MEGA X (33). Bootstrap support values (1000 replicates). Bold text indicates the laboratory populations tested in
this study. Wolbachia strains are identified by the host species from which they were isolated, followed by an NCBI accession number.
FIGURE 2

Wolbachia (wCcep) titer on C. cephalonica after 1 to 5 generations
of tetracycline treatment. Different letters indicate significant
differences (p < 0.05; Kruskal-Wallis test with post-hoc Benjamini-
Hochberg test).
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database also showed that the Wolbachia strain isolated from T.

chilonis is closely related to the wCcep strain within the STC-41 clonal

complex, which is usually found in Lepidoptera hosts (2)

(Supplementary Table 2). These results are consistent with previous
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studies that have shown Wolbachia horizontal transmission in

Trichogramma species, such as intraspecific transfer in T. kaykai

through superparasitism (28) and interspecific transmission of wDen

from T. dendrolimi to T. evanescens through microinjection (29).

Importantly, our study demonstrates that the initial density of

wCcep in host eggs affects the timing and efficiency of horizontal

transmission. Higher wCcep densities facilitated more rapid

transmission, aligning with other findings. For example, Liu et al.

(30) showed that increased Wolbachia inoculation frequency in

Drosophila melanogaster led to higher infection densities.

Meanwhile, Toomey et al. (31) identified high Wolbachia density

as a critical factor for horizontal transmission in D. melanogaster.

These collective findings suggest that the initial encounter density of

Wolbachia is crucial not only for successful horizontal transmission

but also for subsequent proliferation and vertical transmission to

offspring in new hosts.

Notably, following the parasitization of wCcep-infected

C. cephalonica eggs by uninfected T. chilonis, we observed a rapid

initial increase in wCcep density in the offspring generation.

However, this density did not consistently increase over subsequent

generations; it exhibited significant fluctuations. We hypothesize that

these generational density fluctuations may be attributed to the host’s

innate immune response to the newly acquiredWolbachia, leading to

unstable wCcep densities in the novel host (32).

Hu and Li (16) reported a case where wCcep successfully

induced reproductive incompatibility in whiteflies after infection

via microinjection. wCcep-infected C. cephalonica populations

exhibited similar characteristics, suggesting its potential to induce

cytoplasmic incompatibility in T. chilonis (unpublished data).

Additionally, Wolbachia infection may affect reproduction and

fitness, which will be further investigated in future studies.
5 Conclusions

The current study provides evidence through molecular analysis

and re-infection trials demonstrating that Wolbachia (wCcep) can be

transmitted from C. cephalonica to T. chilonis. We established a

wCcep-free C. cephalonica colony over five generations using
FIGURE 3

Wolbachia (wCcep) titer on (A) T. chilonis iso-female lines, (B) male and female T. chilonis, and (C) T. chilonis parasitizing Wolbachia-free C.
cephalonica across 15 generations. Different letters indicate significant differences (p < 0.05; Kruskal-Wallis test with post-hoc Benjamini-
Hochberg correction).
FIGURE 4

Trichogramma chilonis re-infected with Wolbachia (wCcep) by
parasitizing C. cephalonica with (A) high wCcep titer (2-DDCt = 1) and
(B) low wCcep titer (2-DDCt = 0.014). The letters indicate significant
differences (p<0.05; Kruskal-Wallis test with post-hoc Benjamini and
Hochberg test).
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tetracycline. The transmission timing depends on population density,

and wCcep can persist in T. chilonis for one to two generations. These

findings are important for biological control programs using T. chilonis

and managing Wolbachia infections in mass-rearing systems.
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