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Introduction

Aphids are among the most destructive insect pests to crops. Based on the degree of

their host specialization, aphids, like other herbivorous insects, have been grouped into

three categories: monophagous, oligophagous, and polyphagous (1). Monophagous aphids

feed on only one or a few closely related plant species, often of a single genus, oligophagous

aphids feed on several plant species of the same family, and polyphagous aphids feed on

plants that belong to more than one family. Polyphagous aphids are considered generalist

herbivores, comprising less than half of the total aphid species (2, 3). However, this

polyphagous nature allows generalist aphids to disseminate plant pathogens to a wide range

of host plants (3, 4).

The cotton aphid (or melon aphid), Aphis gossypii Glover, is a highly polyphagous

aphid species that can feed on at least 700 plant species in numerous families including

Asteraceae, Cucurbitaceae, Malvaceae, Rutaceae, Solanaceae, and Fabaceae (5–7).

Population studies of A. gossypii have shown that diversity is mainly associated with

differences in host plant preference. Moreover, several plant host-specialized biotypes have

been documented (8–10). Other factors including geography, climate, and pesticide use can

also contribute to shaping its population structure (11, 12). Interestingly, profiles of

microbial symbionts, on which aphids are dependent in numerous physiological

processes, may vary in different A. gossypii biotypes and populations, suggesting

specialized interactions evolved between A. gossypii and its microbial symbionts under

selection pressure exerted by a variety of environmental factors (13–15). Hence, a

population-specific microbiome analysis is crucial to understanding aphid-microbe

interactions in locally adapted A. gossypii.

As a worldwide distributed agricultural pest, A. gossypii is responsible for severe yield

losses of many economically important crops such as cotton, cucumber, and citrus (5, 7).
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Besides injuring plants directly by sucking the sap, while feeding, it

secretes honeydew which fosters growth of sooty mold that can

block sunlight and decrease photosynthesis processes within the

plant (16). Moreover, A. gossypii is important for its ability to

transmit over 75 plant viruses (17) and was ranked the second most

competent aphid species in terms of number of potyviruses it

vectors (3). In cotton, A. gossypii transmits several viruses

including cotton leaf roll dwarf virus (CLRDV), cotton

anthocyanosis virus, and cotton bunchy top virus, posing a severe

threat to cotton production (18–20).

In the Southeast USA, cotton is one of the most economically

important crops, and A. gossypii is a major insect pest of cotton and

the only known vector of CLRDV. As a primary cotton-growing

region in the Southeast, Alabama also reported the first occurrence

of CLRDV in 2017 (21). This virus was later detected throughout

the Southeast (22, 23). Given the significant economic impact of A.

gossypii in Alabama, we performed metatranscriptomic and

metagenomic analyses on locally collected cotton aphids to

decipher their microbiota.
Value of the data

These sequencing datasets provide genetic information, at both

RNA and DNA levels, of symbiont microbes and their overall

community composition in a local A. gossypii population from

Alabama, USA. The microbiome data can be used to identify A.

gossypii-associated and transmitted plant pathogens and discover

insect-infecting microbes for aphid biocontrol. In addition, plant

species identified in the sequencing data from the whole aphid, will

provide insights into the plant host range of A. gossypii in the

locality tested.
Materials and methods

Aphid collection and nucleic
acid extraction

Alate A. gossypii were collected from the upper 1/3 of the

canopy on different cotton plants in the cotton fields of South

Alabama when cotton was flowering. Samples were stored in

RNAlater™ Stabilization Solution (Thermo Fisher Scientific Inc.,

Waltham, MA, USA) at -80°C. Five alataes collected on 6/28/2020

in Brewton, AL (31.143390, -87.049873) and another five collected

on 6/28/2021 in South Newville, AL (31.389972, -85.421248) were

pooled for total RNA and DNA extraction using the Quick-DNA/

RNA™MiniPrep Plus kit (Zymo Research, Irvine, CA, USA). DNA

was digested from total RNA using the on-column method

described by the RNA Clean & Concentrator-5 kit (Zymo

Research, Irvine, CA, USA). Nucleic acid concentration and

quality were assessed in a spectrophotometer (NanoDrop®) and

an automated electrophoresis system (Tape Station 4200, Agilent

Technologies, Santa Clara, CA, USA), respectively.
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Sample sequencing

Library preparation and Illumina sequencing were conducted at

Novogene Corp. Inc. (Sacramento, CA, USA).

For RNA sequencing, ribosomal RNAs from both eukaryotes

and prokaryotes were first depleted from total RNA samples using

the Ribo-Zero rRNA removal kit (Illumina, USA). The remaining

RNAs were fragmented into ~250 to 300 bp and then reverse-

transcribed into double-stranded cDNAs. For metagenomic

sequencing, 1 µg of genomic DNA was randomly sheared into

short fragments of approximately 350 bp. The double-stranded

cDNAs (for RNA sequencing) and sheared genomic DNA

fragments (for DNA sequencing) were subsequently end repaired

to produce blunt ends, added with a single ‘A’ nucleotide at the 3’

ends, and further ligated with Illumina adapters. After fragment size

selection and PCR amplification, the prepared metatranscriptomic

and metagenomic libraries were sequenced on the Illumina

NovaSeq platform (Illumina, CA, USA) with pair-end 150 mode.
Assembly of metatranscriptome
and metagenome

To generate a metatranscriptome, RNA raw reads were first

preprocessed by trimming adaptors and removing low-quality reads

using Trimmomatic (v0.39) in paired end mode (24). Parameters

for Illumina clip were seed mismatches = 2, palindrome clip

threshold = 30, and simple clip threshold = 10. Other parameters

included the sliding window trimming with a window size = 5,

required quality = 20, and minimum read length = 50. Clean reads

were then aligned to the A. gossypii genome (NCBI accession

GCF_020184175.1) (25) using the BWA-MEM mapping tool

(v0.7.17) with its default parameters (26). Unmapped paired reads

were assembled to create metatranscriptomic contigs using SPAdes

(v3.15.5) in meta mode (27).

A metagenomic assembly was similarly generated following these

three steps: 1) preprocessing of DNA raw reads, 2) mapping of clean

reads to the reference genome, and 3) assembling of unmapped

paired reads. For Step 1, Readfq (v8; https://github.com/cjfields/

readfq) was used to trim adaptors and remove the low-quality

reads that have: a) more than 40 low-quality bases with Q-value <

38, b) more than 10 ambiguous nucleotides “N”, or c) more than 15

bp’s overlap with adaptors. Step 2 was conducted using BWA-MEM

as described above. For Step 3, Megahit (v1.2.9) was used at the

default setting to generate metagenomic contigs (28).
Taxonomic analysis

Contigs longer than 400 bp were retrieved for taxonomic

analysis. Contig sequences were first aligned to a preformatted

NCBI non-redundant (NR) reference database downloaded on

August 28, 2023, with the BLASTX function by running

DIAMOND (v2.1.8) (29). The output was written in DAA
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(DIAMOND alignment archive) format, which was then used for

Meganization, an approach of performing taxonomic and

functional binning of the sequences (30). The DAA file was run

against the MEGAN database ‘megan-map-Feb2022.db’ in long

read mode, using MEGANIZER, a program included in the

MEGAN package (v6_25_3) (31). Lastly, a taxonomic analysis

was conducted using MEGAN, in interactive mode, to determine

kingdom and genus level assignations for all contigs.
Data description

Sample sequencing and read assembly

Total RNA and DNA extracted from the A. gossypii sample,

consisting of 10 field-collected alataes, had high purity (OD260/280

> 2.0) and high quality (RIN = 8.3). A total of 88,776,140 and

84,900,570 raw reads were obtained from the Illumina sequencing

of RNA (AAL8R) and DNA (AAL8D) samples, respectively, which,

after preprocessing to remove adaptors and low-quality reads,

yielded 86,527,106 and 84,867,588 clean reads (Supplementary

Table S1). The GC content of DNA reads was lower (26.77%)

than the RNA reads (39.00%) but similar to PacBio reads (27.26-

27.99%) of the published A. gossypii genome used as reference (25).

Mapping of RNA and DNA reads to the A. gossypii genome

revealed 49.21% and 98.17% of genome coverage, respectively. A

total of 17,914,277 and 5,563,338 potentially non-host RNA and

DNA reads were unmapped, accounting for 20.70% and 6.56% of

their total clean read numbers (Supplementary Table S1).
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Two de novo assemblies were generated: one from the AAL8R

and the other from the AAL8D non-host reads not mapped to the

A. gossypii genome. The AAL8R assembly consisted of 23,101

contigs with an average length of 365 bp and a medium (N50)

length of 337 bp. The AAL8D assembly consisted of 11,415 contigs

with an average length of 984 bp and a medium length of 1,390 bp

(Supplementary Table S1). Contigs longer than 400 bp, including

3,804 AAL8R contigs and 8,454 AAL8D contigs, were finally

selected for taxonomic annotation.
Taxonomic annotation

Taxonomic analysis of the non-host reads using Kraken2 (32)

identified 1,309,526 (14.62%) unclassified RNA reads and 668,479

(24.03%) unclassified DNA reads. Bacterial reads were the most

abundant in both libraries, comprising 7,230,419 (80.73%) of RNA

reads and 1,673,778 (60.17%) of DNA reads. Other taxa accounting

for ≥ 1% of the non-host reads included viruses (294,166 reads,

3.28%) and Eukaryota (96,840 reads, 1.08%) in AAL8R, and

Eukaryota (393937 reads, 14.17%) in AAL8D.

The acquired metatranscriptomic and metagenomic contigs were

annotated at the kingdom and genus levels using the DIAMOND

+MEGAN taxonomic analysis approach (30). Over half of the contigs

in both RNA and DNA datasets assembled from non-host reads were

classified into specific kingdoms. This included 2704 (71%) AAL8R

and 4504 (53%) AAL8D contigs (Figure 1). “Bacteria”, “Metazoa”, and

“Fungi” were the three most abundant kingdoms for AAL8R.

“Metazoa”, “Bacteria”, and “Naldaviricetes” were most abundant for
FIGURE 1

Taxonomic annotation of the RNA (AAL8R) and DNA (AAL8D) contigs at the kingdom level.
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AAL8D. In both the RNA and DNA datasets, a high proportion of

sequences received a “Metazoa” assignation. This is likely the result of

reads that did not map to the reference genome due to the presence of

sequence gaps and as a result were designated as non-host reads (25).

Genetic variation between the reference genome, obtained with aphids

collected in China (25), and those used in this experiment, collected in

Alabama, may be another factor that led to the designation of some

reads as non-host. Contigs assembled from these “non-host” reads

consequently received the “Metazoa” assignation.

Previous studies showed that the microbiome of A. gossypii can

be determined by a variety of factors, including plant host,

geography, and life stage (13–15, 33, 34). Our genus-level

taxonomic analysis on bacterial contigs indicated that the genus

Arsenophonus was the most dominant group of symbionts in both

AAL8R and AAL8D samples (Figure 2A). Arsenophonus species are

known as male-killing facultative symbionts found in a broad range

of arthropod hosts (35, 36). Aside from acting as son killers to

benefit female offspring (37), some Arsenophonus species were

recognized as insect-vectored plant pathogens (38). In aphids,

members of Arsenophonus can also play a role in parasitoid

defense (39) and plant host specification (40).

Our analysis demonstrated that Pseudomonas was the second

most dominant bacterial genus (569 contigs) in the AAL8R sample

(Figure 2A). Like Arsenophonus, Pseudomonas has been shown to

interact with its insect host in a multifaceted manner: while some

species are entomopathogenic, others may be beneficial

endosymbionts of insects or insect-vectored plant pathogens (41).
Frontiers in Insect Science 04
Other bacterial genera with ≥ 10 contigs in either AAL8R or AAL8D

included Aureimonas, Buchnera, Hamiltonella, and Serratia

(Figure 2A). Among these, Aureimonas was found in a recent

cotton microbiome study (42) but has not been reported as an

aphid symbiont. Given that cotton components were likely present

in the gut of A. gossypii collected in the cotton field, it is not possible

to discriminate whether Aureimonas DNA reads originated from the

aphid or the cotton host. By contrast, Buchnera is a well-studied

primary endosymbiont present in almost all aphid species (43).

Despite the contig numbers not being the highest, Kraken2

taxonomic analysis indicated that the number of reads assigned to

Buchnera comprised 78.79% (7,056,145 reads) and 56.7% (1,577,306

reads) of the non-host RNA and DNA reads, respectively. This

suggests that using contig numbers to infer the abundance of a

taxon could be inaccurate, as it does not take into account many

factors, such as genome size, contig length, and sequencing depth.

However, the number of contigs represents a useful metric for initial

assessments, providing a general overview of the taxonomic

composition within a sample, especially when combined with other

analytical methods. Previous studies using 16S rRNA sequencing

have confirmed the presence of several bacterial genera in A. gossypii,

including Buchnera, Arsenophonus, Pseudomonas, Hamiltonella, and

Serratia (13–15).WhileHamiltonellawas shown tomainly play a role

in stress tolerance and parasitoid defense in insects, Serratia has been

shown to be symbiotic or pathogenic to its insect host (44–46).

Two genera of DNA viruses, Alphabaculovirus and

Aplhanudivirus, were detected in both RNA and DNA samples
FIGURE 2

Taxonomic annotation of the RNA (AAL8R) and DNA (AAL8D) contigs at the genus level. The number of contigs assigned to the genera of bacteria
(A), Naldaviricetes (B, left), Orthornavirae (B, right), fungi (C), and plants (D) are shown. For bacteria and fungi, only genera containing ≥ 5 contigs are
listed. No fungal genera in AAL8D contain ≥ 5 contigs. Fungal genera and their contig numbers in AAL8R are indicated in the pie chart (C).
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(Figure 2B). Detection of DNA viruses in the RNA sample

suggested that they were actively replicating in the host cells.

Alphabaculovirus and Aplhanudivirus are double-stranded DNA

(dsDNA) viruses that infect insects (47, 48). Therefore, we suspect

that the contigs of these two genera in the samples could correspond

to DNA viruses of A. gossypii. Further analysis is needed to

determine their biological and molecular properties. We also

found sequences of two genera of putative RNA viruses,

Goukovirus and Cripavirus (Figure 2B), whose members are

known to infect insects (49, 50). Although the aphid-transmitted

cotton virus, CLRDV, is widely distributed in cotton fields (23), we

did not find CLRDV contigs in this study, possibly due to the

relatively small aphid sampling size.

Taxonomic analysis on the fungal contigs revealed that

Conidiobolus, Fibularhizoctonia, Basidiobolus, and Beauveria were

the most abundant genera with at least 5 contigs each (Figure 2C).

Notably, Conidiobolus and Beauveria encompass significant

entomopathogenic species like B. bassiana, which has been

employed as a biological insecticide to manage a diverse array of

insect pests (51, 52). Despite the prevalence of Neozygites fresenii, a

naturally occurring fungal pathogen of A. gossypii in the Southeast

USA (53, 54), we did not identify any contigs assigned to the

Neozygites genus. This may be the result of the small aphid sample

size used in this study.

Our analysis, mostly from the RNA sample, showed that the

highest number of plant contigs were assigned to the genus

Gossypium. This is not surprising as the aphids were collected in

cotton fields. However, we also detected at least one contig for

twelve other plant genera belonging to several families (Figure 2D).

Although these spurious hits in the database are not conclusive,

they might represent remains of plant hosts fed upon by the aphids.

Should this be true, this finding supports the well-established fact

that A. gossypii is polyphagous but also suggests that the aphids we

collected moved in and out of the cotton field and had fed on a

variety of plants.

In conclusion, through sequencing A. gossypii alataes collected

in Alabama, USA, we generated two de novo assemblies: a

metatranscriptome and a metagenome. The DIAMOND

+MEGAN taxonomic analyses on these assemblies uncovered

putative sequences of a variety of organisms that may form

complex interaction networks associated with A. gossypii. These

protocols can be applied not only for microbiome analysis but also

to investigate the host range of herbivorous insect species.

Additionally, the DNA reads can be used for population

genomics research, the RNA reads can be used to enhance gene

annotation, and both RNA and DNA reads can contribute to

refining the assembly of the A. gossypii genome.
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