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Integrated pest management (IPM) laid the foundation for integrated vector

management (IVM) by introducing strategies that prioritize prevention over

intervention and the use of diverse management and control tools for

arthropod vectors. Both approaches focus on reducing chemical reliance for

management of targeted organisms by employing data-driven decisions and

incorporating the use of additional non-chemical based management tactics.

While IPM and IVM differ in their specific applications and management contexts,

many of their fundamental principles remain the same. By diversifying prevention

and control options, these management practices support healthier

environments, animals, and populace, the three spheres of the One Health

paradigm. One Health principles support and highlight the connections

between animal, human, and environmental health and how these spheres

influence one another. However, the connections and overlapping goals

between IVM and One Health are infrequently discussed in tandem. This

review will examine the numerous and varied methods of IVM for reducing

global disease burden, detail the benefits of using IVM to achieve One Health

goals, as well as benefits and considerations to incorporating a One Health lens

with IVM.
KEYWORDS

One Health, integrated vector management, vector control, pest management, vector-
borne disease
1 Introduction

While pests and disease have been persistent challenges, cases of emerging and re-

emerging diseases in humans, animals, and crops have increased in severity and frequency over

the past half-century (1–3). The 20th century ushered in a new era of chemical,

pharmaceutical, and technological innovations that reduced pests and increased agricultural

output (4), as well as substantially improved public health outcomes with broad-spectrum
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antimicrobials and antibiotic interventions, insecticides, and

sanitation reforms (5, 6). However, the belief that disease could be

vanquished was soon recognized as a false prophecy. Nearly as quickly

as chemical interventions were invented, resistance was noted (7–9),

not only with modern insecticides and pesticides, but with other

modern therapeutics such as broad-spectrum antibiotics and

antiparasitics as well. Shortly after antibiotics became a cornerstone

of modern industrialized agriculture, used both to prevent infections

and promote growth rates in livestock, pharmaceutical resistance

began to emerge. This resistance was observed in both the treated

animals and farmworkers, with a strong correlation between

antibiotic-resistant microbes in animals and the subsequent rise in

resistance among humans (10, 11). The ongoing rise in pest and

pathogen resistance, along with studies supporting the connection

between human, animal, and environmental health, paved the way for

the One Health concept to gain traction.
1.1 One Health origins

While the term “One Health” was officially coined in the 2000s,

the concept itself dates back centuries. Initially termed “One

Medicine” by Calvin Schwabe in the late 1800s, this concept was

primarily focused on the connections between animal and human

health (12). Historical examples, such as the early association of

malaria with swampy environments (13), hinted at the critical link

between environmental and human health long before mosquitoes

were recognized as vectors of disease. In the late 19th to early 20th

centuries, the pioneering work of scientists like Sir Ronald Ross and

Major Walter Reed established that mosquitoes could transmit

disease-causing pathogens to both humans and animals (12, 14),

while Theobald Smith and F. L. Kilborne’s research on tick-borne

cattle fever laid the foundation for understanding vector-borne

zoonotic diseases (15). These studies were fundamental to our

current understanding of pathogen transmission, aiding disease

mitigation efforts by identifying that live organisms such as

mosquitoes and ticks, or vectors, could transmit pathogens. Thus,

vector management was developed, with the idea that by controlling

the vector, one could control the pathogen and consequently,

control disease.

With increasing recognition of the interconnectedness of animal,

human, and environmental health, the One Health concept evolved.

In the 1990s, the concept gained renewed attention in response to

concurrent crises of increasing antibiotic and insecticide resistance

and under-investments in public health infrastructure (11, 16, 17).

With increased understanding of the importance of healthy

ecosystems for healthy populaces, this concept was expanded to

include three interconnected spheres (animals, humans, and the

environment), and in the early 2000s the term “One Health”

gained traction (17). This concept has become an integral

framework for a multitude of agencies with extremely varied

objectives regionally, nationally, and internationally to promote

integrated approaches for addressing animal and zoonotic diseases

and public health challenges.
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1.2 Modern challenges in vector-borne
disease management

Today, around 75% of emerging infectious diseases are

zoonotic, with approximately 40% of known zoonotic viruses

being vector-borne (18–20). Anthropogenic factors such as

urbanization, land-use changes, industrial farming, and climate

change have contributed to the increase and spread of vector-

borne diseases by altering environments to favor vectors, like

mosquitoes and ticks, and by increasing contact between humans

and previously wild areas leading to disease emergence and spillover

events (3, 21).

Anthropogenic manipulation of the environment has resulted in

favorable changes for pest and vector populations to thrive. Increased

emissions and accumulations of greenhouse gasses have contributed

to environmental changes and an increase in global temperatures (22).

These anthropogenic changes have made environments more suitable

for pests by extending active seasons and expanding habitat ranges,

thus increasing risk of vector-borne pathogen transmission in these

areas (23–26). For instance, the number of suitable days in a year for

mosquito activity has increased for many cities in the U.S. (27).

Additionally, numerous areas in the U.S. have documented new

invasive vectors (e.g., Aedes japonicus and Haemaphysalis

longicornis) (28, 29) or expanding ranges of vector species (e.g., Ae.

aegypti, Ae. albopictus, Amblyomma americanum, and Am.

maculatum) (30–32). Compounding these challenges, widespread

insecticide use has driven the rise of insecticide resistance in many

vector species, further hampering control efforts. For example, large-

scale deployment of insecticide-treated bed nets in Mali coincided

with an increase in insecticide-resistant hybrid mosquito populations

(7, 8). As broad-scale chemical interventions become more common,

selective pressures have led to the spread of resistance genes and

behavioral adaptations that enable vectors to survive control measures

and have even led to the local extinction or extirpation of previously

susceptible populations (7, 8). Furthermore, the change in

environmental conditions has also included more destructive and

frequent weather events (33), which can lead to mosquito-driven

public health emergencies requiring rapid response by vector control

professionals (34).

The effects and threats from vector-borne diseases are diverse

and wide-ranging across local, regional, and global scales. Globally,

mosquitoes remain the world’s most “deadly animal” contributing

to the morbidity of millions and mortality of hundreds of thousands

of people, primarily in tropical and subtropical regions from

malaria and dengue infections. For instance, in 2022 alone there

were approximately 249 million cases of malaria reported across 85

countries, resulting in 608,000 reported deaths (35). Even though

the U.S. eradicated malaria officially in 1951 (36), imported cases

are documented annually, and Texas, Maryland, and Florida all

reported locally acquired cases as a result of imported cases in 2023

(37). In the U.S., tick-borne disease cases are also on the rise and

account for approximately 75% of documented vector-borne

disease cases (36, 38, 39). In 2022, public health professionals

reported over 60,000 cases of Lyme disease (40). Spotted fever
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rickettsioses increased from fewer than 500 cases in 2000 to over

5,000 cases reported in 2019 before the case definition changed in

2020 (41). Additionally, new and expanding ranges of vector-borne

diseases are being documented, such as the newly emerging threat

of Oropouche virus to South America, Cuba, Europe, and North

America (42). Other vectors and their associated diseases also

impose high health and economic burdens, such as phlebotomine

sand flies and leishmaniasis (43), kissing bugs and Chagas disease

(44), and human body lice and typhus (45). Cases of vector-borne

disease also incur heavy burdens on healthcare systems. For

example, in the U.S., an estimated $1.3 billion is spent annually

for Lyme disease (46) and $778 million over 14 years for West Nile

virus (WNV) (47). Chikungunya virus can result in healthcare costs

of approximately $14.8-33.4 million in the U.S. or $2.8 billion

globally (48, 49).

Vector-borne diseases commonly affect animals as well. For

instance, the prevalence of canine heartworm disease, caused by

Dirofilaria immitis nematodes and transmitted by numerous

mosquito species to domestic dogs and wild canines, has increased

across much of the U.S. (50). Many tick species can transmit

pathogens of significant medical and veterinary consequence,

resulting in diseases such as Lyme disease (51) and Rocky

Mountain Spotted Fever (52), which have the potential for zoonotic

transmission to people in close contact with affected animals or

infected ticks. Vector-borne diseases can cause devastating health and

economic impacts to livestock as well. For example, approximately

80% of global cattle production is at risk of contracting tick-borne

diseases (53). Ruminants such as cattle, sheep, and goats are at risk of

infection from a high variety of bacterial, protozoan, and viral

pathogens transmitted by ticks, causing economically important

diseases such as anaplasmosis, babesiosis, and theileriosis (54).

After eradication of bovine babesiosis in the U.S., the livestock

industry has potentially saved $3 billion USD after accounting for

inflation (55, 56). At a global scale, economic losses due to tick-borne

bovine babesiosis and anaplasmosis can vary between $15–57 million

USD, depending on the geographic location (57). While swine can

suffer health consequences from vector-borne diseases such as

spontaneous abortions and stillbirths, they also exemplify the

disease risks from large-scale animal production practices and

related invasive species (i.e., feral hogs) that can contribute to

zoonotic outbreaks. One such example is the potential for a deadly

Japanese encephalitis outbreak that could affect swine populations as

well as horses, cattle, and people (58). Venezuelan, eastern, and

western equine encephalitis are arboviral diseases that can kill

unvaccinated horses after contracting the virus from a bite of an

infected mosquito (59). Bites from arthropod vectors can also cause

significant health effects, such as bite wounds or sensitivity reactions

to salivary proteins, leading to well-known problems like “sweet itch”

in horses typically associated with biting midges (60). Certain tick

species can release salivary neurotoxins during feeding that can lead

to tick paralysis, also known as tick toxicosis (61).

Vector-borne diseases affecting wild animals serve as another

example of both disease consequence and disease transmission risk.

For instance, in the southwestern U.S., seasonal outbreaks of plague

occur in prairie dogs (Cynomys spp.) after contact with fleas
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infected with Yersinia pestis, with the potential for spillover into

other species including humans (62). Globally, biting midges can

transmit high-consequence pathogens in both domestic animals

(e.g., African horse sickness virus in equines) and wild or farmed

cervids [e.g., bluetongue virus in white-tailed deer (Odocoileus

virginianus)] (63–65). Arthropods can further act as mechanical

vectors by physically transferring pathogens from contaminated

surfaces (e.g., manure, droppings, and other fecal material) to

susceptible hosts. For example, a study conducted in an avian-

influenza enzootic region in Japan found that blowflies (Calliphora

spp.) may mechanically transmit high pathogenicity avian influenza

(HPAI), a pathogen typically associated with direct contact or

airborne transmission, between wild birds and farmed poultry, a

finding with global significance given wild bird migratory routes

(66). Additionally, recent detections of HPAI in U.S. dairy cattle

and people in 2024 (67), underscore the interconnectedness of

environmental, human, and animal health and the critical need for

coordinated disease management strategies.

To effectively manage vector populations and lower the risk of

pathogen transmission, professionals can apply the One Health

framework using science-based methods as part of an integrated

vector management (IVM) program, a strategy adapted from

integrated pest management (IPM) (Figure 1) (68). Integrated

vector management promotes the use of all tools in a toolkit and

emphasizes comprehensive planning and control strategies that go

beyond chemical interventions and include cultural control,

mechanical and physical control, biological control, and targeted

chemical control when necessary (Figure 2). Community

engagement is a critical component of an effective IVM program,

ensuring that public health and pest control professionals work in

tandem with local communities to detect and respond to vector-

borne disease threats (69–71). Since professionals may not be able

to survey or treat every location, educating the community on pest

and vector identification, reporting, and disease risk reduction

measures is essential to ensure the effectiveness of disease control

programs. Additionally, IVM emphasizes data driven decision-

making to guide control actions based on predefined action

thresholds, mitigating non-target impacts, and evaluating efficacy

to ensure vector control professionals achieve their goals of

minimizing negative environmental effects (e.g., monitoring and

managing insecticide resistance) (68). At the heart of a One Health-

based IVM program, surveillance provides the foundation for

vector control programs, providing baseline data to determine

initial action as well as the data to evaluate changes to vector

control programs (72–76). By incorporating the One Health

framework into IVM, the health of humans, animals, and the

environment can be safeguarded, ultimately reducing the risk of

vector-borne diseases while minimizing harm to ecosystems.
2 From IPM to IVM: adaptations for
vector-borne disease control

Within animal systems, vector-borne diseases have far-reaching

effects, including direct economic losses due to mortality or
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decreased production in agricultural animals, direct and indirect

effects within conservation and wildlife management contexts, and

downstream disruptions in ecosystem services. The drivers and

effects of disease are complex, involving interconnected systems that

are not yet well understood, with the management and

consequences thereof even less clear.

Based on the management strategies used in IPM, IVM utilizes

similar tools within a vector and vector-borne disease management

context (77). One of the major differences between IVM and IPM is

that IVM decisions are not purely driven by economic thresholds.

Instead, these decisions are also based on how resources can best be

allocated to reduce the numbers of vectors or human cases, with the

goal of preventing pathogen transmission (77). While different in

motivations, IVM incorporates the same four core management

strategies used in IPM (Figure 2):
Fron
1. Cultural control.

2. Physical and mechanical control.
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3. Biological control.

4. Chemical control.
2.1 Integrated vector management control
strategies

Cultural control refers to education, community engagement,

personal protection behaviors, and sanitation efforts focused on the

reduction of vector bites and risks of vector-borne disease. In public

health contexts, this often involves community-level educational

campaigns to raise awareness about local vectors and behaviors that

can reduce disease risk, such as staying indoors during peak

mosquito active hours or avoiding brushy and woody areas where

ticks are more commonly found (78–80). In the context of animal

disease, this can involve veterinarians educating pet owners about

the benefits of vaccinations and prophylactics as well as risk-
FIGURE 1

The integration of One Health principles within an Integrated Vector Management (IVM) plan. Integrated vector management promotes the use of all
available tools to manage vectors and vector-borne disease with the ultimate goal of protecting human, environmental, and animal health when
implementing and evaluating IVM plans. When designing an IVM plan, the three interconnected spheres of One Health should be considered in
every step of the plan to ensure healthy people, animals, and environments.
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reduction behaviors to reduce the likelihood of bites (81, 82). In

livestock systems, cultural control is often focused on sanitation

practices that eliminate or reduce breeding conditions for pests and

vectors, such as removal of manure for fly control or mowed

pastures for tick control (83).

Physical and mechanical control can be broadly defined as

structural or environmental modifications that prevent contact

between hosts and arthropod vectors, thereby limiting pathogen

transmission (84). While most studies extrapolate the use of barriers

at the individual level, many of these barriers can be scaled up to

protect entire communities or be geographically vast in scope, such

as the use of draining trenches for mosquito control. By collectively

implementing barriers, both individuals and those around them can

be better protected. Examples of barriers include window and door

screens, mosquito netting, landscape alterations, and environmental

management that limit vector movement or survival. Additionally,

wildlife fencing can prevent wild animals and any attached vectors

from entering premises.

Biological control of vectors utilizes natural enemies (e.g.,

predators, parasites, competitors, and pathogens) to suppress and

control the target vector species or host-derived advantages to reduce

effects of vector bites or disease (e.g., anti-tick host resistance traits,

harnessing and promoting effects of endemic stability). Specific

examples of biological control to control arthropod vectors include

the use of fungi, mosquitofish, parasitoids, arthropod predators, and

vertebrate predators, with genetic or biological modifications of hosts
Frontiers in Insect Science 05
or vectors themselves (e.g., using sterile insect technique and gene

drives to limit vector or pathogen reproduction) often categorized as

newer innovations within biological control. However, knowledge on

the interactions between the agent, vector of interest, and the

environment is needed to effectively use biological control agents as

a sustainable control method and to mitigate potentially deleterious

environmental consequences. This includes knowledge on the degree

of host specificity, resources required for colony maintenance and

release, and the possible ecological impacts following release of the

biocontrol agents.

Chemical controls are used to prevent and reduce the risk of

bites by eliminating the vector. This type of measure can include

pesticide applications to the environment, on-host insecticides,

acaricides, therapeutics, disinfectants, and chemical-impregnated

fabrics. While there are some chemical applications used

preventatively, chemical control is often used as an intervention

in response to a specific event such as a positive index case (human

or animal), positive vector (individual or pool), or vector abundance

reaching a predefined action threshold (85–87). Some examples of

chemical control include aerial applications of insecticides to

control black fly or mosquito populations (i.e., aerial spraying or

adulticiding), insecticide application to stagnant water sources (i.e.,

larviciding), and acaricide treated cotton in tick control tubes (i.e.,

host-targeted control).

Not all tactics fall exclusively within one strategy of IVM

control, with numerous tactics harnessing the advantages of
FIGURE 2

Management strategies involved in an integrated vector management (IVM) plan. Integrated vector management involves the use of multiple
approaches for vector and vector-borne disease management. Moving from left to right shifts the focus from prevention-based tactics to
intervention-based tactics, with the latter initiating control based on data and action thresholds. As a whole, IVM plans should incorporate diverse
strategies to ensure a balanced and ecologically sound control approach. These management strategies fall under the “Utilizing all available tools”
step in an IVM plan (Figure 1) and should be frequently evaluated and adjusted to changing needs.
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multiple control strategies. For instance, the use of insecticide

resistant nets can be used as a physical barrier to prevent contact

between hosts and mosquitoes, while also providing chemical

control to kill mosquitoes that come in contact with the net (88).

Another example is mowing pastures for tick control, which can be

categorized as a cultural control and physical and mechanical

control. This tactic generates a behavior to reduce viable habitat

for ticks and it creates a barrier between high and low use areas, thus

reducing tick bite risk (89). For more examples of control types in

each management strategy of IVM, see Table 1.
2.2 Historic use of IVM practices

Historically, humans have manipulated their environment to

manage vectors and vector-borne disease. Long before the new era of

chemical control in the 1900s, people were exploring different methods

of vector control. One of the first intervention trials was conducted in

the 1800s in Rome and used physical barriers to prevent pathogen

transmission from vectors. The trials, conducted by Angelo Celli, found

that covering windows and doors with cloth or screening to prevent

mosquitoes from entering homes led to a reduction in malaria cases

(149, 150). Because infection frequently occurred indoors, several

studies and reviews successfully implemented simple modifications to

homes, such as using netted windows, screened doors, and closed eaves,

to protect people from Anopheline mosquitoes and reduce the number

of clinical malaria cases (88, 150–153).

Agricultural systems were one of the primary innovations that

enabled the rise of complex human societies, bringing crops,

animals, and humans closer together in higher densities. These

changes quickly led to changes in pathogen transmission cycles,

often leading to increased rates of zoonotic pathogen transmission

due to crowded and unsanitary conditions as well as increased

human-animal contact and densities (154–156). In fact, many

diseases with high global consequence likely arose directly or

indirectly due to farming and domestication of animals, such as

malaria, measles, smallpox, and influenza (3, 154–156). While not

all of these diseases are vector-borne, many can be transmitted by

arthropod vectors, allowing for transmission to occur outside of

direct animal-to-human or human-to-human contact.

Synthesized chemicals have been used as a vector control tool

since the early 1900s (76). As chemical use became more common

and widespread, so did the consequences. As a result, public opinion

on chemical use for vector control has been controversial, with many

successes marred by deleterious downstream effects. For example, in

the past, public health professionals widely and indiscriminately used

the pesticide dichloro-diphenyl-trichloroethane (DDT) to control

vector-borne diseases, such as malaria and typhus, with much

success (157). Unfortunately, the egregious use of this pesticide also

led to the rapid development of insecticide resistance and other

negative consequences such as long environmental persistence,

accumulation in fatty tissues, declines in wildlife health, and

dispersal through the upper atmosphere (157).

Today, IVM programs and the decisions to implement vector

and vector-borne disease control are data-driven. As such, IVM
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programs conduct routine surveillance of pest populations and

pathogen activity to inform control decisions as well as to collect

efficacy data to improve future iterations. Modern technological

advancements also enable the use of precision equipment and

techniques to apply an optimal amount of pesticide at targeted

delivery sites for direct contact with the vector. For example, ultra-

low volume (ULV) space sprays target adult mosquitoes and use

very small volumes of pesticide (generally <1 oz/acre) (145). While

delivery often involves precision tools, chemical interventions can

still negatively affect non-target organisms such as terrestrial

wildlife, aquatic species, and beneficial insects (146, 158–161).

This highlights the significance and need for continual

surveillance and evaluation of IVM programs in order to

maximize the impact on entomological and disease indices while

minimizing harm to the environment and its inhabitants.
3 IVM in a One Health context

Humans and animals live together in one environment, and the

interactions among the three groups can influence the overall health

experienced within each group (162–164). As such, One Health

emphasizes the importance of protecting and maintaining a healthy

environment to reduce the incidence of disease in humans and

animals. An IVM program supports One Health’s goal of preserving

health across people, animals, and the environment by routinely

engaging communities, surveying the environment for vectors and

pathogens to make data-driven control decisions, and continuously

evaluating effectiveness of management practices to ensure goals are

met and modify strategies as needed (Figure 1). Specifically, IVM

focuses on the prevention of vector bites and the transmission of

vector-borne pathogens, encouraging community involvement to

reduce vector encounters, minimizing pressure that could lead to

insecticide and antimicrobial resistance, and reducing reliance

solely on chemical controls.

While vector control strategies, policies, and methodologies have

significantly reduced the burden of vector-borne diseases in many

regions, the field remains largely confined to a subset of human health

professionals, such as vector and pest control operators, vector

biologists, entomologists, public health scientists, and policy-

makers. This discipline-specific focus, while often effective in

addressing immediate public health concerns, limits the broader

potential of IVM to enhance not only human health but also

animal and environmental health and wellness. By expanding the

scope of IVM through a One Health framework, interdisciplinary

collaboration can be strengthened to include professionals in

veterinary sciences, wildlife and environmental sciences, data

sciences, social and behavioral sciences, conservation and

preservation professionals, educators, mental health experts, and

policy-makers involved in these varied sectors. This holistic and

collaborative approach would enhance efforts to monitor and

mitigate animal and human disease outbreaks (including zoonotic

diseases and spillover cases), improve behavioral change and

adoption of prevention tactics, reduce environmental pollution and

mitigate environmental indirect effects of chemicals and
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TABLE 1 Integrated vector management (IVM) strategies, with examples of control within each strategy, the benefits and considerations for implementation, and recorded evidence of reductions in vector
contact/bite in disease indices.
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IVM management
strategy

Control Type
Major vectors1

controlled
Benefits Drawbacks

Cultural control Personal
protection
behaviors

Flies2,
mosquitoes, ticks

Inexpensive; varied and flexible options (e.g., stay
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pharmaceuticals used for disease prevention and control, and

promote ecological resilience (165). Furthermore, fostering

healthier ecosystems can yield indirect benefits to human health,

such as improved mental well-being through increased access to

natural spaces and reduced environmental stressors.

Beyond interdisciplinary cooperation, a One Health-based IVM

strategy enables more effective surveillance, ecological interventions,

and sustainable vector control. Integrated disease monitoring across

human, animal, and environmental health sectors can provide early

detection of emerging vector-borne disease threats, allowing for timely

intervention. Ecological approaches, such as habitat restoration and

biological control using natural predators, can reduce reliance on

chemical interventions, slowing insecticide resistance and minimizing

harm to non-target species. Additionally, coordination between health

disciplines and professionals can enable agile future adaptation,

planning, and response efforts. For instance, coordination between

vector control professionals, climate scientists, and urban planners

could facilitate developing climate-smart vector management to

prepare for shifts in vector populations due to changing

environments and other factors. By incorporating these broader

considerations into vector management programs, IVM can continue

to push public health beyond a reactionary model toward a proactive,

adaptive, and ecologically responsible approach that supports all three

sectors of health - human, animal, and environmental.

Additionally, by using a One Health approach to IVM, the health

of one sector can safeguard the health of the other sectors. For

example, biosecurity and surveillance measures in poultry houses

targeting avian influenza not only reduce transmission among birds

but also minimize risks to farm workers, other livestock, and

potentially wildlife as well. Similarly, the re-emergence of bed

bugs (Cimex lectularius) in poultry facilities underscores the need

for coordinated management strategies, as infestations pose risks to

both poultry workers and poultry production systems (166–168).

Additionally, in zoonotic disease systems, reducing disease incidence

in animal reservoirs and alternative animal hosts can lower human

infection risk. For instance, treating domestic pigs and dogs for

malaria parasites can decrease the malaria infection risk to humans

under certain circumstances (169). Similarly, in the Lyme disease

system of the northeastern United States, interventions targeting

reservoir hosts have shown promise in reducing human risk.

Methods such as treating mice with permethrin to eliminate ticks

(139, 140, 143) or vaccinating wildlife hosts against Borrelia

burgdorferi (the causative agent of Lyme disease) and other tick-

borne pathogens (136, 137) can lower the prevalence of infected ticks,

thereby decreasing the likelihood of pathogen transmission to

humans (89). For many zoonotic and vector-borne disease systems,

effective management and control requires education and

intervention across multiple sectors.
3.1 IVM promotes prevention strategies

“A dose of prevention is worth a pound of cure,” is a core tenet

of IVM by emphasizing prevention of vectors and vector-borne

disease over intervention when feasible. Successful prevention of
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vectors and vector-borne disease often combines several

preventative strategies such as community education, behavioral

changes, and mechanical and physical barriers that include

landscape and environmental modification. With rising concerns

on the potential adverse health and environmental effects of

chemicals used to control vector populations, prevention-focused

tactics, such as cultural control and physical and mechanical

barriers, can be used as an alternative or a supplement to

chemical controls (79, 170, 171). Vector knowledge, risk

reduction behaviors, and sanitation serve critical roles in any

effective IVM plan regardless of industry (e.g., public health or

agriculture), thus many IVM programs start with cultural control

and habitat modification to prevent vector development. For

instance, one of the most important prevention methods in

livestock systems is to ensure that manure is handled quickly,

efficiently, and safely, as manure attracts many arthropod species

(97). Inappropriately handled manure not only contributes to pest

problems and animal welfare concerns on-farm but can also lead to

downstream water and land pollution, affecting environmental and

human health as well (98).

Mosquitoes can also benefit from unkempt environments

because their immature life stages require a water source and

organic material for development. As such, one critical mosquito

control strategy is source reduction, such as removing or emptying

containers that hold water or even laser leveling the ground.

Programs that include source reduction and covering containers

in their educational program can directly impact entomological

indices such as reductions in larvae and pupae (93, 95, 96, 172–174).

However, these reductions are not always consistent due to a variety

of factors ranging from community socioeconomic status to

behaviors of cryptic mosquito species (94, 175–177).

Physical barriers can provide protection from vector bites thus

reducing the risk of pathogen transmission without using chemical

controls. For example, even non-treated bed nets prevented a

substantial proportion of Anopheline mosquitoes from entering

homes in a study comparing treated and non-treated bed nets (106).

More significant modifications such as building raised homes,

platforms, and seating areas above the ground have also been

successful in preventing mosquito bites, since Anopheline

mosquitoes tend to host-seek closer to the ground (103, p. 198;

105, 107, 108).

Like altering the home or facility itself, the environment and

landscape surrounding the home, community, or livestock facilities

can be modified to prevent the entry of arthropod vectors and hosts

relevant to vector-borne disease cycles. For instance, public health

professionals have suggested modifications such as installing

physical barriers around a lawn or adding ground barriers to

separate properties from forested regions to prevent ticks from

entering areas frequented by people (112). Efficacy of these fences

and ground barriers to deter ticks will differ depending on several

factors such as the tick-specific behaviors, tick-host associations,

host behavior and size, and physical properties of the barriers (89,

104, 109–111, 178–183).

General environmental and landscape management removes

potential arthropod vector habitats in areas that may be used by
Frontiers in Insect Science 10
people and animals, reducing contact with vectors. Theoretically,

unmanaged yards that have trash, leaf litter, or unmowed grass can

provide additional habitats for ticks and small mammal hosts such

as white-footed mice (Peromyscus leucopus) (112). However, the

consensus on whether regular lawn management has any effect on

tick presence or abundance is unclear. While trash predicted higher

abundance of questing larval Ixodes scapularis ticks in New York

(109), leaf litter accumulation and unmowed properties did not

result in significant differences of nymphal I. scapularis ticks on

properties in Connecticut (111). Differences are also likely

dependent on the biology and behaviors of the tick species and

life stages of interest (184–191). Field evaluations on landscape

management to reduce tick abundance are scarce and even fewer

studies have evaluated these methods as ways to reduce tick-borne

disease incidence (89).
3.2 IVM supports community involvement
and public education

Implementing community-wide educational efforts with the goal

of effecting long-term behavioral changes to prevent vector bites and

pathogen transmission has been successful when integrated with

other methods. For example, Fonseca et al. (192) attempted to reduce

Ae. albopictus abundance by using an IVM program that targeted

multiple mosquito life stages through a combination of active source

reduction, adulticiding, larviciding, and public education. The study

found that combined outreach education and community-wide

source reduction resulted in significantly less Ae. albopitcus

populations, noting that the combined efforts were more effective

and lasted longer than adulticide spraying alone (192). Likewise, a

similar study conducted in Mexico also reported that educational

campaigns were more effective at reducing Ae. aegypti populations

compared to spraying adulticides (193). In Africa, an IVM program

that included long-lasting insecticide treated nets (LLINs),

larviciding with Bti, and community engagement reduced the

prevalence of malaria by 50% in an environment with low infection

prevalence (80).

For IVM, educational campaigns can take many forms (e.g.,

outreach events, presentations, publications, school lessons, and

workshops) and have been distributed by several types of groups

including mosquito and vector control programs, academic

institutions, extension programs, non-profit organizations, and

private entities. The goal for many of these programs is to inform

and mass-educate communities, whether they are emphasizing

personal prevention measures, the risks of vector-borne diseases,

or interventions and products designed to prevent vector-borne

disease transmission. The general principle is that when more

people are informed about the disease system and associated risks

and are given options for prevention, they feel more empowered to

make informed decisions about their preventative behaviors (78,

194). Although community acceptance of prevention practices may

be high or perceived positively, successful adoption of these

behaviors also requires intersectoral collaboration, government

policy, and financial support (151).
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In addition, educational programs should also include information

on emerging tools and products that stakeholders can incorporate into

their vector-borne disease prevention or management plans.

Understanding community engagement practices and innovation

characteristics that enable or hinder adoption of products can

improve sustainability and acceptance of new products. In

Guatemala, intersectoral collaborations with communities led to the

development of a community-based IVM plan for Chagas disease

prevention, leading to successful adoption and acceptance of their

integrated strategies (195). Further, innovations that are lower in

complexity and compatible with local practices are likely to have

better acceptance amongst stakeholder groups (195, 196). “Farmer

field schools” in Sri Lanka developed and presented curricula focused

on emerging IVM tools and practices and emphasized the risks of using

chemical control in agriculture (197). Overall, this led to successful

adoption of several practices related to improving environmental

sanitation and personal protective measures against mosquitoes.

While a foundation of knowledge of vector-borne disease systems is

important, education on the application of new technologies and

aligning those technologies with local contexts, values, and needs of

the participants is critical in ensuring successful adoption of new

behaviors or breakthrough technologies.

The form of information delivery is just as important as the

information itself, as engaging information is more likely to connect

with and motivate people to take preventative measures and

participate in efforts to reduce the risk of vector-borne disease.

Passive education and information delivery is often ineffective.

Instead, educators should aim to identify the best method of

information dissemination for their audience and co-develop

campaigns with the community and their leaders or peer

educators (69, 94). One example of a method that has been

effective at information dissemination is the integration of vector

and vector-borne disease messaging in school curricula. Children

attending school are considered change agents since they can

communicate health messages to their families, peers, and the

greater community, therefore, integrating vector and vector-borne

disease educational programs into school curricula has been

successful in providing far-reaching community-wide education

(99, 198–201).
3.3 IVM promotes utilizing natural systems
to reduce selection pressure toward
antimicrobial resistance

Rising global population, urbanization, and increasing demand for

animal products have driven a significant expansion in livestock

production. This intensification, particularly in high-density animal

operations, has both directly and indirectly exacerbated the challenges

of emerging and reemerging pests and diseases, including their rapid

transmission and difficulties with containment (202, 203). To curb or

prevent disease transmission, including vector-borne diseases, animal

husbandry professionals have dramatically increased their use of

broad-spectrum antibiotics, antimicrobials, and anti-parasitics across

entire herds and flocks, often without regard to the current or
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potential disease status of individuals or the population (204).

Antimicrobials are also used at subtherapeutic doses for disease

prevention and growth promotion purposes (204). In fact, animal

production operations use the vast proportion of the global

antimicrobial supply (3, 205, 206). The heavy use of antimicrobials

in animal production has led to increasing rates of antimicrobial

resistance in various pathogens that threaten not only livestock and

animal health, but human health as well (3, 4, 11, 98, 203).

It should be noted that while antimicrobial resistance is still a

major issue for many countries, antimicrobial usage in the

European Union (EU) has been decreasing since 2022 when the

new Regulation on Veterinary Medicines Products (Regulation EU

2019/6) was implemented in an effort to curb antimicrobial

resistance in agricultural animals (207). For some countries such

as Sweden, Finland, Denmark, and the Netherlands, bans on

antimicrobials for animal growth purposes started prior to the

2022 regulation, and these countries have argued that restrictions

on non-therapeutic uses of antimicrobials can be implemented with

minimal production consequences (208, 209). Instead of relying on

antimicrobials, these countries emphasize that the health of

livestock should rely on effective husbandry and welfare practices

(210). Given that the regulations only started in 2022 across the EU

and that each country will have their own policies to manage the

ban, further research and analyses are required to fully comprehend

the long-term effects of antimicrobial bans across the EU (211, 212).

The concept of endemic stability can also be incorporated into an

IVM plan as a possible disease management tool. Endemic stability

describes a state where a pathogen is present within a population but

rarely causes severe disease, often due to early exposure that confers

lasting host immunity (4). This phenomenon is typically observed in

regions with a long history of host-pathogen coevolution. For

example, in East and Central Africa, bovine theileriosis is endemic,

and cattle are consistently exposed to both the pathogen and tick

vector species. In these regions, indigenous Zebu cattle (Bos indicus)

frequently demonstrate immunity, with minimal or no clinical signs of

disease, exhibiting endemic stability (127, 129). Additionally, studies

of Zebu and other indigenous African cattle breeds’ host defense

mechanisms may provide genetic and immunological traits that are

advantageous and could be harnessed for use with cattle breeds that

are less resistant and resilient to tick bites and tick-borne diseases

(128, 213).

Historically, interactions between wildlife and livestock can lead

to disease transmission or spillover between species. This can occur

when wildlife serve as reservoirs for naturally-circulating pathogens,

thus facilitating transmission of vector-borne diseases in areas of

wildlife-livestock contact and overlap (214). However, wildlife

diversity serves beneficial purposes as well, even for the livestock

industry. Whereas ticks may feed on a variety of host species, some

hosts may be better able to remove or kill ticks than others and thus

may serve as “trap” species for ticks, thereby reducing overall

parasite abundance in that particular community and reliance on

antiparasitics or antimicrobials (215). However, studies exploring

the relationship between biodiversity and disease transmission

cycles have yielded mixed results, highlighting the complexity of

these interactions (214, 215) (see section 4.1).
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Methods that eradicate parasites, pests, and diseases often only

work effectively in the short-term. For example, if the same or a

similar pest (re)emerges, the host may no longer have immunity

against infection or infestation and is at greater risk of morbidity

and mortality (216). The increasing rates of antimicrobial resistant

infections reveal the weaknesses in relying solely on therapeutic and

chemical intervention as management strategies. While an IVM

strategy may not resolve the current antimicrobial crisis, its value is

highlighted by promoting diverse strategies and using surveillance

to detect and predict disease threats before they occur, ideally

reducing the reliance on antimicrobials for preventative and

therapeutic interventions (4).
3.4 IVM promotes reducing risk associated
with chemical interventions

Of 84 surveyed countries (not including the U.S.), the vector-

borne diseases linked to the highest pesticide use by public health

professionals were malaria, dengue, leishmaniases, and Chagas

disease (217). These diseases alone account for 107–408 million

infections and over 600,000 deaths every year worldwide (218–221),

clearly highlighting the need for effective vector control. However,

even though pesticides are one of the most valuable tools available

for vector control and disease risk management, they also carry

some of the greatest hazard (potential to harm) and risk (the

likelihood harm will occur) to the health of people, animals, and

the environment.

As such, an effective IVM plan would utilize insecticides to

prevent and reduce vectors as only one tool in a larger toolkit and

their use is based on data-driven decisions and action thresholds

(68, 222, 223). One of the goals of using numerous control tactics

and pre-planned, data-informed insecticide applications is to

decrease use of insecticides overall, lower incidence of insecticide

and behavioral resistance in target vector populations, mitigate

non-target effects, and reduce environmental contamination from

chemical use. For instance, in an agricultural setting, by using an

IPM approach while growing corn and watermelon, farmers applied

95% fewer pesticide applications compared to using a standard

conventional management approach and were still able to maintain

and even increase crop yields (224). Unfortunately, there are few, if

any, studies in vector systems that have done similar comparisons.

Future research to assess changes in insecticide use and associated

costs using IVM compared to other vector control methods would

provide critical information for developing efficient and cost-

effective vector management plans.

When using chemical control tools, many IVM programs

choose lower risk strategies before progressing to relatively

higher-risk options. For instance, science-based mosquito control

programs will target immature mosquitoes as a first-line measure

with the goal of preventing adult emergence. While costs vary

substantially, larviciding is particularly cost-effective in urban areas

where targeting fewer aquatic sites can protect more people from

mosquito bites and associated diseases (147, 148). Several active

ingredients exist to perform this action such as methoprene,
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pyriproxyfen, and spinosad (68). Another tool used by mosquito

control professionals, Bacillus thuringiensis israelensis, or Bti, is a

bacterium with spores that produce toxins lethal to immature

mosquitoes, black flies, and fungus gnats (117). In addition to

being used in mosquito control programs, Bti has also been

successfully used as part of an IVM plan to reduce cases of

human onchocerciasis, or river blindness, by controlling black

flies that can transmit the causative agent, Onchocerca volvulus

(118, 119, 225, 226). The specific action of Bti products, combined

with their low toxicity to both mammals and honey bees, makes

them excellent tools for managing vectors while minimizing non-

target effects (117).

Control measures that eliminate vectors but also hold the

potential to impact non-target organisms, such as pollinators,

may be too risky for the reward of vector elimination. Thus, to

further minimize the exposure of non-target organisms, vector

control professionals must understand the biology of both the

targeted pests and other organisms in the environment to help

ensure that applications are timed to affect the vector while

minimizing impact on non-target organisms. Many mosquitoes

targeted by vector control professionals are most active at dusk and

night (227–229) while other organisms, such as bees and butterflies,

are more active during the day (131, 230). Taken as a whole,

strategically timed ULV applications of adulticides intended to

target mosquitoes are often applied at dusk and early evenings.

As a result, the tiny droplets float in the air and come into direct

contact with active, flying mosquitoes while ideally avoiding non-

target organisms at rest, such as pollinators.
3.5 IVM reduces selection pressure for
insecticide resistance

As previously described, pesticides can manage vectors in the

environment, but sometimes their use can cause counterintuitive

impacts such as selecting for insecticide resistant vectors.

Application of pesticides to control vectors exerts selection

pressure by killing individuals susceptible to the pesticide, while

survivors become the progenitors of the next generation (217). If

this pressure persists, the population may become resistant to the

insecticide, leading to control failure. Researchers worldwide have

documented insecticide resistance for many different vectors

including mosquitoes (231–233), ticks (234–236), body lice (237,

238), kissing bugs (239), fleas (240, 241), and sand flies (43).

A proactive vector control program includes insecticide

resistance monitoring of the targeted vector populations to

mitigate risks and take appropriate actions to manage insecticide

resistance when it occurs (242). When resources permit, programs

should also investigate the underlying molecular mechanisms of

resistance as this will inform what insecticide resistance

management (IRM) strategy may be most effective at delaying or

reversing resistance. Potential IRM strategies include rotating

between different modes of actions, using multiple modes of

action simultaneously, and targeting different life stages for

control (68). These strategies can be effective because the
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mechanisms of resistance often carry a fitness cost, therefore,

removing the selection pressure can lead to a reversion back

toward susceptibility (243). By regularly monitoring and

managing insecticide resistance, IVM reduces selection pressure

for resistance (244) and subsequently helps manage the

environmental impact of insecticides.
4 Considerations when implementing
and evaluating IVM programs

As exemplified by many of the studies highlighted in this

review, IVM programs and efforts have had great success in

vector and disease reduction across many disease systems,

communities, and regions. However, the success of an IVM

program is often dependent on the unique needs, locality,

resource availability, and involvement of the community and

solutions available for the vector-borne disease system. These

varied and diverse considerations make generalizations from

study results challenging to interpret and implement in different

contexts. This is particularly apparent with studies that investigate

interventions or methods employed at the community level or that

require field evaluations, highlighting the complexities in evaluating

and implementing effective IVM strategies for disease and

vector reduction.
4.1 Ecological principles cannot be applied
broadly due to complexities in vector-
borne disease systems

Disease systems are inherently complex, with vector-borne

diseases particularly complex as they involve multiple live

organisms in the pathogen transmission and maintenance cycles.

With several organisms represented in these systems, the role of

biodiversity in enzootic cycles of vector-borne disease is still not

well-understood. Human manipulation of the environment can

lead to decreased biodiversity (245), which can contribute to

increased risk of vector-borne disease in certain circumstances.

For instance, the dilution effect posits that lower species diversity

can lead to higher incidence of vector-borne disease through

increased likelihood that a vector will bite a reservoir host rather

than a dead-end host without disease transmission potential (246).

An example of the dilution effect in action is the Lyme disease

system. Ixodid ticks transmit B. burgdorferi, the causative agent of

Lyme disease, which is the most common vector-borne disease

reported in the U.S. (40). The primary vector, I. scapularis, is a

three-host tick, meaning that each life stage requires a blood meal

from a different host to molt into the next life stage (247). Given this

tick species’ generalist feeding habits and the varying degrees of

reservoir competency for different animal hosts, the dilution effect

predicts that environments with higher biodiversity (i.e., more

diverse host options) should present lower risk of Lyme disease

pathogen transmission since tick bites on hosts with lower reservoir

competency would mean fewer bites on hosts with higher reservoir
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competency (248, 249). Additionally, introducing different types of

treatments or altering animal communities can affect tick and tick-

borne pathogen composition, as observed in studies of tick

abundance and species composition in treated livestock systems

in central Kenya (250). Thus, to interrupt disease transmission

cycles, IVM programs could include strategies or collaborations to

maintain and promote host species richness. However, more

research is needed on leveraging the dilution effect for disease risk

mitigation, as the numerous and varied complexities within these

systems have led to diverse study outcomes (164, 251).

Given these complexities, the dilution effect may not be

universally applicable to all geographical locations, vector-borne

disease systems, or measures of species richness and infection risk.

Such is the case with WNV, the leading cause of arboviral disease in

the U.S. (252). Although first recorded domestically in 1999 (253),

centuries of human-driven habitat modifications contributed to a

decline in overall avian biodiversity while favoring commensal

species, many of which are also reservoir hosts for WNV (163).

However, the evidence of the relationship between avian species

richness and WNV transmission is mixed. For example, in one

study avian species richness did not affect WNV prevalence in Culex

mosquitoes or birds (254), while in another study avian richness

was negatively correlated with WNV-positive mosquitoes and

human cases but only when assessing non-passerine bird species

(255). Promoting and ensuring native species diversity is valuable

for a variety of reasons, but the role species diversity plays in IVM

programs for disease management is still uncertain. Regardless,

effective IVM strategies must account for disease-specific,

ecological, and regional factors that can influence disease cycles

and impact successful implementation of IVM programs.
4.2 Research and collaboration are needed
to improve outcomes from educational
campaigns

Because many vector-borne diseases do not have an effective

approved vaccine to prevent disease manifestation, education on

vector bite prevention is vital for preventing vector-borne pathogen

transmission. However, increased knowledge on vector-borne

diseases may not always correspond with increased personal

protection (256–260). This highlights a critical knowledge gap in

understanding reasons for initial and long-lasting behavioral

change (261).

Educational campaigns rarely assess reductions in bite or

disease burden associated with information uptake and behavior

change. In the limited number of studies that have evaluated risk

reduction through follow-up assessments, the results were

surprising. These studies found significant differences in behavior

and attitudes toward tick and tick-borne disease prevention. Groups

that received educational materials were more likely to adopt

preventative measures (91) and reported more positive attitudes,

higher levels of knowledge, and greater adoption of tick bite and

tick-borne disease prevention methods (92). However, even with

these behavior and knowledge changes, both studies reported that
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there was no significant difference in reported tick bites or tick-

borne disease exposure assessed via serology (91, 92). These results

suggest that other external social and behavioral factors influence an

individual’s assessment of their own risk for exposure to ticks and

tick-borne diseases. Collaborations with social and behavioral

scientists will be critical in developing and assessing initiatives for

consistent and long-lasting risk reduction educational programs.

While vector control educational campaigns may report

community knowledge on vectors and vector-borne disease risk,

it is vital for these campaigns to follow-up and assess whether the

interventions led to a correlated change in entomological indices,

reports of vector encounters, or disease incidence. These

assessments can be useful in gauging the baseline level of

knowledge or beliefs towards preventative practices to optimize

future messaging and communication efforts, but further research is

required to assess the efficacy of these tools in changing vector and

vector-borne disease risk. Additionally, untangling knowledge

retention from sustained changes in behavior is complex and will

require further studies and long-term monitoring to identify

underlying variables that contribute to behavior change.
4.3 Costs associated with IVM programs
can be prohibitive

Using multiple tools in an IVM plan has been shown to be

effective in controlling arthropod vectors, depending on the

combination of methods employed. However, there are drawbacks

in using multiple control methods, such as high financial costs

required to implement and sustain efforts and complexities in

determining the true effect of each method to optimize future IVM

plans (262). Upfront costs for multiple IVM strategies can be

expensive, particularly for large-scale landscape modifications,

environmental improvements, and releases of biological control

agents. While large-scale modifications and releases are not essential

for an IVM program, their implementation has the potential to offset

future vector control costs (263).

In general, the more management tactics involved in an IVM

plan, the higher the monetary cost. Unfortunately, the projected

costs to run vector control programs and to implement multiple

control efforts are not always aligned with current budgets or

people’s willingness to pay for vector control (264). However,

studies in the U.S. found that communities that experience higher

mosquito population densities or disease outbreaks may be more

willing to pay for mosquito abatement programs. For instance, a

study in New Jersey found that respondents were willing to pay on-

average three times the current operating costs for mosquito

abatement in their district (265). Studies in Arizona, Florida, and

Texas also showed increased willingness to pay for mosquito

control efforts, further emphasizing the desire for expanded

mosquito control (266, 267). This willingness to pay for vector

control is not true for all vector systems. An integrated tick control

program would cost between $508-3,192 annually per household;

however, a survey found that people were only willing to pay $100–

150 annually for tick control (262). Furthermore, costs for control
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efforts can rise exponentially depending on the size of the land and

application frequency required to control ticks.

The cost of paying for expanded services offered by vector control

programs is likely to fall on citizens through tax increases (264).

However, when asked if the public would support tax increases to pay

for extra tick control services, only 21% of responding U.S. vector

control programs believed that the public would support the tax

increase, with the highest support in the Northeast and the lowest

support in the Upper Midwest (264). Unsurprisingly, as the risk of

disease increases, so does the willingness to pay for vector control

programs. InWisconsin, residents were initially only willing to pay for

nuisance mosquito control, but when WNV disease risk increased so

did their willingness to pay for mosquito control services targeting

these vectors (268).

When compared to other management tactics, a biological

control component can be an expensive tool due to high resource

and economic costs. High host specificity of the biological control

agent can limit the production speed of these agents to adequately

meet demand and need. Biological control agents also require

resources for growth and maintenance in optimal conditions.

Furthermore, some biological control agents require inundative

releases to maintain population levels at a density that can

adequately reduce the arthropod vector abundance (114, 124,

133). The use of genetic manipulation, such as through gene

editing or gene drive insertion to reduce vector populations or

through selective breeding programs and genetic modification for

adaptive or resistant traits in livestock, can be effective but is

extremely expensive in initial stages of research and development,

and often remains expensive in application but holds promise with

future advances and cost reductions (128, 130). Ultimately, many

biological control options can be costly and economically limiting

when considering the knowledge, time, and resources required to

rear, release, and maintain biological control populations and when

using genetic modification tools and strategies (114, 120, 123,

124, 130).

Lastly, while cooperative planning and specialized knowledge

on local vectors and vector-borne diseases are paramount for

developing and deploying effective IVM plans, this is not always

feasible due to resource limitations. For instance, many locations

with high vector-borne disease burden may face challenges due to

limited personnel or expertise, time and resource constraints, or

limited buy-in from municipal, organizational, or community

partners (263, 269). As communities develop their ideal IVM

plans, they should be realistic with their goals based on the

additional cost, resources, and time required to implement

several methods.
5 Conclusion

Vector-borne diseases have far-reaching effects, including direct

loss of life or livelihood, economic impacts from mortality or

reduced agricultural production, and both direct and indirect

consequences for conservation, wildlife management, and

ecosystem services. Vector-borne disease systems are highly
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complex and not yet fully understood. However, strategies for

managing vectors and their associated diseases are continually

evolving, prioritizing flexible and adaptable approaches rather

than absolute control. Integrated vector management principles

offer a future-oriented framework for addressing vector-borne

diseases across the three interconnected spheres of the One

Health paradigm—human, animal, and environmental health.

As new strategies are developed, they should be rigorously evaluated

and tailored to specific ecological contexts, ensuring effective and

sustainable outcomes. Data-driven decision-making, supported by

ongoing research and case studies, will remain critical for refining

practices and guiding more successful iterations of management in the

future. Furthermore, future work should focus on the economic and

efficacious impacts when implementing integrative strategies and

comparisons across different plans and geographical regions, thereby

providing communities with information to make informed decisions

about applying IVM strategies within a One Health context. The

principles underlying both One Health and IVM have evolved over

time into robust paradigms that align closely in their goals of promoting

the long-term health of animals, people, and the environment. Though

not always discussed in tandem, these frameworks share a commitment

to addressing the complex challenges posed by vector-borne diseases in

a holistic and integrative manner.
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