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The destructive pest of chickpeas, Helicoverpa armigera (Hübner), is difficult to

control using synthetic insecticides. The current research examined the

entomopathogenic and endophytic colonisation effects of three fungal strains

of Beauveria bassiana (HASS; RFSL10; SP-IR-566) against H. armigera larvae

under laboratory, greenhouse, and field conditions. Four inoculation methods

were used in the greenhouse: Root Dipping (RD), Leaf Spraying (LS), Stem

Injection (SI), and Seed Coating (SC), while spray application was used for

laboratory and field treatments. Under laboratory conditions, the highest

entomopathogenic effect was recorded by HASS and RFSL10 strains applied as

a direct spray at 108 conidia mL-1 with 100% mortality, followed by SP-IR-566

with 96%, 12 days after treatment. Furthermore, foliar application in the field

reduced larval population by an average ranging from 82 to 100%, confirming the

significant effects of the three tested strains. In terms of endophytic colonisation

under greenhouse setting, both stem injection and root dipping methods

expressed low to moderate mortality rates ranging from 32 to 40%, 15 days

after application. These findings suggested that B. bassiana strains, investigated

as foliar application, had a potential as an effective strategy to control H.

armigera. This study also offers new insights into the potential of the

endophytic entomopathogens approach as a viable and safe alternative to

chemical pesticides.
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1 Introduction

Climate and farming system changes contribute to the

emergence of minor and/or new pests affecting food crops in

different regions (1). Among these pests, chickpea pod borer

(Helicoverpa armigera), is becoming an important pest in North

African countries like Morocco (2, 3). The pest causes significant

losses in crops such as chickpeas, cotton, tomatoes, sunflowers,

beans, and maize. In Morocco, chickpea pod borer can reduce crop

yield up to 31% (4). Currently, the most common method of

managing the pest involves the extensive use of synthetic

insecticides (4–6). As a result, H. armigera develops resistance to

most synthetic insecticides (7, 8). The use of chemical pesticides

poses environmental risks, as they contribute to pollution and

undesirable side effects on beneficial organisms (9–11). To

minimize the impact of excessive use of chemical insecticides to

control H. armigera, it is crucial to develop components for

Integrated Pest Management (IPM) for sustainable pest

management practices (12, 13). Thus far, no reliable sources of

resistance to pod borer exist in the primary chickpea gene pool to

develop commercial varieties (14, 15). Recent studies have shown

that plant extracts and entomopathogenic fungi can play key roles

in the management of H. armigera (16–18). The entomopathogenic

fungi have several physiological effects, including growth and

oviposition perturbation, larval mortality, disruption of

reproduction, and regulatory activities (19, 20).

Beauveria bassiana (Balsamo) Vuillemin (Hyphomycetes) is

one of the most characterized and widely used entomopathogenic

fungal species to manage polyphagous pests, such as chickpea pod

borer (21, 22). Numerous B. bassiana based formulations are

already commercialized in many countries against various

agricultural pests (23–26). Besides its ability to parasitize insects,

B. bassiana acts as an endophytic agent in several plant species and

protects against pathogens (27–31). For example, B. bassiana was

effective in controlling Dactylopius opuntiae, which devastates

cactus plants in Morocco (26).

The present study aimed to validate the virulence of three B.

bassiana strains in controlling H. armigera under laboratory and

field conditions.
2 Materials and methods

2.1 Insect rearing

Helicoverpa armigera larvae were collected from infested

chickpea fields between May and June 2021 at the ICARDA

(International Center for Agricultural Research in the Dry Areas)

experimental station in Marchouch, Morocco (33°56’10”N 6°

69’21”W). The larvae were reared on an artificial diet according

to Boulamtat et al. (17), under 25 ± 2°C temperature, 75 ± 5%

relative humidity (RH), and 14:10 L/D photoperiod. Each larva was

placed individually in a Petri dish and fed an artificial diet (32), until

the pupation. After emergence, adults were maintained in glass

cages (90 cm3 volume) with 10% honey solution as an energy
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source. After oviposition, eggs were collected daily and transferred

into Petri dishes. The newly hatched larvae were reared on the

artificial diet following the same procedure indicated above. The

second instar larvae were used for various bioassays.
2.2 Entomopathogenic fungal strains

Three B. bassiana strains were collected from Syria (two strains)

and Iran (one strain), originating from three insect hosts, and were

used in this study (Table 1).

B. bassiana inoculum production: The three B. bassiana strains

were multiplied on Potato Dextrose Agar medium (PDA) under 25

± 1 C° temperature, and 14:10 L/D light cycle for 14 days. Spores

were harvested by scraping the PDA plates with a sterile scalpel and

suspended in 10 mL of sterile distilled water containing Tween-

80 (0.01%).
2.3 Laboratory bioassay

All strains were tested on H. armigera larvae for their

pathogenicity. Three conidial concentrations (106, 107, and 108

conidia mL-1) were prepared in sterile distilled water containing

Tween-80 (0.01%). Second instar larvae were inoculated by

spraying 15 μL of the suspension using a sprayer with a 50 mL

capacity, delivering a frequency of 1-2 mL per minute to ensure

precise application. the conidia suspension on top of the insect. Five

treated larvae were transferred into Petri dishes containing moist

sterile filter paper and provided with an artificial diet. The bioassay

was conducted using a completely randomized design with five

replicates per concentration for each treatment and five larvae were

used in each replication. Larvae treated with distilled water

containing Tween-80 (0.01%) served as a control. The

experiments were conducted under laboratory conditions at 24 ±

1°C temperature, 75 ± 5% RH, and 14:10 L/D cycle light. Larval

mortality was recorded daily for 14 days. Mortality was calculated

according to Abbott's formula (33):

Corrected Mortality ( % )

=
½%mortality in treatment −%mortality in control�

½100 −%mortality in control� � 100
TABLE 1 B. bassiana strains, hosts, and collection sites.

Name Collection
sites

Host Year
of

collection

HASS Swidaa-Syria Chickpea Pod borer
(Helicoverpa armigera)

2010

RFSL10 Lattakia-Syria Red palm weevil
(Rhynchophorus ferruginus)

2012

SP-
IR-566

Kohesabz,
Fars-Iran

SunPest
(Eurygaster integriceps)

2001
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2.4 Greenhouse bioassay

Chickpea seedlings of Bouchra (cultivar FLIP97-114C) were

inoculated with each strain at 108 conidia mL-1 containing Tween-

80 (0.01%). Four inoculation methods in five replications were

evaluated. Each replication (pot) was planted with five seeds.

a) Root dipping (RD): Three-day-old germinated seeds were

dipped in 108 conidia mL-1 suspension containing Tween-80

(0.01%) for 90 min. Control seeds were soaked in a Tween-80

solution (0.01%).

b) Stem injection (SI): Twenty-day-old plants were individually

injected at the stem and nodes with 1 mL of 108 conidia mL-1

suspension using a sterile syringe. Control plants were injected by

water plus Tween.

c) Fungi-sorghum seed inoculum (FS): Three-day-old

germinated seeds were transplanted into a pot containing 2.5 g of

sorghum grains pre-infected with the fungus strains. Control seeds

were transplanted with 2.5 g sterile sorghum grains.

d) Leaf spray (LS): Twenty-day-old plants were sprayed with a

fungal suspension of 1.108 conidia mL-1 using a 500 mL hand-held

plastic sprayer. Control plants were sprayed with water.

After inoculation, the plants’ pots were randomized and kept

under greenhouse conditions at 22 ± 2°C temperature and 14:10 L/

D cycle light and watered as needed.

2.4.1 Fungi-sorghum seed inoculum preparation
The seed coating was prepared using sorghum seeds, following a

modified method of Nankinga (34). Washed sorghum seeds (200 g)

were subdivided into flasks, then boiled in 10 mL of distilled water

and sterilized by autoclaving at 121°C at 1 bar for 15 min. After

cooling, each flask received 10 mL suspension of 107 conidia mL-1 for

each strain, while the control flask received 10 mL of 0.01% (w/v)

Tween-80 without the fungus. The flasks were incubated for four

weeks in an incubator at 22 ± 2°C and were manually shaken every

day. The final product was randomly distributed among the

plant replicates.

2.4.2 Larvicidal activity under greenhouse
Second instar larvae were fed with leaves randomly collected

from plants of each inoculation method and the control. Larvae

were considered dead if no movement was observed after lightly

brushed. Dead larvae were removed and living larvae were kept

until they pupated. Larvae mortality due to B. bassiana strains was

confirmed from the mycosed larvae by placing them on Petri dishes

lined with moistened filter paper and incubated for five days, then

cultured on PDA and identified. Mortality was calculated according

to Abbott’s formula (33).
2.5 Endophytic colonization

The presence of B. bassiana was evaluated using three separate

treatments for each strain. Sections were cut from leaves and all
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selected plant parts. Then after, surfaces were sterilized with ethanol

(70%) for 30 s, sodium hypochlorite (1.5%) for 90 s, and rinsed with

sterilized water for 2 min. The sections were dried and placed on

Petri dishes containing PDA medium. Fungal identity was

confirmed using morphological techniques.
2.6 Field trials

The field trial was conducted in May 2022 at the ICARDA

Marchouch Research Station, Morocco (33°56’10”N 6°69’21”W).

The trial was conducted in a randomized complete block design

with three replications using the chickpea variety Bouchra (FLIP97-

114C). Each plot was planted with four rows of 1 meter length, and

0.6-meter spacing between rows. A 3-meter distance was kept

between plots and blocks to prevent spray drift to adjacent plots.

Normal agronomic practices were followed for growing the crop

using a seeding rate of 100 kg/ha.

Three B. bassiana strains (108 spores per mL), insecticide

(emamectin benzoate at 250 g/ha), and control plots sprayed with

water plus Tween-80 were applied at economic threshold (one larva

per meter row) (35). The non-ionic surfactant Tween-80 (0.01%)

was used as an emulsion to mix the spores with water before

applying the treatments. The strains were sprayed twice with an

interval of one week between the first and the second spray using a

two-liter hand sprayer with a frequency of 8 mL/min. Larvae

mortality was recorded at 1, 3, and 7 days after each

spray application.
2.7 Data analysis

Mortality percentages were transformed into angular values

(arcsine √P) before the statistical analyses for laboratory and

greenhouse bioassays, and the transformed percentages were

subjected to a two-way analysis of variance (ANOVA). The

means were compared by Newman–Keuls tests at p < 0.05, with

strains, concentration, exposure time, and method of inoculation as

explanatory variables and percentage larval mortality as response

variables. Under field conditions, the transformed percentages were

subjected to a two-way analysis of variance. Using Henderson and

Tilton’s (36) formula, the efficacy of the tested treatments was

expressed as a percentage of reduction of H. armigera larvae

number, as follows:

Reduction% = (1 −
n in Co befor treatment � n in T  after treatment
n in Co after treatment � n in T  before treatment

)� 100

n: Insect population, T: treated, Co: Control

Probit analysis was used to calculate the lethal time (LT50)

values for each strain, including their 95% confidence limits, using

IBM SPSS Statistics 27.0. The computations were carried out using

GenStat (22nd Edition, VSN International, UK).
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3 Results

3.1 Laboratory bioassays

3.1.1 Pathogenicity of fungal strains on H.
armigera

The mortality rates of H. armigera larvae after treatment with

different strains of entomopathogenic B. bassiana are shown in

Figure 1. All three B. bassiana strains were virulent to H. armigera
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larvae and their virulence varied significantly compared to the

control (p < 0.001). Among the three tested strains, B. bassiana

HASS and RFSL10 exhibited the highest virulence compared to SP-

IR-566. Six days after treatment (DAT), the highest larval mortality

was recorded by B. bassiana RFSL10 then B. bassiana RFSL10 with

76%, and 72%, respectively, at 108 conidia mL-1. Twelve days after

treatment, HASS and RFSL10 strains displayed the highest

mortality rates (100% mortality), followed by strain SP-IR-566

with 96% mortality at 108 conidia mL-1.
FIGURE 1

Mean percentage larval mortality of H armigera treatment with three B bassiana strains at three different concentrations under laboratory conditions,
DAT, days after treatment. The means that are followed by the different lower-case letters indicate a significant difference among different treatment
time, and different capital letters indicate a significant difference between different concentrations (p <0.001).
frontiersin.org

https://doi.org/10.3389/finsc.2025.1552694
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Boulamtat et al. 10.3389/finsc.2025.1552694
3.1.2 Mean lethal time of strains
The mean lethal time (LT50) of all strains is presented in Table 2,

based on the daily observation of H. armigera larvae mortality. All

strains caused more than 50% mortality, demonstrating this fungus’

efficacity. The effects obtained with the strains RFSL10 and SP-IR-566

were significant at a concentration of 108 conidia mL-1, with LT50 of 2

days. Furthermore, the LT50 was 6 days at a concentration of 107

conidia mL-1. However, the LT50 for the HASS strain was 4 days at a

concentration of 108 conidia mL-1 and 7 days at 107 conidia mL-1. No

dead insects were observed in the control group.
3.2 Greenhouse bioassay

3.2.1 Virulence of fungal strains on H. armigera
Results (Figures 2, 3) demonstrated that B. bassiana strains were

effectively established as endophytes in chickpea tissues, especially

after being inoculated in the two methods: Stem Injection (SI) and

Root Dipping (RD). All three strains of B. bassiana at 108 conidia

mL−1 were pathogenic to H. armigera larvae, and the percentage of

larval mortality showed clear endophytic method-dependent as

presented in Figure 2. The pathogenicity of B. bassiana was

significant compared with the control (p < 0.01), and larval

mortality started 5 days after treatment. The percent larval

mortality ranged from 24 to 40% for different strains, 15 days

after treatment. The highest percentage of mortality was obtained

by the injection method, with SP-IR-566 strain reaching 40%, while

HASS and RFSL10 strains achieved 36%, 15 days after treatment

(Figures 2, 3).

3.2.2 Mean lethal time of B. bassiana strains
Table 3 shows the LT50 recorded for each strain, based on the

daily observation of H. armigera mortality. Using different
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inoculation methods, RFSL10, SP-IR-566, and HASS, strains were

effective, and the LT50 was 10 days for RFSL and SP-IR-566 10., and

11 days for HASS, applied using stem injection method. For the root

dipping method, the LT50 of RFSL10, SP-IR-566, and HASS was 11

days. Whereas no dead larvae were observed in the check group.
3.3 Field evaluations

The ANOVA analysis showed a statistically significant

difference in mortality of H. armigera. The difference in the

number of live larvae between the treatments, and the control

was highly significant (p <0.001) after 3 days of the first application

of treatments. The lowest number of larvae with emamectin

benzoate (0.89 larvae) was recorded one day after treatment,

while the highest number of larvae was recorded in the control
FIGURE 2

Heatmap representing the endophytic activity of the three strains
against the larvae of H. armigera using different inoculation methods
under greenhouse conditions. SI, stem injection; FS, fungi-sorghum
seed inoculum; RD, root dipping; LS, leaf spray under
greenhouse conditions.
TABLE 2 Mean lethal time (LT50) and confidence limit values of three B. bassiana strains at three concentrations against H. armigera larvae under
Laboratory conditions.

B. bassiana strains Concentrations
(conidia mL-1)

LT50 95% confidence
limit

Coefficient of
determination

(R²)

Graphing
linear equations

Lower
limit

Upper
limit

HASS 106 10.02 9.1 11.16 R² = 0.9383 y = 0.136x − 0.192

107 7.13 6.45 7.77 R² = 0.93 y = 0.148x − 0.228

108 4.13 3.53 4.69 R² = 0.9964 y = 0.0815x − 0.0797

RFSL10 106 9.27 8.51 10.11 R² = 0.9944 y = 0.184x − 0.16

107 6.26 5.48 7.06 R² = 0.989 y = 0.152x − 0.096

108 2.06 1.43 2.65 R² = 0.98 y = 0.,088x − 0.0738

SP-IR-566 106 7.2 6.39 8.07 R² = 0.8538 y = 0.1x + 0.356

107 6 5.34 6.64 R² = 0.9235 y = 0.104x + 0.352

108 2.05 1.34 2.71 R² = 0.894 y = 0.07x + 0.123
LT50: Lethal time for 50% mortality. R2: Coefficient of determination. Conidia mL-1: Concentration of fungal spores (conidia) per milliliter.
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FIGURE 3

Variation of H armigera larvae mortality at different inoculation methods of B bassiana strains (HASS, RFSL10, and SP-IR-566) at 108 conidia mL-1

under greenhouse conditions. DAT, days after treatment. The means that are followed by the different lower-case letters indicate a significant
difference among different treatment time (p <0.01).
TABLE 3 Effective mean lethal time (LT50) and confidence limit values of three B. bassiana strains (HASS, RFSL10, and SP-IR-566), using different
inoculation methods, against H. armigera larvae under greenhouse conditions.

B. bassiana strains Inoculation
method

LT50 95% confidence
limit

Coefficient of
determination

(R²)

Graphing
linear equations

Lower
limit

Upper
limit

HASS SI 11.0711 9.4834 15.3801 R² = 0.9797 y = 0.104x − 0.02

RD 11.7373 9.9193 17.4380 R² = 0.8895 y = 0.096x − 0.04

RFSL10 SI 10.5348 9.0923 14.0534 R² = 0.9797 y = 0.156x − 0.04

RD 11.1176 9.5310 15.4334 R² = 0.9657 y = 0.124x − 0.02

SP-IR-566 SI 10.3423 8.9221 13.6840 R² = 0.9143 y = 0.132x + 0.04

RD 11.1902 9.4769 15.8804 R² = 0.9945 y = 0.108x + 4E-16
F
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SI, stem injection; RD, root dipping.
LT50: Lethal time for 50% mortality. R2: Coefficient of determination.
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(2.67 larvae) on the same day after treatment, followed by B.

bassiana strains (Figure 4). All tested treatments were almost

equally effective in reducing the number of H. armigera six days

after the first application (Figure 4).

At the end of the experiment, the results showed that the second

spray seemed to differ significantly (p<0.001) in the number of live

larvae between the untreated control and all studied treatments. All

the evaluated treatments were comparable in their capability to

reduce H. armigera larval population.

The application of emamectin benzoate reduced the number

of live larvae from 3 larvae before starting the treatment to 0

larvae, seven days after the second treatment. Similarly, the

strains HASS and RFSL10 reduced the number of live larvae

from 3 and 2 larvae before the treatment to 0.5 larvae, one week

after the second treatment. The highest reduction rate was

reached by emamectin benzoate with 100%, followed by strains

HASS and RFSL10 with 89 and 88%, respectively. Conversely, in
Frontiers in Insect Science 07
the control group (water), live larvae increased from 2 to 5, 14

days after treatment (Figure 5).
4 Discussion

The present research evaluated the potential of three strains of

B. bassiana in controlling H. armigera larvae in the laboratory,

greenhouse, and field conditions. The current study demonstrated

that all B. bassiana strains (RFSL10, SP-IR-566, and HASS), tested

at a concentration of 108 conidia mL-1, provided the highest toxicity

on H. armigera using mostly direct contact and low to moderate

efficacy using endophytic effect. The larval mortality and LT50 of the

larvae increased with the increase in fungal concentrations

(Figure 1; Table 2). This result is in coordination with the results

of Kalvnadi (37) et al., who reported that B. bassiana strain (DC2)

reduced the population of the second-instar larvae of H. armigera.
FIGURE 4

The effect of different strains and controls on the number of live larvae days after application under field conditions.
FIGURE 5

Boxplot of the toxic effect of different strains on the development of H. armigera larvae in comparison to the positive control (emamectin benzoate)
under field conditions.
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Also, Petlamul et al. (38) observed that B. bassiana, applied at a

relatively low dose, showed a remarkable efficacy against H.

armigera larvae, and this efficacy increased as the spore

concentration increased to 1010 conidia mL-1, resulting in 100%

mortality. Similarly, a study conducted by Fite et al. (39) confirmed

that three strains of B. bassiana (DLCO-EA-56, APPRC-T5, and

APPRC-9604) at a concentration of 108 conidia mL-1 were effective

against the 3rd instar larvae of H. armigera under laboratory

conditions. Moreover, according to Swathi (40) et al., B. bassiana

strain-4 caused the highest mortality rate (100%) of second instarH.

armigera, five days after treatment. On the other hand, other studies

have demonstrated the effectiveness of B. bassiana in controlling

several lepidopteran species such as the small cabbage white

butterfly Pieris rapae (L.) (Lepidoptera: Pieridae) (41), the

diamondback moth Plutella xylostella (L.) (Lepidoptera:

Plutellidae) (42), and the fall armyworm Spodoptera frugiperda (J.

E. Smith) (Lepidoptera: Noctuidae) (19, 43).

In fact, according to our results, H. armigera was proven to be

susceptible to B. Bassiana strains isolated not only from H.

armigera, but also to other strains isolated from different insect

species (Table 1). These results align with the findings reported by

Suryanarayanan et al. (44) and Uma Devi et al. (45), who showed

that B. bassiana was a generalist fungus with no strict

host preference.

Furthermore, B. bassiana is likely to be capable of colonizing

many other agronomically important crop plants. This study

reported the effect of endophytic colonization of chickpea by B.

bassiana on the survival of H. armigera larvae, through two

different inoculation methods (SI and RD). These findings are

consistent with those of Ramakuwela et al. (46), who showed that

endophytic B. bassiana can be established in the roots, leaves, and

stems of pecan seedlings (Carya illinoinensis), and this capacity

may be used to manage pecan pests. The study found that larval

mortality and LT50 increased with higher fungal concentrations,

while the endophytic effect of B. bassiana on H. armigera larvae

was lower with the two inoculation methods compared to direct

application. This observation could be explained by the indirect

effect of this fungus on chickpea by stimulating the production of

secondary metabolites and/or inducing a systemic response (ISR)

in the plant (47, 48), which could result in larval antifeedant

behavior. Indeed, the capability of B. bassiana to act as an

endophyte within several host plants and different plant parts

was reported in corn Zea mays (49), tomato (50), cocoa (51),

cotton (52), and opium poppy (53). Consistent with our results,

Qayyum et al. (54) showed that tomato seedlings may be

endophytically colonized by B. bassiana isolate WG-40. In

addition, B. bassiana may protect soybean leaves by decreasing

plant consumption by Helicoverpa gelotopoeon (Lepidoptera:

Noctuidae) (55). It has been shown that B. bassiana occurs as an

endophyte in maize plants, providing multiple benefits, including

negative effects on S. frugiperda and Rachiplusia nu (Lepidoptera:

Noctuidae). Additionally, it functions as a potential protective

agent to control S. frugiperda (55, 56).

Several studies reported that this beneficial association has no

negative effects on the plant’s development or physiological
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processes (51, 57). Numerous findings have documented the role

of endophytic B. bassiana in promoting the growth of plant

biomass. For instance, Jaber and Enkerli (58) showed that B.

bassiana, when used as a seed dressing, may systemically colonize

several plant parts and enhance plant growth. Furthermore, B.

bassiana was able to proliferate and survive in plant tissues after

being inoculated into wheat utilizing seed dressing and soil

treatment techniques. This supported increased spike production

in wheat plants and successfully prevented cotton leafworm

(Spodoptera littoralis) infestation (59). The successful re-isolation

of the inoculated fungal mycelia from chickpea plants confirmed

the success of the colonization trial. However, the used inoculation

methods expressed low to moderate mortality rates against H.

armigera. However, there is still a lack of solid knowledge about

the preferred localization of the strains within plant tissues and

other factors that could enhance their performance such as using

different types of genetic material.
5 Conclusion

The present bioassays revealed promising results for using B.

bassiana strains (HASS, RFSL10, and SP-IR-566) to effectively

control the larvae of H. armigera, mostly when applied as a direct

spray. Using various inoculation techniques, B. bassiana strains were

able to colonize chickpea plant tissues and reduceH. armigera larvae

numbers. These findings show that the use of entomopathogenic

fungi, either as biopesticide or endophytic, could be incorporated in

the management package for the control of H. armigera as a safe

alternative to chemical insecticides. Nevertheless, further research is

needed to refine fungal formulations, understand the underlying

mechanisms, and assess their compatibility with other biopesticides,

such as botanical extracts or oils. These complementary studies will

contribute to the establishment of a comprehensive and effective pest

management program against H. armigera.
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56. Ramos Y, Taibo AD, Jiménez JA, Portal O. Endophytic establishment of
Beauveria bassiana and Metarhizium anisopliae in maize plants and its effect against
Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) larvae. Egypt J Biol Pest
Control. (2020) 30:20. doi: 10.1186/s41938-020-00223-2

57. Ownley BH, Pereira RM, Klingeman WE, Quigley NB, Leckie BM. Beauveria
bassiana, a dual purpose biocontrol organism, with activity against insect pests and
plant pathogens. Emerg Concepts Plant Health Manag. (2004) 2004:255−69.

58. Jaber LR, Enkerli J. Effect of seed treatment duration on growth and colonization
of Vicia faba by endophytic Beauveria bassiana and Metarhizium brunneum. Biol
Control. (2016) 103:187−95. doi: 10.1016/j.biocontrol.2016.09.008
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