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The role of dopamine in foraging
decisions in social insects
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1Department of Biology, Stanford University, Stanford, CA, United States, 2Department of Psychology,
Neuroscience Program, Denison University, Granville, OH, United States
Animals often need to make decisions about whether to confront risks, and

climate change is making these decisions even more critical by increasing

environmental stress. Biogenic amines are crucial for modulating behavior in

all animals and may contribute to behavioral adaptations to changing

environments through supporting decision-making involving risk. Our review

focuses on the neuromodulator dopamine in insects because of its role in risk-

related behavioral choices, particularly in the context of ant foraging activity. In

ants, individual decisions contribute to the collective regulation of foraging

activity. We consider the role of dopamine in the regulation of collective

foraging activity to manage water loss in the desert red harvester ant,

Pogonomyrmex barbatus, in the southwest US that is undergoing severe

drought. We discuss dopaminergic circuitry and its involvement in decisions

about foraging risk, drawing from both the vertebrate and invertebrate literature,

to outline areas of future research in the role of dopamine in collective decision-

making in response to changing environmental conditions.
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1 Introduction

Animals must make decisions about whether to confront risk in many situations (1)

including predation (2–4) and longer-term exposure to environmental stress such as high

temperatures (5, 6). Global climate change is altering environmental conditions for many

animals, leading them to shift where they may encounter new risks. It is also driving shifts

in behavioral strategies (7, 8) that alter species interactions and the ability to obtain

resources (9–11). Adaptation to these challenges depends on the neural mechanisms that

govern risk-related decision-making. While many neurotransmitters are likely involved in

these behavioral adaptations (12, 13), here we will focus on the biogenic amine dopamine

(DA), which plays a central role in regulating decision-making under risk.

DA levels in animal brains can change quickly, allowing rapid behavioral adjustment to

current conditions (14). DA is synthesized and stored in dopaminergic neurons (DANs)

until it is released via Ca2+ induced exocytosis (15), typically within milliseconds of an

action potential (16, 17). It acts on DA receptors located on target cells, including

downstream neurons associated with behavior (18).
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DA plays a key role in evaluating potential reward and

punishment, particularly in risky situations. It influences the

assessment of discrepancies between expected and actual

outcomes in mammals (19–21) and insects (22, 23). When an

outcome is better than expected, DA levels increase, reinforcing

rewarding actions (24). Conversely, when an outcome is worse than

expected, DA levels decrease, discouraging the behavior (24). DA

shapes decision-making and motivation by modulating how

attractive or aversive different options appear (25): higher DA

levels are generally associated with increased motivation to pursue

rewards, whereas lower levels reduce the perceived value of

potential rewards. Elevated DA levels also promote risk-seeking,

while reduced DA activity encourages more cautious decision-

making (26–31).

This review explores how DA influences risk-related behavioral

choices, with a focus on its role in foraging decision-making in

social insects. We compare the neuroanatomy of DA circuits related

to risk-related decision making in vertebrates and insects. DA

circuitry and functional mechanisms have been extensively

studied in Drosophila melanogaster. Research on DA’s role in

social insects, including honey bees and ants, remains limited, in

part because their biology is not compatible with some advanced

genetic tools. We consider similarities between Drosophila DA

circuits and those of social insects and how these circuits may

support behavioral adaptations and resilience to changing

environmental conditions.
2 DA regulates individual foraging
decisions

Foraging behavior is often used as a model to investigate

learning processes. In these operational conditioning studies, food

serves as a reward to train animals to perform a task, and negative

consequences, such as shocks, act as deterrents. Animals must

decide whether to engage in foraging behavior or abstain to avoid

potential punishment.

Studies involving vertebrates reveal that DA levels significantly

affect decisions regarding food rewards and associated risks (26, 32–

36). DA release in the nucleus accumbens (NAc), part of the ventral

striatum, is particularly important for decisions about whether to

engage in risk-taking or risk-averse behavior (27). When the NAc is

impaired, rats tend to exhibit risk-averse behavior (37). In rats, the

NAc also plays a crucial role in motivation, reward, motor function,

and learning (38–41).

In Drosophila, DA regulates foraging behavior in response to

hunger and satiation through two distinct dopaminergic circuits

(42). Both circuits facilitate foraging behavior regardless of hunger

state (43) and converge on Kenyon cells in the mushroom body

(MB), a region important for learning (44). Increased MB DAN

activity causes hungry fruit flies to overcome their aversion and be

more motivated to engage in risky foraging behavior (45, 46). DA

mediates decisions about food choice based on nutritional value,

and DANs in the MB are critical for learning the value of beneficial

and harmful food components (47).
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3 Social decision-making and risk

Many animals use social information in decisions about risk.

Vertebrates that live in groups, such as insectivorous bats, starlings

and bison use social information, such as visual and vocal cues from

members of their group, to evaluate food resources, avoid predators

and find nests (48–51). For example, scavengers such as vultures

rely on social information, as they forage on patchy resources that

can be difficult for an individual to discover and hunt on its own

(51). In vertebrates, DA is important for social interactions (52–54),

sexual behavior (55), and social hierarchy (56). However, little is

known about the role of DA in vertebrate group decision-making.

Social insects, such as honey bees and ants, live in colonies that

work collectively. Individuals respond to social cues, mostly olfactory

(57, 58), that in the aggregate adjust the activity of the colony (59, 60).

Social information influences decisions about activity outside the nest,

which entails exposure to risks such as predation and environmental

stressors. Individual decisions about foraging contribute to the

collective regulation of foraging in social insect colonies, in which

food is not directly consumed by foragers. Thus, foraging does not

provide an immediate reward to the individual forager. Instead, food is

brought back to the nest to be shared with the rest of the colony.

In honey bees, DA acts on neural circuits and receptors associated

with both rewarding stimuli and the avoidance of risk. Increased DA is

associated with increased motivation for foraging activity, and brain

DA levels drop sharply, within seconds, when food is obtained (22).

Predation risk, assessed as an encounter with a predator or a nestmate

that experienced predation stress, reduces both foraging activity and

brain DA levels (61, 62). A pharmacological increase in DA decreases

the fear response, rescues foraging activity (61, 62), and decreases

aggressiveness in response to aversive stimuli (63). In contrast, DA can

increase during avoidance learning (64) and punishment (65).

In ants, there have been few studies of the role of DA in decisions

related to risk (72, 73), although the conserved functions of biogenic

amines in insects suggest that DA is involved (66). In some species,

brain DA levels are highest in foragers, who must decide whether to

risk exposure to hazardous conditions outside the nest (67–70).

Starvation also reduces DA levels, which in turn reduces the

likelihood that an ant will distribute food to its nestmates (71);

however, social feeding from other ants can restore brain DA levels.

DA is also involved in an ant’s decision whether to defend or retreat

when facing danger (72). DA supports learning the cuticular

hydrocarbon profiles of other ants (73), which are used in nestmate

recognition. DA increases threatening behavior and aggression towards

both other ants (74) and prey (76) while reducing affiliatory behavior

toward nestmates (74). The decision whether to attack or accept

another individual is associated with the risk of injury in fighting or

harm if a colony is invaded.
4 Function of DA in foraging decision
of harvester ants

In red harvester ants (Pogonomyrmex barbatus), DA plays a role

in decisions about the risk of water loss (74). In the desert, colonies
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face a trade-off between water loss and foraging (75). A forager loses

water to evaporation when outside the nest searching for seeds,

while colonies obtain water by metabolizing the fats from the seeds

they eat (76). Thus, a colony must spend water to obtain water and

food. Colonies manage this tradeoff using feedback from olfactory

interactions inside the nest. An outgoing forager decides to leave the

nest on its next trip using simple olfactory interactions: antennal

contact with returning foragers bringing in food (77–79). During

antennal contact, the outgoing forager assesses the task-specific

cuticular hydrocarbon profile of the returning forager as well as the

odor of the food the returning forager is carrying (80–82). A

forager’s decision whether to leave the nest depends on the rate

of encounter with returning foragers, which relies on excitable

dynamics analogous to leaky integration by neurons (83). The

rate of forager return, and thus the rate of encounter with

returning foragers, provides positive feedback from food

availability, because higher food availability leads foragers to find

food faster (84), resulting in a higher rate of forager return.

A forager’s decision whether to leave the nest to search for food

also depends on the humidity the forager experienced on its last trip

(85). In humid conditions, foraging tends to be high in all colonies

(86). In dry conditions, colonies differ in forager decisions about

whether to leave the nest on the next trip (87). Colonies show

characteristic, consistent behavior across a gradient (86). At one

extreme are the Risk Averse (RA) colonies, with foragers unlikely to

leave the nest on the next trip in hot, dry conditions. These colonies

sacrifice food intake to conserve water. At the other extreme are the

Risk Tolerant (RT) colonies, where foragers continue to leave the

nest on the next trip in hot, dry conditions.

Colony differences in risk aversion of foragers persist from year

to year. In this long-lived species, the queen or reproductive female

in the colony produces all the workers and reproductives over her
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20-30-year lifetime while the workers live only a year (88). Within a

colony, the foragers show similar responses to current humidity,

sharing the threshold low humidity at which they will not leave the

nest (89). These results, showing consistent behavior in successive

cohorts of workers of a particular colony, indicate that forager

decisions about the risk of low humidity are associated with

heritable traits passed down from the queen and her mates.

Heritable variation among colonies can be shaped by natural

selection. Early in the current drought, natural selection was

favoring the RA colonies that conserve water (87), but this may

change as the drought intensifies and the food supply declines (75).

Previous work indicates that DA may play a role in foraging

decisions about the risk of water loss. First, transcriptomic analysis

shows that the expression of genes related to DAmetabolism is lower

in RA colonies, which tend to reduce foraging in dry conditions (90).

Second, pharmacological experiments demonstrate that ants fed with

DA were more likely to increase their foraging trips, and the effect

was most pronounced in RA colonies (74). These results suggest that

DA can override risk aversion (Figure 1). Current research is

investigating whether DA is lower in RA colonies, asking how

DANs differ in the brains of foragers from RA and RT colonies,

and how DA levels are influenced by current humidity conditions.
5 Neuroanatomy of dopaminergic
neurons in relation to risk

One of the challenges in investigating the role of DA in risk-

related decisions in social insects is that it is difficult to manipulate

gene expression because many species do not reproduce in the lab.

Other tools for mapping the anatomy and function of specific

neurons in ants, such as immunohistochemistry, make it possible to
FIGURE 1

A harvester ant forager decides whether to leave the nest on another foraging trip by using its rate of antennal contact with returning foragers with
food. During antennal contact, the forager assesses the odor of the cuticular hydrocarbons of the other ant, and the odor of the food it is carrying.
Foragers lose water to evaporation when outside the nest. Dry conditions and desiccation experienced on previous foraging trips inhibit the decision
to leave on another foraging trip. Dopamine (DA) overrides the forager’s assessment of the risk due to dry conditions.
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compare the DA circuits in D. melanogaster, where genetic

techniques are well-developed, with those in honey bees and ants.

Mapping of DAN populations in the Drosophila brain reveals

DA circuits that modulate learning in response to reward or

punishment (Figure 2A). The Drosophila brain contains 130–140

DANs distributed across 13 distinct clusters in each hemisphere

(91–93). Heterogeneous populations of DANs work together to

influence risk-based decisions (94, 95). DAN clusters in the anterior

medial part of the brain (PAM), which project to the MB, are

required for reward learning (96–98) and resolving conflict between

aversive and rewarding stimuli (45, 99, 100). Short-term memory

formation associated with aversive and reward-seeking behavior is

mediated by PAM DANs through MB compartments b’2 and g4,
while the signals necessary for long-term memory formation

regarding reward, such as the nutritional value of sugar, are

relayed by DANs projecting to MB compartments g5, b1, b2, a1,
and g1pedc (97, 101–105). Certain clusters within the MB are

critical for promoting food search efforts in response to food

odor, while inactivation of specific DAN subsets within the

protocerebral posterior lateral (PPL) region, clusters PPL1 and

PPL2, significantly impair odor-tracking behavior (97). A

particular group of DANs in one of the protocerebral posterior

medial (PPM) clusters (PPM2), is connected to wedge neurons in

the central complex and influences state-dependent decisions to

consume protein-rich food (106), while the PPM3 cluster is

responsible for food-seeking in fed flies (42).

MB DANs control temperature preference and mediate

avoidance responses to both low and high temperatures (107,

108). Gene expression related to DA synthesis and release is

regulated in MB DAN clusters in response to temperature (109).

DAN clusters in the MB (PPL1-a3/a’3, PPL1-a2a’2, PPL1-g2a’1,
and PPL1-g1pedc) respond when the temperature is lower than the

optimum (110), and the MB clusters PAM-b’2 and PAM-b2 are

also involved in avoiding low temperatures (111).

DAN clusters identified in honey bee brains have shown

patterns similar to those in Drosophila. Several clusters in the MB
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have been identified as homologous to those in Drosophila that

support foraging decisions and sense environmental signals

(Figure 2B). In honey bees, the C1 and C2 clusters may be

homologous to the Drosophila PAM cluster, used in foraging

(112). Neurons in the C3 cluster may be the homologues of

PPL1, PPL2 and PPM3, which are important for odor-

tracking (112).

In ants, DAN clusters have dendritic and axonal projections in

most regions of the brain (Figure 2C). For example, in the brains of

Indian jumping ants,Harpegnathos saltator, there are clusters in the

MB and antennal lobes, the primary olfactory processing regions,

with scattered cell bodies in the optic lobe, the primary visual

processing region, and the subesophageal zone, a region involved in

feeding behavior and learning (113). However, it is not yet known

whether any of these neurons are homologous to the DANs

in Drosophila.
6 DA receptors

DA receptors are similar in vertebrates and insects. In

vertebrates, there are two classes of DA G-protein-coupled

receptors (GPCRs): D1 and D2. The D1 class, which includes two

types of DA receptors, D1 and D5, increases intracellular cAMP

levels, leading to excitatory actions in the brain that facilitate

neurotransmitter release and trigger behavioral responses (114).

The receptors in the D1 class are involved in memory, attention,

motivation, and movement (115). In contrast, the D2 class, which

includes the other three types, D2, D3, and D4, mediates the

reduction of cAMP, often resulting in inhibitory effects that

modulate neurotransmitter release (116). D2 class receptors are

involved in mood and motor regulation (117). D1, D2, and D3 types

are the most abundant receptors in the central nervous system (18).

Both D1 and D2 type receptors are important for making

foraging decisions in rats (33). After treatment with a D1 or D2

antagonist, rats showed a greater tendency to choose a smaller but
FIGURE 2

Main dopaminergic clusters mapped in (A) the fruit fly Drosophila melanogaster, (B) the honey bee Apis mellifera, and (C) the Indian jumping ant
Harpegnathos saltator. Only one hemisphere of the brain is labeled. Expected homologous clusters are shown in the same color across species in
(A, B). Clusters are indicated with black letters and arrows, while functionally distinct brain regions are labeled in grey. In (C), a confocal micrograph
shows dopamine immunoreactivity in green, with brain regions visualized using propidium iodide-labeled nuclei in magenta. MB, Mushroom body;
CC, central complex; AL, antennal lobe; OL, optic lobe and SEZ, subesophageal zone. Scale bars: 200 µm (A, B); 500 µm (C). Source: (A, B) adapted
from Tedjakumala et al. (112), published under CC BY 4.0; (C) adapted with permission from Hoyer et al. (113), © 2005 Elsevier Ltd.
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certain reward. Conversely, administration of a DA agonist

increased the likelihood of selecting a large but risky reward

option and mitigated the effects of both antagonists. Treatment

with a D3 receptor antagonist did not significantly affect

choice behavior.

Drosophila have four types of DA receptors, which are widely

expressed in the brain. These receptors include Dop1R1 and

Dop1R2, both of which are homologous to vertebrate D1 class

receptors and are implicated in motivation-related behavior such as

arousal, drug reward, and learning and memory (42, 118, 119).

Activation of Dop1R1 in the MB increases the activity of MB output

neurons and encodes long-term memory (120). Mechanistic studies

on aversive memory suggest that as DA levels decline over time,

Dop1R2 acts within the same neurons as Dop1R1 to facilitate

forgetting (121). Additionally, Dop1R2 receptor signaling in a/b
Kenyon cells (KCs) has been implicated in modulating motivated

search behavior (46). Dop2R, analogous to vertebrate D2 class

receptors, seems to play an opposing role to D1-like receptors

(42). Dop2R activation in GABAergic anterior paired lateral (APL)

neurons, which innervate the MB, plays a critical role in aversive

conditioning by restraining GABAergic inhibition (122). The fourth

receptor, DopEcR, is unique to D. melanogaster. When activated by

DA it leads to neuronal excitation (123), though its role in foraging

and reward-seeking behavior is not yet understood.

As inDrosophila, honey bees have both the D1 class-like and D2

class-like receptors (124): AmDop1 and AmDop2 (125) are

homologues of DopR1 and DopR2 in Drosophila. AmDop2

regulates worker movement (126), but it is not known whether

these DA receptors regulate foraging or reward learning behavior.

AmDop3, a homolog of Dop2R and D2 class receptors in

vertebrates, has been confirmed to be a third DA receptor in

honey bee because its expression pattern in the honey bee brain is

different from that of either Amdop1or Amdop2 (127).

In ants, no DA receptors have been identified or categorized yet.

However, DA receptor antagonists, such as flupentixol, a general

D1- and D2-like receptor antagonist (128), have been used to study

the function of DA in foraging preferences. Lasius niger workers

treated with flupentixol initially learned an odor linked to a reward

but failed to retrieve this memory 24 hours later (73). This suggests

that DA in ants acts on similar DA receptors as in other insects and

is essential for long-term memory in ants.

To date, no mapping of DANs or DA receptors has been

conducted in harvester ant brains. Future research will focus on

identifying the types and distribution of DA receptors in ants and

mapping their dopaminergic circuitry. By comparing these findings

with existing data from Drosophila and honey bees, we can gain

valuable insight into the evolutionary conservation and functional

roles of DA in regulating foraging decisions in social insects.

Understanding how dopaminergic pathways influence foraging

behavior in ants will provide a broader perspective on the

neuromodulatory mechanisms underlying collective decision-

making in eusocial species.
Frontiers in Insect Science 05
7 Conclusions

DA plays a crucial role in risk-based decision-making across

diverse animal species and influences individual decisions that lead

to the collective regulation of foraging activity in social insect

colonies. Research in vertebrates and Drosophila has revealed

well-defined dopaminergic circuits that regulate reward

perception, motivation, and risk assessment.

Integrating pharmacological manipulations and behavioral

analyses with neuroanatomical comparisons of dopaminergic cell

expression and receptor distributions across Drosophila, honey

bees, and ants will show whether neural pathways involved in

decision-making are evolutionarily conserved. This can elucidate

the mechanisms of decision-making in collective behavior, and

predict the possibilities for the adaptation of social organisms to

changing environmental conditions.
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