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University of Zagreb, Croatia
Suwanna Praneetvatakul,
Kasetsart University, Thailand
Jim Farrar,
University of California Agriculture and
Natural Resources, United States
Ian Hardy,
University of Helsinki, Finland

*CORRESPONDENCE

Roger D. Magarey

rdmagare@ncsu.edu

RECEIVED 24 February 2025
ACCEPTED 16 April 2025

PUBLISHED 20 May 2025

CITATION

Love M, Magarey RD, Holderman BL,
Carley DS, Maggi F and Singer N (2025)
Tracking sustainability in crop pest
management in the United States using an
eco-efficiency index.
Front. Insect Sci. 5:1582496.
doi: 10.3389/finsc.2025.1582496

COPYRIGHT

© 2025 Love, Magarey, Holderman, Carley,
Maggi and Singer. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 20 May 2025

DOI 10.3389/finsc.2025.1582496
Tracking sustainability in
crop pest management in the
United States using an
eco-efficiency index
Madison Love1, Roger D. Magarey2*, Brian L. Holderman2,
Danesha Seth Carley1,2, Federico Maggi3 and Naomi Singer4

1Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States,
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While agricultural pesticides are considered essential for global food security,

their use poses significant environmental and human health risks. Integrated Pest

Management (IPM) offers a science-based framework to minimize these risks by

integrating multiple pest management strategies. However, IPM adoption and

funding in the United States have been limited, partly due to a 2001 government

report highlighting the lack of measurable reductions in pesticide use. To address

this challenge, we propose an index based on eco-efficiency, the ratio of

agricultural productivity to environmental impacts, to quantify, track, and

incentivize IPM adoption. Using crop production and pesticide use data,

including both the mass and toxicity of active ingredients, eco-efficiency

scores were calculated for ten major U.S. crop groups from 1992 to 2018. The

results demonstrate the potential of this index to monitor progress over time and

identify shifts in pesticide use relative to crop production. This approach offers a

practical, data-driven tool to evaluate pesticide risk reduction, prioritize IPM

research and Extension efforts, and support future policy and funding decisions

aimed at promoting more sustainable agricultural practices.
KEYWORDS

eco-efficiency, integrated pest management, pesticide risk assessment, pesticide use
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1 Introduction

While the use of agricultural pesticides is important to global food security, their

associated risks continue to pose significant challenges, particularly in terms of

environmental impact and human intake via food residues (1–3). Despite an estimated

biodegradation of 82% of applied pesticides, approximately 10% persists as environmental

residue and around 7% leaches into aquifers (4), contributing to substantial pollution risks

(5) and annual costs to human health and the environment estimated between 13 and 35
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billion dollars (6, 7). While human health risks associated with

organophosphates have likely decreased due to their declining use

and replacement with alternative pesticides, concerns about

human health and environmental impacts persist, as some

organophosphates remain in use and newer alternatives, such as

neonicotinoids and pyrethroids, present their own risks (8, 9). One

additional critical area of concern is the effect of insecticides on

pollinators and other beneficial arthropods which are essential for

maintaining both natural and agricultural systems (10–12).

Declining beneficial arthropod populations in part due to

pesticide exposure may contribute to reduced crop yields,

potentially impacting food security (13–18). In response to these

concerns, there is increasing emphasis on evaluating and mitigating

the risks pesticides pose to beneficial arthropods (19–23).

Due to public concern of the environmental impacts associated

with pesticides, the Clinton Administration, with joint testimony

made by the United States Department of Agriculture (USDA),

Environmental Protection Agency (EPA), and the Food and Drug

Administration (FDA), established a national goal in 1993 to

implement Integrated Pest Management (IPM) practices on 75% of

U.S. crop acreage by the year 2000 (24). Integrated pest management

is a sustainable, science-based decision-making process that

combines biological, cultural, physical and chemical tools to

identify, manage and reduce risk from pests and pest management

tools in a way that minimizes economic, human health, and

environmental risks (25). Moreover, this multifaceted approach

extends beyond pest management to encompass other factors in

production including management, business, and sustainability while

highlighting the essential role research and outreach contributes to

advancing effective pest management practices (26). Unfortunately,

the U.S. Government Accountability Office (GAO) reported in 2001

that IPM failed to demonstrate significant reductions in pesticide use

and lacked methods for measuring economic and environmental

impacts (24). Consequently, research and Extension efforts in IPM

have faced dramatic funding cuts, dropping from $204 million in

1997 (27) to just $21 million allocated to the USDANational Institute

of Food and Agriculture (NIFA) Crop Protection and Pest

Management Program which is the only designated federal source

of IPM funding for public research and extension. While recent

studies have demonstrated increased adoption of specific IPM

practices (28), these studies fail to quantify reductions in

environmental and human health risks.

The agricultural community continues to face significant

challenges in adopting IPM including the perception of high

implementation costs, limited awareness, practical difficulties in

execution, and a lack of sufficient incentives to drive widespread

adoption (29, 30). Compared to conventional pest management

programs that heavily rely on pesticides, IPM incorporates a

broader range of strategies, requiring additional management

practices that often demand greater knowledge, planning, and

resources. Although biodiversity initiatives from major retailers,

such as Walmart Inc., Whole Foods Market, Inc., and The Kroger

Co., provide some motivation for IPM adoption, their impact is

limited to growers within their supply chains. Additionally, these
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certifications primarily evaluate risk reduction qualitatively,

focusing on changes in practices rather than employing

quantitative metrics to measure changes to pesticide externalities.

Furthermore, while IPM strategies can provide benefits for those

who implement it (2, 31, 32), growers receive no direct

compensation for the broader societal benefits, such as reduced

pesticide externalities, generated by their efforts (29). Pesticide

externalities encompass the unintended social, environmental,

and economic consequences of pesticide use, such as water

contamination, biodiversity loss, and human health risks, that are

not accounted for in market prices (33, 34). Addressing these

barriers is essential to advancing IPM adoption and realizing its

potential to mitigate environmental and human health risks.

Some countries have sought to promote or mandate IPM adoption

by setting pesticide reduction targets. Notably, the European Union

(EU) introduced pesticide risk reduction initiatives under its Farm to

Fork policy (35, 36), establishing legally binding national targets aimed

at reducing pesticide use while enforcing stricter regulations to

encourage environmentally responsible pest management. These

measures were intended to ensure that farmers and professional

pesticide users incorporated IPM strategies into their practices. In

2023, the EUwent further by implementing a ban on all pesticide use in

sensitive areas, including parks, greenways, and schools. However,

despite these ambitious efforts, the proposed regulations sparked

widespread protests from farmers, ultimately leading to their

abandonment (37). This resistance underscores the challenges of

imposing restrictive measures and highlights the need for alternative

approaches. A program centered on incentives is more likely to drive

investment in research and development for high-quality innovations

compared to regulatory mandates (38). In contrast, mandates in the

U.S. could face significant resistance from growers, similar to the

pushback observed in the E.U. (37).

The current status of pest management in U.S. crop production

has been described as the pesticide quandary (39). The term

encapsulates a recurring cycle characterized by a lack of adoption

of IPM, over-reliance on pesticides, public concerns about the

environmental and health risks of pesticides, litigation,

circumvention of regulatory systems, and the subsequent loss of

critical pesticides essential for pest control. One possible method to

escape the pesticide quandary is to follow a similar path that has

been developed to address agriculture’s carbon footprint in

mitigating climate change. Programs like the USDA Climate-

Smart Agriculture and Forestry (CSAF) program aim to identify,

quantify, track and incentivize carbon reduction strategies (40, 41).

A similar strategic model could also be applied to pesticide use

reduction, encouraging growers to adopt IPM practices.

This paper proposes the idea of a Pest-Smart Agriculture analog

to identify, quantify, track and incentivize pesticide risk reductions.

This approach would not replace IPM but serve as a complementary

tool to enhance its adoption. By providing measurable metrics,

Pest-Smart Agriculture could address the longstanding concerns

outlined in the 2001 GAO report (24) regarding the absence of

standardized metrics for evaluating IPM outcomes in terms of

economic and environmental impact. Additionally, these metrics
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could serve as the foundation for risk-reduction programs

supported by government funding or market-driven incentives,

fostering a more sustainable and effective approach to pest

management in agricultural systems.

The first step towards implementing Pest-Smart Agriculture is

to quantify the risks associated with pesticide use. A promising

approach for measuring and tracking pesticide risk reduction is the

concept of Regulatory Threshold Levels (RTLs) and Total Applied

Toxicity (9, 42). The RTL is a derived threshold that indicates

potential biodiversity impacts based on data obtained from officially

maintained regulatory databases from the EPA ECOTOX

Knowledgebase (9). While internationally recognized RTLs for

pesticides in drinking water have been established in countries

such as the EU, U.S., Japan, and Canada (43), the U.S. EPA has not

yet set RTLs specifically for agricultural pesticide use to our

knowledge. Since the RTLs discussed in this paper lack an official

regulatory status in the U.S., an equivalent term, “Toxicity Level”,

will be used instead. Establishing standardized Toxicity Levels for

agricultural pesticide use in the U.S. could provide a crucial

foundation for advancing Pest-Smart Agriculture, enabling more

precise risk assessments.

To evaluate Toxicity Levels, the Total Applied Toxicity, a Risk

Quotient (RQ) that represents the ratio of an exposure level to a

toxicity endpoint value (44), is used as a key toxicity measurement.

In its simplest form, exposure is represented by the total amount of

pesticide applied. However, as will be discussed later in this paper,

this is a simplified approach that does not fully account for the

complexities involved in pesticide risk assessment and can be

further improved. Risk quotients are preferred over qualitative

and semi-quantitative pesticide ranking methods, such as the

Environmental Impact Quotient (EIQ), which are subject to both

conceptual and mathematical limitations (45, 46). Risk quotient

values provide a more robust framework by assigning small values

to active ingredients with significant biodiversity impacts and larger

values to those with lesser impacts. The Total Applied Toxicity

serves as an indicator of potential pesticide impacts and is calculated

by dividing the total applied mass of each active ingredient by its

corresponding Toxicity Level. Further analysis is completed by

calculating an eco-efficiency index for each crop based on crop

production and annual pesticide use reports.

Eco-efficiency, defined as the ratio of productivity to the

environmental impact of pest management (39), provides a

valuable framework for assessing the sustainability of agricultural

practices. This index offers several key advantages in quantifying

and tracking pest management pesticide use as it relates to

productivity and environmental impact. First, it accounts for

fluctuations in pesticide use relative to crop production, offering a

more precise and dynamic assessment of pesticide impacts over

time. Second, by integrating both productivity benefits and

environmental risks into a single metric, the eco-efficiency index

helps balance the dual objectives of minimizing ecological harm

while maintaining agricultural productivity. Completely

eliminating pesticide use is not a viable solution, as it would leave

essential food crops vulnerable to pests, posing serious threats to

food security (3). Instead, the eco-efficiency index provides a
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practical pathway toward sustainable pest management by

promoting a balanced, data-driven approach that optimizes

productivity while reducing environmental impact.

This study is a proof of concept that aims to demonstrate the

use of eco-efficiency in evaluating the sustainability of crop pest

management in the U.S. To achieve this, eco-efficiency indices were

calculated for ten crop groups and seven species groups across the

U.S. from 1992 to 2018. Each crop-specific index was designed to

track changes in eco-efficiency over time, providing a dynamic

assessment of progress within individual crops rather than a direct

comparison between them. By examining eco-efficiency trends

across multiple crops, this study offers valuable insights into the

evolving relationship between pest management practices,

productivity, and environmental impact. These findings establish

a foundation for future discussions on research, extension, and

policy initiatives aimed at improving eco-efficiency in agricultural

pest management.
2 Materials and methods

Eco-efficiency indices were calculated for 10 crop groupings

using a comprehensive dataset from multiple sources of data

spanning from 1992 to 2018 (47). The applied mass of pesticides

from 1992 to 2018 were sourced from the United States Geological

Survey Pesticide National Synthesis Project (USGS/PNSP) within

the North American Water Assessment of 2022. The data, which

includes “high” and “low” annual application masses for each U.S.

state from 1992 to 2018, were based on surveys conducted by the

USDA National Agricultural Statistics Service (USDA/NASS)

between 2007 and 2012 (47). For data outside of this period,

interpolation and extrapolation methods outlined by Baker and

Stone (48) were applied. The USGS/PNSP data covered six

dominant crops including corn, soybean, wheat, cotton, rice, and

alfalfa, as well as four aggregated crop classes: i) vegetable and fruits,

ii) orchard and grapes, iii) pasture and hay, and iv) other crops, as

detailed in Supplementary Table S1 which expands upon the classes

found in Maggi et al. (47). The total mass of pesticides applied was

calculated by pesticide type for each crop category.

Total crop production for each of the 10 groups from 1992 to

2018 was estimated using publicly available data maintained by

USDA National Agricultural Statistics Service (NASS)

(Supplementary Table S1). Annual crop production estimates for

corn, wheat, rice, pasture and hay, and alfalfa were obtained from

the NASS “Quick Stats” database, which enabled targeted searches

by commodity, category, measurement unit, and location. Data for

orchard and grapes were sourced from the annual “USDA Citrus

Fruits Summary” and “USDA Non-Citrus Fruits and Nuts

Summary” reports, while vegetable and fruits primarily relied on

the “USDA Non-Citrus Fruits and Nuts Summary” and “USDA

Vegetable Summary” reports. Additional crops within this category

not included in these reports, such as dry beans, peas, potatoes, and

sweet potatoes, were gathered from the “Quick Stats” database.

Production for each crop was reported in a variety of measurement

units: corn, wheat, and soybeans were reported in bushels; cotton in
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480-pound bales; rice in hundredweight (CWT); and aggregated

pasture and hay and alfalfa in tons. Crop groups containing

multiple crops, such as orchard and grapes, vegetable and fruits,

and aggregated other crops, used a variety of measurement units. To

maintain uniformity, all crop categories were converted to

metric tons.

One challenge encountered in the analysis was the inconsistency

in data reporting over time. From 1992 to 2015, vegetable production

was recorded under the category “Principal Vegetable,” while from

2016 to 2018, it was reported as “Principal Vegetable Fresh Market

and Processing,” leading to nearly double the reported total for these

years. The most significant discrepancies in data reporting and

categorization, including missing data for certain years, were

observed in the vegetable and fruits and orchard and grapes

categories. These issues are detailed in the Supplementary Methods

and in Supplementary Table S1, specifically, the “Summary”

worksheet tab.

Next, the TAT was calculated (Equation 1) using the mass of

pesticide applied and the Toxicity Level values for each pesticide

(Supplementary Tables S3, S4). The Toxicity Level represents a

threshold indicative of potential biodiversity impacts, derived from

EPA’s ECOTOX Knowledgebase (9). Toxicity Level values for 381

active ingredients were obtained (9) for various species groups,

including terrestrial organisms such as mammals, plants,

arthropods, and birds, as well as aquatic organisms including fish,

plants, and invertebrates (Supplementary Table S2). Due to limited

data and differences in toxicological measurement, pollinators were

excluded from the analysis; however, the impact of pesticides on

pollinators can be inferred from the Toxicity Level values

for arthropods.

The Total Applied Toxicity (TAT) for each species group (s),

year (y), and crop (c) was calculated by summing each of the 381

active ingredients’ applied mass in kg (m) divided by the Toxicity

Level for each pesticide active ingredient (a) and species grouping(s)

(Equation 1):

TATs;y;c=oa

Ma;c;y

TLa;s
(1)

whereMa,c,y is the mass (kg) of pesticide active ingredient (a), to

crop group (c), applied in each year (y) and TLa,s is the toxicity level

expressed in Toxicity units (Tu) such as mg/kg, mg/ha or mg/L

depending on toxicity endpoint for active ingredient (a) and species

grouping (s). The resulting units for TAT are kg of pesticide active

ingredient/Tu. This formulation of the units preserves the linkages

to the original toxicological studies.

Because of missing information, metam was assigned the same

Toxicity Level as metam potassium, and Dichloropropene, a

fumigant which represents a 5% of pesticide use, was mistakenly

assigned the same Toxicity Levels as the herbicide 2,4-

Dichlorophenoxyacetic acid (2,4-D). This error likely led to an

underestimation of TAT in birds and mammals, particularly in

non-row crops and cotton, which exhibited the highest usage.

Additionally, the following pesticide active ingredients,

accounting for 9% of all pesticide mass, were not included in the

analysis: petroleum oil, petroleum distillate, and sulfuric acid. These
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active ingredients were considered to be either too variable or were

not classified as conventional pesticides with available Toxicity

Level values. After these adjustments, only 1.6% of the total

applied mass was from active ingredients not available in the

Toxicity Level database (9). A list of these pesticides as well as the

usage of Dichloropropene by crop is included in the worksheet tab

titled “Excluded from TAT” found in Supplementary Table S3.

Another limitation of the pesticide use data set was that seed

treatments were not included after 2014 (49).

Pesticide classes, including herbicides (amino acid synthesis

inhibitors, cell membrane disruptors, growth regulators, lipid

synthesis inhibitors, pigment inhibitors, photosynthesis inhibitors)

(9), insecticides (carbamate, neonicotinoid, organochlorine,

organophosphorus, pyrethroid) (9), and fungicides (as classified by

the Fungicide Resistant Action Committee [FRAC]) (50), were used

to estimate missing Toxicity Level values for specific species groups. If

at least three pesticides within a class had available Toxicity Level

values for a particular species group, the average of these values was

applied to estimate the missing values for that class. If a Toxicity Level

value was unavailable for a specific class and species group, all

pesticide active ingredients within that class were excluded from

the analysis. For each crop and species group, the proportion of

applied mass that contained a Toxicity Level value was determined.

For each species group, the proportion of active ingredients with an

assigned Toxicity Level value was assessed. For terrestrial organisms,

the percentages were mammals and plants 71.1%, arthropods 66.7%,

and birds 74.6%. For aquatic organisms, the percentages were fish

89.3%, plants 79.6%, and invertebrates 96.9%. For each crop group,

the percentage of applied mass for which the pesticides active

ingredients had a Toxicity Level value across all species groupings

was as follows: corn 85.7%, soybean 94.5%, wheat 89.8%, cotton 83%,

rice 82.5%, and alfalfa 90.7%. For the four aggregated crop groups, the

percentages were: i) vegetable and fruits 54.7%, ii) orchard and grapes

49.8%, iii) pasture and hay 93.7%, and iv) others 75.8%

After calculating the Total Applied Toxicity in Equation 1, the

eco-efficiency index (E) for each crop and species group was

determined Eqaution 2 as:

Es,y,c =
Pc;y

TATs;y;c
(2)

where Pc,y is the total crop production (kg) each year (y) for

each crop group and

TATs,y,c is the total applied toxicity (kg of active ingredient per

toxicity unit or kg/Tu) for species group (s), year (y) and crop group

(c). The resulting unit for Eco-efficiency is Tu−1. Comparisons

across different species groups should be treated with caution

since toxicity units differ.

The crop and species-specific eco-efficiency index (EI) was

calculated by taking the log10 value for each year relative to the

corresponding Log10 value for 1992 (Table 1) in Equation 3 as:

EIs,y,c =  LogEs,y,c −  LogEs,1992,c (3)

where LogEs,y,c is the log of eco-efficiency for each species group

(s), each year (y) for each crop group (c) and LogEs,1992,c is the log of

eco-efficiency for each species group (s) in 1992 for each crop group
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(c) (unitless). A log transformation makes a variable unitless (51)

and was applied to enhance the interpretability and presentation of

the index, making it easier to analyze and visually represent. All data

were aggregated, processed, and analyzed using Python 3.12 with

the help of NumPy 1.26.4 and Pandas 2.2.3 libraries or using R 4.4.1

and the readxl, reshape2, MASS, gnorm, ggplot2, and latex2exp

packages. Supplementary Figure S1 presents a streamlined overview

of the methodological process, offering a simplified breakdown of

each step involved.

We analyzed change in EIs,y,c, from 1992 to 2018 for each crop

and species group using an adjusted Theil-Sen estimator. The

standard Theil-Sen estimator (52) is typically used when the

assumptions of ordinary least squares regression, such as normality,

are not met. In our case, the eco-efficiency index is not normally

distributed, nor is it expected to be, as it is a transformation of a ratio.

However, because the eco-efficiency index calculated above is relative

to the baseline year of 1992, the intercept must be zero. Using the

standard Theil-Sen estimator without accounting for this constraint

would result in biased slope estimates (Supplementary R Code).

To address this constraint, we adjusted the calculation by

determining the slope between each observed eco-efficiency index,

EIs,y,c, and the origin for a given crop and species group. The

median of these slope estimates was then used as the final slope

estimate. For example, the eco-efficiency trend for mammals

exposed to pesticides from alfalfa crops was calculated by

determining the slope of each pair of consecutive annual values

EIs,1993,c, EIs,1994,c, etc. relative to the origin, and then computing the

median of these slopes.

Since the intercept is constrained to zero, standard bootstrap

methods for calculating the standard error, confidence intervals,

and p-values for the slope such as in Wilcox (53) are not applicable.

Instead, we employed the standard error formula for a simple linear
Frontiers in Insect Science 05
regression slope (54) with the least squares estimate replaced by the

adjusted Theil-Sen estimate. We calculated the confidence interval

and p-values using this standard error, applying a t-distribution

with 26 degrees of freedom. Finally, we performed a multiple testing

adjustment of the p-values using the Benjamini-Hochberg step-up

procedure for controlling the False Discovery Rate (55).

The eco-efficiency index tracks trends in crop sustainability by

assessing the balance between productivity and pesticide-related

environmental impacts. An increasing index suggests improved

sustainability due to higher yields, lower Total Applied Toxicity,

or both. Conversely, a declining index indicates inefficiencies, due to

reduced productivity, increased pesticide impact, or both. Improved

eco-efficiency does not always indicate reduced environmental risks.

For example, improved yields due to favorable weather can increase

eco-efficiency, even if pesticide use rises, as long as productivity

gains offset toxicity increases. This complexity necessitates a careful

interpretation of trends within the broader agronomic and

environmental context.

This index is designed to measure progress within specific crops

rather than facilitating direct comparisons across crops, as pest

management challenges and available pesticide options vary

significantly. For example, crops with diverse pest complexes,

resistant pests, or fewer registered pesticides may exhibit different

eco-efficiency patterns than those with less pest pressures and

greater management options. Additionally, the index reflects

changes in pesticide impact across species groups but does not

distinguish between effects on target pests and non-target

organisms. For some modern selective insecticides, eco-efficiency

may be enhanced by reducing toxicity to beneficial species while

maintaining effectiveness against pests. Understanding these

nuances is critical for accurately assessing sustainability progress

in crop pest management.
TABLE 1 Eco-efficiency baseline scores (EIs,1992,c) for terrestrial and aquatic species across ten crop categories.

Crop category

Terrestrial Aquatic

Mammals Birds Plants Arthropods Fish Invertebrates Plants

Alfalfa 4.1 3.4 7.4 5 0.6 −1.1 1.4

Corn 5.1 4.3 7.3 6.7 0.7 −0.3 1.1

Cotton 3.4 2.6 6.5 4.2 −0.7 −2.5 0.3

Orchard and grapes 4.7 4 7.8 5.7 0.6 −0.4 1.4

Other 5 4.2 7.4 6.2 0.9 −0.2 1.6

Pasture and hay 5 4.2 6.6 5.8 1.1 −0.3 0.9

Rice 4.6 3.9 7.9 6.4 1.2 0.1 0.8

Soybean 5.4 4.7 7.2 6.4 1.1 0 1

Vegetable and fruits 4.5 3.8 7.5 5.6 0.5 −0.7 1.4

Wheat 5.3 4.9 7 6.1 1.4 0 2

Average 4.7 4.0 7.3 5.8 0.7 −0.5 1.2

Standard deviation 0.6 0.7 0.5 0.7 0.6 0.8 0.5
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3 Results

The total mass of the applied active ingredients in the U.S.

steadily increased until peaking at approximately 0.5 million tons in

1996. Afterward, there was a gradual decline until around 2009,

followed by a renewed rise, nearly matching the 1996 peak in 2018.

Herbicides make up the largest portion of active ingredients applied

(Figure 1). Herbicides are applied at much higher rates than other

types of pesticides, largely driving overall trends in pesticide usage

(8). The total mass of herbicides applied in the U.S. experienced a

small peak in 1996, followed by a decline until 1999. From 2000 to

2008, herbicide applications exhibited minimal change. However,

around 2009, herbicide applications increased until 2018, reaching

its overall maximum application mass. In contrast, the total mass of

insecticides, fungicides, and other miscellaneous pesticides have

remained relatively stable over time. There was a small rise in total

applied insecticides beginning in 1993 and peaking in 1999 with a

decline thereafter. Total applied fungicides increased from 1992 to

1996 but from 1998 until 2010, total applied fungicides gradually

declined and remained relatively stable. The “Miscellaneous”

category includes active ingredients of bactericides, fumigants,

nematicides, plant growth regulators, and vertebrate control agents.

When analyzing pesticide use trends across different crop

categories, clear and distinct patterns emerged. Corn consistently

ranks for the highest pesticide use across all crop groups (Figure 2).

Pesticide use in soybean has steadily increased since around 2007.

In contrast, pesticide use in vegetable and fruits has remained

relatively stable overall, though these crops are among the highest

users, with significant peaks in 1996 and 2004. Pesticide use in

cotton rose until approximately 1995, followed by a decline and

subsequent minor fluctuations in the following years. Pesticide use

in orchard and grapes experienced a steady increase, peaking in

1999, but have demonstrated a consistent decline since then. Crops

such as wheat, alfalfa, pasture and hay, and rice consistently utilize

less pesticide compared to corn, soybeans, vegetable and fruits, and
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orchard and grapes. These variations in the total applied mass of

pesticides across crop groups influence eco-efficiency trends.

The eco-efficiency trends for aquatic organisms (Table 2,

Figure 3), including aquatic invertebrates, aquatic plants, and fish,

demonstrated a mix of declines, improvements, and neutral changes

across crop types. For aquatic invertebrates, steady declines were

evident in the plotted trends for alfalfa, corn, rice, and wheat crops

(Figure 3). The analysis above supports these visual conclusions

since the slopes for alfalfa, corn, rice, and wheat crops for aquatic

invertebrates were negative and statistically significant (Table 2).

Additionally, the analysis above revealed a significant negative slope

for eco-efficiency in aquatic invertebrates in the vegetable and fruits

category (Table 2). On the other hand, statistically significant

positive slopes were found for cotton and the combined pasture

and hay crops for the eco-efficiency indices calculated for aquatic

invertebrates (Table 2). In the case of aquatic plants, trends in the

line plots were largely neutral for most crops with only a visible

decline for wheat crops and small improvements for pasture and

hay and rice crops. However, the analysis above using the eco-

efficiency indices calculated for aquatic plants found significant

positive trends for corn and pasture and hay but not rice and

significant negative trends for vegetable and fruits for aquatic

plants. Note, while there is a statistically significant positive trend

in soybean for aquatic plants, the statistical analysis does not

account for the non-linear nature of the eco-efficiency index over

the years; thus, the actual slope value is likely inflated. For fish,

improvements were more widespread; improvements were

apparent for corn, cotton, and pasture and hay (Figure 3) which

were again supported with statistically significant positive slopes.

Further, the statistical analysis on the eco-efficiency indices

calculated for fish indicated significant positive trends for orchard

and grapes, and vegetable and fruits, while neutral trends or minor

declines were noted for other crops.

The eco-efficiency trends for terrestrial organisms (Table 2),

including birds, mammals, terrestrial arthropods, and terrestrial
FIGURE 1

Total mass of applied pesticides by pesticide type in the U.S. from 1992 to 2018.
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plants, revealed varied outcomes across crops. Improvements were

widespread for birds and mammals, with visible positive steady

trends observed in crops like alfalfa, corn, cotton, orchard and

grapes, the combined other crop, and rice (Figure 4). Again, the

results of the analysis agreed with these visible trends, with significant

positive slopes for all specie groups except alfalfa (Table 2).

Additionally, the slopes for the eco-efficiency index for mammals

and birds were significantly positive for vegetable and fruits as well as

for birds in wheat eco-efficiency (Table 2). Finally, while the analysis

suggested significant positive trends for mammals and birds in

pasture and hay, the slopes are likely inflated due to the exogenous

shock observed around 1998 (Table 2, Figure 4). However, trends for

terrestrial arthropods were mixed with crops such as cotton and

orchard and grapes showing improvement, while rice had a visible
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decline (Figure 4). The statistical analysis on the eco-efficiency indices

calculated for terrestrial arthropods confirmed that there are

statistically significant positive trends for corn and cotton and a

significant negative trend for rice (Table 2). Again, while a significant

positive trend was found for pasture and hay, the analysis does not

account for non-linear trends or exogenous shocks, and thus these

trends are likely inflated (Table 2, Figure 4). Finally, the eco-efficiency

index appeared to remain stable or declined for terrestrial plants

(Figure 4). In fact, significant declines of the eco-efficiency index for

terrestrial plants were found for corn, orchard and grapes, vegetable

and fruits, and wheat (Table 2). However, it is important to note that

some of these declines began around 2010, meaning the slopes

calculated using the method above may not accurately capture the

true trends (Table 2, Figure 4).
TABLE 2 Slopes of eco-efficiency scores for terrestrial and aquatic species across ten crop categories.

Crop category

Terrestrial Aquatic

Mammals Birds Plants Arthropods Fish Invertebrates Plants

Alfalfa 0.028 0.034 −0.006 0.002 −0.015* −0.021* −0.001

Corn 0.037* 0.049* −0.012* −0.02 0.019* −0.018* 0.005*

Cotton 0.042* 0.033* −0.009 0.03* 0.03* 0.033* 0.003

Orchard and grapes 0.031* 0.046* −0.013* 0.01* 0.013* −0.012 −0.002

Other 0.045* 0.024* 0.005 0.014 0.005 −0.007 0.001

Pasture and hay 0.024* 0.064* −0.009 0.108* 0.048* 0.097* 0.051*

Rice 0.054* 0.09* −0.008 −0.026* −0.005 −0.052* 0.005

Soybean 0.022 0.036 −0.003 −0.024 −0.008 −0.051 0.04*

Vegetable and fruits 0.028* 0.014 −0.011* 0 0.008* −0.02* −0.005*

Wheat 0.007 0.025* −0.021* 0.003 −0.004 −0.034* −0.008

Average 0.032 0.042 −0.009 0.010 0.009 −0.008 0.009
Statistical significance with Benjamini-Hochberg correction *P<0.05.
FIGURE 2

Total mass of applied pesticides by crop category in the U.S. from 1992 to 2018.
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The eco-efficiency trends observed across crop categories

(Table 2) indicate notable variation. Pasture and hay exhibited

the most consistent improvement across all species groups. Cotton

and orchard and grapes also demonstrated improvements for

multiple species. In contrast, crops such as wheat and vegetable
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and fruits showed declines or no significant changes across several

species categories. Corn presented mixed results, with significant

improvements for mammals and birds but declines for terrestrial

arthropods and aquatic invertebrates. Rice displayed improvement

for certain specie groups but declines in others.
FIGURE 3

Eco-efficiency indices for 10 crop categories from 1992 to 2018 for aquatic groups. Index values represent crop and species group specific changes
in eco-efficiency from 1992 using a log transformation, where positive changes represent an increase in eco-efficiency and negative changes
represent a decrease in eco-efficiency.
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4 Discussion

Pesticide use decisions are influenced by a dynamic set of factors

that shape pest management strategies. Weather conditions, such as

temperature, precipitation, and extreme weather events, play a

significant role in determining pest activity and the need for

pesticide applications. Climate change has increasingly shaped
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weather patterns, allowing insect pests to expand their ranges,

survive winters more effectively, and reproduce at higher rates, all

of which intensify pest pressures and pose greater challenges for

agriculture and ecosystem stability (56).

While environmental factors play a crucial role in pest

management, this discussion focuses on broader, systemic

influences such as regulatory changes, market dynamics, and the
FIGURE 4

Eco-efficiency indices for 10 crop categories from 1992 to 2018 for terrestrial groups.
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evolution of pest pressures and resistance. These interconnected

forces have shaped pest management strategies, driving decisions

on pesticide selection, technological advancements, and the

adoption of IPM practices (8, 57). The variation in potential

downstream effects on non-target organisms, as reflected in the

eco-efficiency indices evaluated in this study, highlights the value of

tools like eco-efficiency in analyzing and monitoring these dynamic

changes over time, providing essential insights into pesticide use

patterns and their broader implications for environmental

sustainability and public health. We do not claim a causal

relationship between the factors examined here and changes in

eco-efficiency. Instead, our focus is on understanding how various

influences on pesticide use decision-making may contribute to

shifts in eco-efficiency.

Concerns about pesticides intensified among consumers in the

1990s after the discovery of pesticide residues in food, especially in

products frequently consumed by children, prompting calls for

regulatory reform (58). The Food Quality Protection Act of 1996

marked a key shift, introducing stricter EPA safety standards,

particularly for children, and leading to reduced use of high-rate,

toxic pesticides like carbamates and organophosphates that have

been largely replaced by alternatives like neonicotinoids and

pyrethroids with lower application rates and toxicity to mammals,

birds, and fish (8, 57). Although neonicotinoids and pyrethroids

have reduced toxicity to vertebrates and lowered the total pesticide

mass applied, their widespread use has dramatically increased

toxicity to insects (9, 59). While regulatory reforms have

successfully reduced pesticide risks to humans and other

vertebrates, the shift toward widespread use of neonicotinoids

highlights the unintended ecological trade-offs, underscoring the

need for a more holistic approach to pesticide regulation and

risk assessment.

Beyond domestic regulatory changes, international regulations

on pesticide residues have become increasingly stringent, aiming to

mitigate potential risks to consumers and enhance food safety

standards worldwide (60). The U.S. has one of the largest export

markets in the world, with agricultural goods playing a vital role in

driving economic growth (61). U.S. agricultural exports are

increasingly affected by Maximum Residue Levels, which are set

by individual countries to regulate the allowable pesticide

concentrations in agricultural products (62). These varying

standards create challenges for exporters, requiring careful

compliance with international regulations to maintain market

access, directly shaping pesticide use decisions made by growers

(63). These international restrictions have the potential to accelerate

both domestic and global advancements in eco-efficiency by

encouraging innovation in pest management strategies.

In addition to policy changes, market dynamics have played a

pivotal role in shaping eco-efficiency in agriculture, driven by the

balance between input costs, such as pesticides, and crop parity

price (8). The parity ratio, which reflects the relationship between

farm prices and input costs, showed an overall decline during the

study period, reaching an all-time low in 2018 (64). When

production costs outpace crop parity or commodity prices fall,

farmers face shrinking profit margins. This market system often
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drives increased reliance on chemical controls, as pesticides

typically have lower upfront costs compared to other more

sustainable management options while offering the potential for

higher yields in the short term (65). This forces growers to heavily

rely on chemical controls for pest management to maintain their

market edge. This is especially common with high-value crops,

which often require increased pesticide use to protect yields (66).

Collectively, these market dynamics are expected to diminish eco-

efficiency due to the increased pressure to use pesticides.

Genetically engineered (GE) crops have significantly shaped

pesticide use patterns and their effects on eco-efficiency. The

introduction of herbicide-tolerant crops in the mid-1990s,

particularly glyphosate-tolerant cotton, soybean, and corn,

revolutionized weed management. By 2014, these genetically

modified varieties accounted for over 90% of total crop area (67).

This widespread adoption led to a significant increase in herbicide

use, with soybeans experiencing the highest application rates (57).

Compared to other herbicides, glyphosate is considered to have

lower toxicity and environmental persistence, potentially reducing

the overall ecological footprint of pesticide use in these systems (8).

However, the overreliance on glyphosate has driven the emergence

of glyphosate-resistant weed species, such as Palmer amaranth

(Amaranthus palmeri S. Watson), forcing growers to shift toward

more frequent applications and herbicides with greater toxicity,

ultimately diminishing eco-efficiency (9, 68, 69). However,

glyphosate is not the only herbicide facing reduced efficacy. Weed

species have developed resistance to nearly all existing herbicide

classes, and few new modes of action have been introduced in the

past 30 years (70, 71). The evolution of herbicide resistance

underscores the need for comprehensive assessment tools like

eco-efficiency, which can provide a more holistic evaluation of the

long-term environmental trade-offs associated with these

management decisions.

A closer examination of genetically engineered crops reveals

that insect-resistant varieties, particularly Baccillus thuringiensis

Berlin (Bt) crops, exhibit a dual-edged effect similar to herbicide-

tolerant crops. Initially, Bt corn and cotton significantly reduced

conventional insecticide applications, lowering exposure risks for

non-target organisms and improving environmental outcomes (57,

72, 73). This decline in total applied insecticides enhances eco-

efficiency by reducing the overall pesticide load. However, despite

this reduction, the widespread adoption of neonicotinoids and

pyrethroids became a victim of their own success; their increased

use led to a rise in Total Applied Toxicity for invertebrates (9). In

fact, when compared to non-Bt crops, the applied toxicity has not

decreased for invertebrates as expected, likely due to the

development of pest resistance that necessitates increased

applications (74). The combination of pesticide class shifts and

the evolution of pest resistance has ultimately contributed to an

increased toxicity load for invertebrates, even in Bt crop systems,

highlighting the unintended ecological consequences of these

management strategies and their negative implications on

eco-efficiency.

Beyond herbicide tolerant and insect resistant crop production

systems, resistance to applied insecticides, documented in over 550
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arthropod species as of 2018 (71, 75), continues to rise and further

complicates long term pesticide management, undermining eco-

efficiency progress. Pest resistance reduces the effectiveness of

pesticides and increases the overall mass of applied pesticides and

toxicity (76). Estimating this additional mass applied in response to

resistance is difficult to accomplish. A widely cited figure is that 10%

of pesticide applications are applied due to the development of

resistance (7). Some caution is needed in the interpretation of this

figure as it is based on a simulation study for a single insect species

in cotton (77). Pesticide resistance is estimated to cost U.S.

agriculture $10 billion in losses annually (71, 78). These losses are

expected to rise as pesticide dependence increases and resistance

continues to evolve, underscoring the urgent need for effective

management strategies.

Although this discussion has heavily focused on insecticide and

herbicide resistance, fungicide resistance as a response to routine

fungicide use is also a growing concern in many crops, especially for

vegetables, fruits, orchard, and grapes (79–82). Similarly, fungicide

use in soybean has dramatically risen since 2005 likely due to

increased awareness of fungal diseases, fungicide product

availability, and crop prices (83). Overall, pest prevalence and

resistance are likely to result in an increased mass of applied

pesticides and toxicity load resulting in reduced eco-efficiency.

Building on the advancements in GE crops, precision

agriculture and related innovations are transforming modern

production systems. By leveraging cutting-edge technologies such

as robotic sprayers and crop imaging systems, precision agriculture

optimizes pesticide applications based on factors like pest pressure

and crop canopy density. This targeted approach minimizes

pesticide use while enhancing long-term pest management and

maintaining pesticide efficacy (84–86). Robotic weeders further

enhance efficiency by integrating imaging technologies combined

with mechanical, electrical, laser, thermal, or chemical tools for

selective weed control, particularly benefitting herbicide

management (87). Similarly, unmanned aerial vehicles (UAVs)

enable targeted applications of pesticides, further reducing overall

pesticide use (88). Beyond machine-based innovations, the

development of non-chemical pesticide alternatives, including

bio-pesticides (89) and emerging biotechnologies such as

interference RNAs (iRNAs) (90), holds significant promise for

improving eco-efficiency. Collectively, these technological

advancements are expected to pave the way for more sustainable

agricultural practices, reducing pesticide volumes and mitigating

their environmental impact.

Technological advancements and holistic pest management

practices have been widely promoted by regional IPM centers,

established in 2000 as part of the mandates outlined in the FQPA

of 1996 (8). Common IPM practices, such as crop rotation, host

plant resistance, pest monitoring, and threshold-based

interventions (26, 32) can improve eco-efficiency by reducing the

frequency of pesticide applications and promoting the use of lower-

risk pesticides. A compelling example of IPM’s success is Arizona’s

cotton production system. By strategically integrating Bt cotton,

selective insecticides, insect growth regulators, established sampling
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protocols, and effective economic thresholds, cotton growers have

successfully managed pest pressures while simultaneously

preserving natural insect communities that contribute to

biological control (91). This system has been extensively studied

for over thirty years and widely adopted across the region,

highlighting key factors that have contributed to its success.

Areawide IPM programs play a crucial role in regional pest

suppression by managing pest populations across large areas, rather

than isolated fields. This coordinated approach is particularly

effective for highly mobile pests, preventing their movement

between untreated areas and reducing overall infestation levels.

The U.S. Boll Weevil Eradication Program (1998–2000), is a classic

example demonstrating the success of areawide IPM programs (92).

This collaborative effort among researchers, government agencies,

and cotton producers led to the widespread adoption of Bt cotton

and the targeted use of malathion to control boll weevil

(Anthonomus grandis Boheman). Other notable examples of area

wide pest management include Asian citrus psyllid (Diaphorina

citri Kuwayama) a vector of citrus greening disease (“Candidatus

Liberibacter” spp.) (93), and a program for managing glassy-winged

sharpshooter (Homalodisca vitripennis [Germar]), a vector of

Pierce’s disease (Xylella fastidiosa Wells et al.) (94). These

programs highlight the effectiveness of implementing integrated

control strategies on a larger scale to enhance pest management,

leading to improved regional management. This approach is

expected to positively impact eco-efficiency by minimizing

pesticide resistance and promoting IPM strategies.

Overall, sustainability in crop pest management is shaped by a

complex interplay of pesticide regulations, market dynamics, and

pest pressures. Certain factors, such as GE crops, can have both

positive and negative impacts, demonstrating improvements in

some cases while leading to unintended challenges in others. The

most effective path to sustainability lies in an integrated approach to

pest management, recognizing that no single solution serves as a

universal fix. This underscores the critical need for ongoing research

and Extension efforts to advance innovative pest management

technologies and strategies that address evolving challenges.

However, these efforts can only succeed with continued support

and funding, ensuring that sustainable solutions remain a priority

in agricultural systems.

The eco-efficiency index developed in this study provides a more

holistic and practical framework for tracking agricultural sustainability

compared to traditional methods. Unlike approaches that focus solely

on the volume of pesticides applied, this index incorporates a toxicity

component, enabling a more nuanced evaluation of environmental

impacts. By integrating toxicity values across multiple species groups,

the index delivers a comprehensive assessment of the ecological effects

of pesticide use, ensuring the diverse impacts on ecosystems are

thoroughly considered. While surveys of IPM practices (28, 95) offer

valuable insights into sustainable pest management strategies, they do

not directly quantify pesticide-related environmental externalities. The

eco-efficiency index addresses this gap by providing metrics that

capture these externalities, offering a robust tool for evaluating

sustainability. Moreover, the index’s user-friendly design enhances its
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accessibility to a wide range of stakeholders, including policymakers,

researchers, and agricultural practitioners. This accessibility ensures

that the tool can support informed decision-making and drive

advancements in sustainable agricultural practices.

A key strength of the eco-efficiency index is its integration of

crop production data, enabling the assessment of sustainability

improvements independent of production changes. This ensures

that reductions in pesticide use reflect genuine advancements in

management practices rather than declines in agricultural output.

Additionally, the use of Toxicity Level values provides a

standardized, scientific benchmark for interpreting pesticide

toxicity (9, 42) with greater complexity than simpler metrics such

as the EU’s Harmonised Risk Indicators (96). This approach

enhances the reliability and comparability of eco-efficiency

assessments across various crops and regions, fostering data-

driven decision-making. The adoption and measurement of eco-

efficiency scores in U.S. crops could address a critical limitation in

measuring IPM progress and impacts (24). Specifically, the eco-

efficiency index has the potential to serve as a valuable metric within

broader sustainability frameworks. For instance, a widely

recognized agricultural sustainability system currently evaluates

climate, soil, energy, water, and land use for major crops but

omits pesticide use (97). Integrating an eco-efficiency index into

such systems would fill this gap, offering a more comprehensive

evaluation of agricultural sustainability.

A notable limitation of this analysis is its dependence on

relatively coarse production and pesticide use data sourced from

NASS and USGS. This is a common challenge in eco-informatic

studies that rely on large datasets from multiple sources, which may

lack uniformity and completeness (98). While these datasets offer

valuable insights into national trends, their temporal and spatial

resolutions are insufficiently detailed to capture localized or crop-

specific variations in pesticide application. This lack of detail may

obscure critical differences in pest pressures, management practices,

and environmental conditions across regions or even individual

fields. The limited accuracy of pesticide data has been recognized

as a constraint for regulatory decision-making, particularly in

the context of the EPA’s Endangered Species Act (ESA)

implementation (99). Additionally, the broad crop groupings used

in this study, though necessary for data aggregation, further mask

variability among specific crops within each category. For instance,

grouping vegetable and fruits combines a wide array of crops

with distinct pesticide use profiles, potentially concealing

crop-specific eco-efficiency trends. Addressing these limitations in

future studies would enhance the precision and applicability of

eco-efficiency assessments.

Another limitation of this study is the incomplete availability of

Toxicity Level values for all active ingredients. Toxicity Levels are

essential for assessing pesticide toxicity and environmental impact,

but data gaps for certain pesticides require approximations or

exclusions, thereby reducing the precision of the eco-efficiency

estimates. While our analysis focused on terrestrial arthropods, it

did not specifically examine pollinators due to a lack of Toxicity
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Level data. However, this could be an area of focus for future studies.

Notably, a recent study investigated the toxicity of pesticides on

pollinators in corn and soybean systems, incorporating an eco-

efficiency analysis to evaluate the environmental impact (100).

To address these limitations, future efforts should prioritize the

development of Toxicity Levels for a broader range of pesticides to

enhance the robustness of eco-efficiency calculations. Creating a

publicly accessible database of Toxicity Levels would also promote

transparency and facilitate the wider application of eco-efficiency

indices. While the Toxicity Levels used in this study are based on

official U.S. EPA databases, the agency has not established

Regulatory Toxicity Levels for agricultural pesticide use. Although

the eco-efficiency index developed here can be used independently

of such endorsements, input from the EPA would add significant

value and credibility to the process, further improving the utility

and acceptance of the index.

A notable omission in this analysis is the lack of consideration

for pesticide persistence and exposure in the environment. While

toxicity is a critical factor in assessing pesticide impact, persistence

(the duration a pesticide remains active in the environment) and

exposure (the frequency and extent to which non-target species,

including humans, encounter the pesticide) are equally important

for evaluating environmental and human health risks. Research has

shown that Toxicity Level values are valid for assessing toxicological

risks under varying degrees of exposure refinement (44). The mass

of applied pesticides is a simplistic form of exposure level and could

be refined in future studies. Exposure risks, particularly for

agricultural workers, have been substantially reduced over the

period of this study through advancements such as enclosed

tractor cabins with filtration systems, enclosed mixing systems

and standards to protect agricultural workers (101). Similarly,

agricultural producers now widely adopt drift and runoff

mitigation practices, including vegetation buffer strips, drift-

reducing adjuvants, swath control, and improved runoff

management strategies. Compliance with EPA ESA regulations

often necessitates that producers adopt specific mitigations with a

point-based system if they are in Pesticide Use Limitation Areas

(102). However, persistent pesticides with low acute toxicity can

accumulate in ecosystems, causing long-term environmental harm,

while highly toxic pesticides applied in localized areas may result in

minimal exposure to non-target species (103, 104). Incorporating

persistence and exposure into the eco-efficiency index would

provide a more comprehensive evaluation of pesticide impacts

and align the analysis more closely with real-world conditions,

enhancing its utility for sustainability assessments. Future iterations

of the index could incorporate other factors impacting pesticide use

including land use (97) as well as carbon and energy use (105).

The simplified index developed in this study has several

limitations but serves as a valuable proof of concept,

demonstrating the potential of eco-efficiency metrics to evaluate

the environmental impacts of pesticide use across major crops and

species groups. By utilizing publicly available datasets and

incorporating species-specific metrics, this study establishes a
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framework for analyzing broad eco-efficiency trends and

identifying opportunities for targeted improvements. The findings

align with established research, highlighting the positive effects of

genetically engineered crops and IPM practices. At the same time,

they underscore persistent challenges, such as herbicide resistance

and the externalities of pesticide use, including runoff and drift.

These issues are increasingly scrutinized under the EPA’s ESA

implementation reflecting their critical role in shaping modern

pesticide regulations (106). Another limitation is the potential for

incentive misalignment, wherein improvements to the Eco-

efficiency Index may be achieved through superficial or

administrative changes, such as switching to pesticides with lower

toxicity but that are more persistent in the environment, without

delivering meaningful reductions in overall environmental impact.

As noted earlier, there are limitations to the statistical analysis

used to quantify trends in the eco-efficiency indices of different

lifeforms by crop. The primary limitation is that the analysis

assumes linear trends, while some data exhibit nonlinear patterns

or exogenous shocks. Another key limitation lies in the estimation

of the standard error, which is used to assess the significance of the

slopes. Standard bootstrap methods could not be applied due to the

constraint that the regression intercept must be zero. Instead, a

modified version of the standard error estimation for ordinary least

squares regression was employed. However, the impact of this

modification on the accuracy of the standard error estimate

remains unclear. Additional research is required to evaluate the

effects of this approach and to develop improved methods for

estimating the standard error under these specific constraints.
5 Conclusion

This study highlights the potential use of the eco-efficiency

indicator presented in this work as a tool for assessing the

environmental impacts of pesticide use. By refining the data

sources and expanding the scope to include persistence, exposure,

and additional crop-specific details, future research can build on this

framework to provide more nuanced and actionable insights.

Expanding the scope to include specific pesticide active ingredients

used in genetically modified crops and addressing data gaps in

Toxicity Level values would also enhance its applicability and

precision. These improvements will be essential for guiding policy

decisions, prioritizing research and extension efforts, optimizing pest

management strategies, and advancing sustainable agriculture. Such

an effort would require a multidisciplinary team and a diverse group

of stakeholders to successfully develop the index. One valuable forum

for stakeholder engagement is the Pest Management Strategic

Plan workshops, which brings together growers, consultants,

Extension professionals, and regulators (107). These workshops

comprehensively review all aspects of pest management of a

specific crop and region. To promote broader adoption of IPM, we

recommend incorporating eco-efficiency indices and performance

targets as practical tools to inform pesticide decision-making,

encourage the judicious and selective use of pesticides, and

benchmark progress toward risk reduction goals.
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