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corymbosum) in the central
coast of Peru
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Lady Susan Perez-Fuentes1, Viviana Domı́nguez2

and Wilmer J. Cuellar2*

1Laboratorio de Entomologı́a y Manejo Integrado de Plagas, Instituto Nacional de Innovación Agraria
(INIA), Lima, Peru, 2Virology and Crop Protection Research Area, Cassava, Program, Crops for
Nutrition and Health, International Center for Tropical Agriculture (CIAT), The Americas Hub,
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Blueberry cultivation has recently become a rapidly expanding export industry in

Peru. With few to no official records of phytosanitary problems up to date.

Nevertheless, as observed in other major blueberry producer countries, pests

occurrences have been already reported. This study presents a comprehensive

biological and molecular characterization of a novel blueberry pest, identifying it

as a member of the Tortricidae family in the genus Platynota. The insect’s average

life cycle was determined to be 46.3 days for males and 48.6 days for females,

with the larval stage being the longest (25.4 days on average), and the most

destructive due to its feeding behavior, which significantly damages buds and

fruits. Morphological analysis of the genitalia, along with a comparison of its

complete mitochondrial DNA, further supports the conclusion that this pest is a

new species. These findings represent the first report of a tortricid pest affecting

blueberries in Peru and offer crucial insights for developing effective pest

management strategies, contributing to the sustainable growth of blueberry

production and exports in the region.
KEYWORDS
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1 Introduction

Blueberries (Vaccinium corymbosum) have emerged as a high-value crop in the

international market, mainly due to their exceptional nutritional profile and high

antioxidant content. Peru has positioned itself as a key global supplier, cultivating 16,536

hectares of blueberries, making it the largest producer in Latin America and the third

largest worldwide, after Canada and the United States (1). The industry’s rapid expansion
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has been driven by the introduction of new cultivars specifically

adapted to Peru’s warmer climate, enhancing both yield and fruit

quality (2). In response to rising global demand, blueberry

cultivation in the Lima region alone grew from 120 hectares in

2016 to 1,453 hectares within six years. During the 2021–2022

season, Peru produced approximately 220,000 tons of blueberries

(3), successfully expanding exports to the Asian market (4, 5). This

remarkable growth underscores Peru’s increasing role in the global

blueberry industry and highlights the country’s potential for further

market diversification.

A major limitation in large-scale blueberry production is pest

infestations, which impact both yield and product quality. To date,

no pests have been officially reported on blueberries in Peru.

However, in other countries, members of the family Tortricidae

have been documented affecting this crop (6, 7). This family is one

of the most diverse groups of Lepidoptera, comprising

approximately 10,000 species across three subfamilies

(Chlidanotinae, Tortricinae, and Olethreutinae). In the

Neotropical region, tortricid surveys have been conducted in

countries such as the Dominican Republic, Venezuela, Chile,

Ecuador, Colombia, and Peru (8–10). Several species within this

family have been reported in fruits, particularly berries. Despite the

high diversity of tortricids associated with berries and the economic

importance of these crops, knowledge of their interactions with host

plants remains limited (11, 12). It is also noteworthy that besides the

cosmopolitan nature of the family Tortricidae, members of genus

Platynota Clemens, 1860, are restricted to the Western

Hemisphere (9).

Molecular techniques have revolutionized species identification,

particularly in molecular and precision entomology. Mitochondrial

DNA (mtDNA) exhibits low recombination rates and contains

hypervariable regions flanked by highly conserved sequences (13,

14). This unique structure facilitates the differentiation of closely

related species while enabling the design of universal primers for

broad taxonomic applications (15, 16). Among mitochondrial

markers, the cytochrome oxidase I (mtCOI) gene is widely used

for species identification. It serves as a basis for DNA barcoding, a

method proposed by Hebert in 2003 (17), which provides a rapid

and accurate approach to species discrimination (18). Beyond

single-gene barcoding, complete mitochondrial genomes provide

higher taxonomic resolution by incorporating additional genetic

information. In insects, their small size comprising 13 protein-

coding genes, 22 transfer RNA genes, and two ribosomal RNA

(rRNA) genes (19), coupled with high copy numbers, makes them a

powerful tool for genomic studies (20, 21). Moreover, advances in

sequencing technologies have further expanded access to whole

mitochondrial genome (mitogenome) data, facilitating phylogenetic

and evolutionary analyses (14, 22).

In Peru, where blueberry cultivation is rapidly expanding, few

official reports exist of insect pests affecting this crop. We present

here the results of a recent survey carried out in 2022 in

collaboration with the National Institute of Agricultural

Innovation (INIA) of Peru in the North of Lima, with the goal to

identify emerging pests of blueberry.
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2 Materials and methods

2.1 Study area

We conducted the pest damage on blueberry in the Integrated

Pest Management (IPM) Entomology Laboratory of INIA located at

the Donoso Agrarian Experimental Station in Huaral, Peru (11°52’

N, 77°23’ E) at an altitude of 180 m.a.s.l. The blueberry crop was

cultivated using a high-bed (ridge) system, with beds raised 60 cm

above ground level. The plants were grown in pot bags filled with

substrate, spaced 0.5 meters apart within rows, and arranged in

rows with 2-meter spacing.
2.2 Damage assessment

To assess pest damage, periodic evaluations were carried out on

20 plants in three experimental fields at three phenological stages of

the blueberry crop. These assessments focused on the presence of

pests on leaves, shoots, and fruits, providing a comprehensive

analysis of pest-related damage throughout the different growth

phases of the crop. At the budding stage, the number of affected and

healthy shoots and leaves was recorded to calculate the percentage

of damage. Similar evaluations were conducted at the flowering

stage (affected and healthy flowers) and fruiting stage (damaged

fruits during development and at five harvests). Percentage damage

was calculated for each stage, and mean values across replicates

were reported. Standard deviations (sd) were calculated using R

software (v4.3.0). Data were presented as mean ± sd.
2.3 Taxonomical and biological
characterization

Larvae collected in the field were reared under laboratory

conditions and two adult specimens (one male and one female)

were selected for further analysis. The specimens were sent to the

Museo de Entomologıá Klaus Raven Büller at Universidad Nacional

Agraria La Molina, Lima, Peru (MEKRB) for morphological

identification based on wings and genitalia characteristics. Genital

structures were examined through morphological comparisons

and identified using taxonomic keys (9, 23). Digital images

were taken using a Canon S50 camera mounted on a Leica

MZ6 stereomicroscope.

To study the biological cycle of the insect, specimens were

collected at various developmental stages (adult, egg, larva, and

pupa). These specimens were reared in the laboratory under

controlled conditions temperature of 25 ± 2°C, relative humidity

RH of 70 ± 10%, and 14 h photoperiod. The duration of each

developmental stage was evaluated by monitoring 10 individuals

across three experimental replicates. Larvae were individually

maintained in Petri dishes and developmental progress was

recorded at daily intervals. The onset of larval development was

marked by egg hatching and the emergence of the first instar (L1).
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Subsequent instars were identified by observing the exuviae and

cephalic capsules, which served as indicators of transitions between

stages until the final molt. In addition, body length was measured

using an ocular micrometer mounted on a stereoscopic microscope.

After emergence, adult Platynota sp. individuals were classified at

the genus level based on wing size and coloration. Observations

were conducted on 10 pairs of individuals for each species. Daily

assessments included longevity, fecundity, pre-oviposition period,

oviposition period, and sex ratio. The pre-oviposition period was

defined as the number of days between adult emergence and the

deposition of the first egg. Females were observed daily to record the

onset and duration of egg laying, allowing the estimation of the

oviposition period, total oviposition duration, and daily fecundity.
2.4 Molecular characterization

For molecular characterization, insects were preserved in 70%

ethanol and stored at 4°C. After ethanol removal, samples were

placed directly into PCR tubes (24). Each insect underwent three

methodological replicates. DNA amplification targeted the mtCOI

region of ~700 base pairs (bp) using universal primers LCO1490

(5′-GGTCAACAAATCATAAGATATTGG-3′) and HCO2198 (5′-
TAACTTCAGGGTGACCAAAAAATCA-3′) (25). The PCR mix

was prepared using 2 ml of DNA, 12.5 ml of GoTaq Green Master

Mix 2X (Promega, USA), 0.5 ml of each primer (10 mmol) and

completed with nuclease free water to a final volume of 25 ml. PCR
was performed in a MiniAmp™ thermal cycler with negative

controls included in all runs, using the following program: initial

denaturation for 40 s at 95°C, followed by 35 cycles of denaturation

for 40 s at 95°C, annealing for 40 s at 54°C and extension for 60 s at

72°C, and a final extension for 10 min at 72°C. PCR products were

visualized by 1% agarose gel electrophoresis stained with SYBR®

Safe DNA gel stain 10,000 X (Invitrogen, USA).

DNA sequence analysis was carried out to improve taxonomic

resolution and classification accuracy. Total DNA was isolated from

the head of a field-collected larva (5th instar) using the Dellaporta

protocol (26). DNA concentration and quality were measured using

a Thermo Scientific NanoDrop 2000 spectrophotometer (260/280

and 230/260 nm), and DNA integrity was assessed by 1% agarose

gel electrophoresis stained with SYBR® Safe DNA gel stain 10,000 X

(Invitrogen, USA). Good-quality DNA was then used for long-

read sequencing.
2.5 Sequencing and bioinformatics analysis

The PCR library was prepared using Oxford Nanopore

Technologies (ONT) sequencing (SQK-LSK110) and barcode kits

(EXP-NBD196), following manufacturer’s protocols. The final

library was loaded onto a Flongle flow cell (FLO-FLG110) and

run for 24 h. A total DNA library was prepared with the same

sequencing kit, loaded onto a R9.4.1 flow cell (FLO-MIN106) and

run for 72 h. Sequencing was conducted on the MinION device
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(Oxford Nanopore Technologies, UK) using the ONT MinKNOW

Software. Basecalling was performed with Guppy v6.4.2 in high-

accuracy mode (hac) on the raw sequence data, and only high-

quality sequences with a Phred score greater than 10 were used for

the analysis.

The consensus sequence of each PCR product was assembled

with Amplicon_sorter (27) and refined by aligning raw reads to the

consensus with Minimap2 v2.11 (28). Subsequently, SAM-BAM

conversion was performed with SAMtools v1.3.1 (29). Polishing

was conducted with Pilon v1.24 and Medaka v1.2.4, and coverage

was assessed using Qualimap v2.2.2 (30). The Barcode of Life Data

System (BOLD) identification engine accessed through the BOLD

Systems V3 website (31) was used to identify the sequences. This

tool allowed us to compare our sequences against the entire

International Barcode of Life (iBOL) database, ensuring a

comprehensive taxonomic assessment. We selected every mtCOI

barcode record with stringent selection parameters, including

species-level barcode records from the iBOL database. Only

sequences with confirmed species-level identification and a

minimum length of 500 bp were considered. The identification

engine generated a list of up to 100 closest matches, from which we

selected the top 20 records with the highest percentage of identity

and bp overlap for further analysis. In addition to BOLD, sequence

identification was performed using BLASTn (e-value < 0.05) against

the NCBI non-redundant (nr) database to further validate the

taxonomic placement. For the phylogenetic analysis, we used 18

sequences obtained from GenBank, including 17 sequences from

the subfamily Tortricinae (representing the tribes Sparganothini,

Cochylini, and Archipini), which were identified as the closest

specimens based on BOLD data, and one sequence from

Brachycentrus kozlovi (Trichoptera: Phryganeoidea) as an

outgroup. The analysis was performed using the Neighbor-Joining

(NJ) method in MEGA 11 (32), with 1,000 bootstrap replicates to

assess the robustness of the tree topology and provide strong

support for most nodes.

The DNA library was assembled using Flye v2.9 (33). The

mitochondrial contig was identified assessing the presence of cox1,

nad1 and atp6 genes by BLASTn (e-value < 1e−25). Full annotation

was performed with MITOS using Invertebrate Mitochondrial genetic

code (RefSeq 89 Metazoan) (34) and coverage was calculated using

Qualimap v2.2.2 (30). The mitogenomic features of Platynota sp. Per1

were compared with mitogenomes of 22 other tortricid species

available in GenBank, using BBmap v38.18 (35). Among these,

three species belonged to the tribe Cochylini, one to Cnephasini,

three to Tortricini, thirteen to Archipini, and one to Ceracini. No

available sequence data were found for the tribe Sparganothini.

Eogystia hippophaecolus and Zeuzera multistrigata were selected as

outgroup species. Nucleotide sequences were aligned using MAFFT

v7.526 on the Galaxy platform (https://usegalaxy.eu/, accessed on 24

February 2025). Phylogenetic reconstruction was performed using

the Maximum Likelihood (ML) method in IQ-TREE (http://

www.iqtree.org/, accessed on 24 February 2025), employing the

General Time Reversible model with a gamma distribution (GTR

+G) and bootstrap support based on 1,000 replicates.
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3 Results

3.1 Pest damage on blueberry crops

The leaf-rolling larva was identified as a significant pest

affecting blueberry crops throughout the vegetative, flowering,

and fruiting stages. Larval damage was characterized by surface

scraping on leaves and buds, leading to irregular development

patterns and reduced photosynthetic capacity. Additionally, larvae

produced silk threads to bind leaves together, creating protective

shelters that facilitated pupation and increased survival rates. The

most severe damage was observed on the fruits, where larvae

penetrated the berry skin, creating entry points for secondary

fungal and bacterial infections, and causing premature rotting and

detachment from the plant (Figure 1).

Damage assessments conducted across three key developmental

stages of blueberries (budding, flowering, and fruiting) revealed the

highest damage occurring during the budding stage, with an average

of 20.4 ± 5.9%. This was followed by the fruiting stage, where
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damage averaged 12.6 ± 5.2%. The lowest damage was recorded

during the flowering stage, with an average of 7.4 ± 3.6% (Figure 1D,

Supplementary Table 1, Sheet 1). Additionally, damage levels varied

throughout the harvest season, ranging from a minimum of 9.9 ±

2.5% in the early harvests to a peak of 13.1 ± 2.7% in the final

harvests (Figure 1E, Supplementary Table 1, Sheet 2). These

findings underscore the progressive increase in pest damage over

time and emphasize the need for targeted early management during

critical crop development periods.
3.2 Wing patterns and genital morphology

Wing patterns and adult morphology of moths exhibited a

characteristic brown and ochre coloration interspersed with dark

oblique bands (Figures 2B, C). The forewings were slightly

elongated, with a curved termen and a reticulated scale pattern. The

hindwings were broader, paler, and displayed a translucent

appearance with a well-defined fringe along the posterior margin
FIGURE 1

Quantification of damage caused by Patynota sp. Per1 to blueberries in Huaral Province, Peru. (A) Leaf damage. (B) Buds damage. (C) Immature fruit
damage. (D) Percentage of damage caused by Platynota sp. at three critical stages of blueberry plant development: budding (green), fruiting (purple)
and blooming (red). (E) Percentage of blueberry fruist damage caused by Platynota sp. Per1 in 5 harvest batches (purple gradient).
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(Figure 2B). Genitalia morphology in males exhibited a broad,

membranous, and slightly asymmetrical valvae, with fine setae along

the margins. The uncus was hook-shaped and well-sclerotized,

providing structural support. The phallus was elongated and slightly

curved, with a visible vesica, while the transtilla formed a reinforcing

structure connecting the valvae. In females, the genitalia featured a

well-developed and sclerotized sterigma structured around the genital

opening (Figure 2D). The ductus bursae were elongated and

membranous, leading to large, rounded corpus bursae containing

visible signa. The ovipositor lobes were setose, facilitating egg

deposition. These are characteristic traits of the Platynota

genus (Figure 2A).

Based on the above-described morphological characteristics,

specimens collected from affected V. corymbosum plants were

compared with available Platynota morphological information

including members of species P. rostrana, P. flavedana and P.

sultana and subsequently were classified as members of the family

Tortricidae, genus Platynota. Although closer examination of

external and genital structures revealed distinct diagnostic

features, it was not possible, using the available taxonomy keys (9,

23), to classify these Platynota specimen Per1 to the species level.
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3.3 Biological cycle

The life cycle of Platynota sp. Per1 was completed in

approximately 47 ± 5.7 days for males and 49 ± 5.7 days for

females, under laboratory conditions. The embryonic stage lasted

8.4 ± 0.5 days, followed by a larval stage (I, II, III, IV, V, VI) of 25.4

± 1.2 days, during which the larvae exhibited leaf rolling behavior

and actively fed on blueberry foliage. Pupation occurred after

larval development, lasting 6.8 ± 0.8 days, resulting in the

emergence of the adult. Adult longevity varied between sexes:

males survived 5.9 ± 0.8 days and females 8.2 ± 0.8 days.

Reproductive parameters we re as follows: pre-oviposition

period of 1.6 ± 0.5 days and an oviposition period of 8.4 ± 0.5

days; females laid an average of 169.1 ± 37.6 eggs Regarding

morphological dimensions, pupal body length and head area grew

from 2.0 ± 0.1 and 0.3 ± 0.0 mm, to 14.4 ± 0.6 and 1.2 ± 0.0 mm

between the first and fifth instars, respectively. Pupae showed an

average length of 6.9 ± 0.3 mm and a head area of 2.1 ± 0.1 mm. In

adults, body size reached a length of 9.8 ± 0.5 mm, with a head

width and wing extension of 1.1 ± 0.1 and 17.1 ± 0.8 mm,

respectively (Figure 3, Table 1).
FIGURE 2

(A) Genitalia of a male Platynota sp. Per1. ae, aedagus; cu, cucullus; gn, gnatos; jx, juxta; sa, sacculus; u, uncus; v, vinculum. (B) Wings of the female.
(C) Forewing of the male, showing the color pattern of Platynota sp. Per1. (D) Genitalia of a female Platynota sp. Per1. aa, anterior process; ap,
posterior process; cb, body of the bursa; ds, seminal duct; pa, anal papilla.
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3.4 Sequencing results and phylogenetic
analysis

Using ONT PCR data, a high-quality 666 bp consensus

sequence for the mtCOI region was obtained, with an average

coverage of approximately 3,100x. According to taxonomic

classification performed using BOLD system, identified the

sequence as belonging to the family Tortricidae, subfamily

Tortricinae, and genus Platynota.

To ensure accurate classification, the 20 most similar mtCOI

sequences available in BOLD were selected as references. All

reference sequences corresponded to specimens within the same

genus and family, confirming the taxonomic placement of our

specimen (Supplementary Table 3). Among these, the sequence

with the highest percentage of identity (99.4%) belonged to an

invasive specimen reported from Manabı,́ Ecuador (classified as

Platynota sp.). This high degree of genetic similarity, combined with

the geographic proximity of Ecuador and the central coast of Peru,

suggests a potential shared origin.

Phylogenetic analysis performed to further validate the

taxonomic classification, placed our Platynota specimen within a

well-supported clade of the tribe Sparganothidini, closely related to

other species within the Platynota genus (92% bootstrap support

value). This finding corroborates the classification by the BOLD

system and confirms the placement of the specimen within the

genus Platynota. Altogether these analyses failed to assign our

specimen to the species level, suggesting it could belong to a yet

undescribed species in this genus.
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The complete mitogenome of Platynota sp. Per1 was successfully

assembled using ONT sequencing (Figure 4A), yielding a 16,441 bp

circular, double-stranded DNA molecule with a coverage of 342x,

supported by 5,634,183 of mapped reads. The mitogenome exhibited

a highly skewed nucleotide composition, with adenine (A)

accounting for 49.3%, thymine (T) for 33.2%, guanine (G) for

6.3%, and cytosine (C) for 11.3%, resulting in a remarkably high

AT content of 82.5%. Annotation of the genome identified a total of

37 genes, including 13 protein-coding genes (PCGs). The coding

sequences ranged from 165 bp (atp8) to 1,791 bp (nad5), with genes

such as cox1, cox2, cox3, nad3, and nad6 nad1, nad2, nad4, nad4L,

nad5, atp6, atp8, and cytB were located on the H-strand, except nad4,

nad4L, and nad5, which were on the L-strand, 22 transfer RNA

(tRNA) genes ranging in size from 56 to 71 bp genes, and two rRNA

genes large with 1,349 bp and small 767 bp. Of these, 23 genes were

located on the primary coding strand (J-strand or + strand), while the

remaining 14 genes were positioned on the secondary coding strand

(N-strand or − strand). The annotated mitogenome and associated

raw sequencing data have been deposited in NCBI GenBank under

accession number PV282395 (mitogenome) and SRX27742806 (SRA

data), respectively.

The phylogenetic tree constructed from the complete

mitogenome exhibited high robustness, with bootstrap

percentages exceeding 90% in all clades, allowing clear

classification by tribe (Figure 4B). The tribe Archipini formed two

well-supported clades and had the most extensive mitogenomic

data available at NCBI. In contrast, no mitogenomic information

was found for the genus Platynota or its corresponding tribe,
FIGURE 3

Biological cycle of Platynota sp. Per1. The graph shows the different developmental stages described in this work. The insect completes its cycle in
less than 50 days.
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Sparganothidini. As a result, while Platynota sp. Per1 specimen

belongs to the family Tortricidae, subfamily Tortricinae, its

phylogenetic placement at the genus or species level remains

unresolved. This high-quality mitogenome assembly represents

the first complete mitogenome reported for genus Platynota and

the tribe Sparganothini, providing a critical genomic resource for

future studies on the evolutionary biology, phylogenetics, and

population genetics of this genus. Additionally, it serves as a

foundation for the development of molecular tools for species

identification and advances our understanding of the genomic

diversity within the Tortricidae family.
4 Discussion

In this study, we present evidence of insect damage in

blueberries cultivated in Peru caused by a new tortricid pest of

genus Platynota. The results indicate that the greatest damage of

this insect on blueberry occurs during the budding stage, followed

by the fruiting stage, indicating that early vegetative and

reproductive stages are particularly vulnerable to tortricid pests

due to the availability of tender plant tissues and their high nutrient

content (36). Indeed, mature blueberry plants appear to tolerate

pest infestations without significant damage, whereas younger

plants can be completely defoliated (37). Additionally, reports on

this crop indicate that fruit quality depends on a balance between

foliage and fruit set; therefore, feeding damage caused by tortricids

could negatively impact both fruit weight (grams per fruit) and

overall yield (kilograms per tree) (38). This aligns with the

observations made in this study (Figure 1). In addition, the

higher damage levels recorded during the final harvest suggest

that Platynota sp. populations may increase as the growing season

progresses. Similar trends have been observed in other tortricid

pests, where population densities escalate with prolonged crop

availability under favorable climatic conditions (39). This

highlights the importance of continuous monitoring and early

intervention strategies to prevent pest outbreaks before they reach

economically damaging levels (40, 41).

Wings and genitalia visual analysis enabled the identification of

this blueberry pest as belonging to the family Tortricidae, genus

Platynota. Taxonomic classification within this family relies on

distinctive morphological traits, including wing shape and pattern,

as well as the structure of reproductive organs, which have proven

to be reliable tools for species identification (7, 12, 42) (Figure 2).

Platynota species known to affect fruit crops conserve brown and

ochre forewing patterns, a reticulated scale arrangement and a

characteristic venation, particularly the presence of forked R3+R4

veins (39, 43). The adaptation of cryptic coloration as a defense

behavior mechanism likely contributes to the persistence of

infestations by minimizing predation risk, as previously observed

in tortricid pests affecting fruit crops (44). Similar characteristics

have been reported in P. idaeusalis, a pest of apple orchards in

North America, which also exhibits cryptic coloration and distinct

forewing markings that aid in camouflage (45). Further evidence

from genitalia morphology supports the taxonomic placement of
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the specimens studied within the genus Platynota. The male

genitalia, particularly the broad valvae, hook-shaped uncus, and

elongated phallus (Figure 2), exhibit similar diagnostic traits

previously described in Platynota sultana, a major pest of citrus

and grapevines (46). Likewise, the presence of sclerotized structures

in the female corpus bursae and the setose ovipositor lobes are

characteristic of tortricid reproductive morphology (47). These

findings reinforce the use of genitalia morphology as a reliable

tool for species differentiation within Tortricidae, as highlighted in

studies on P. rostrana and other closely related species (7).

The results confirm that Platynota sp. Per1, detected in

Peruvian blueberry crops, exhibits a biological cycle characteristic

of its genus, with an average duration of 47 ± 2.5 days. This is

consistent with reported life cycles of other Platynota species,

ranging from 38 days in P. rostrana to 46 days in P. stultana.

Adult longevity varied by sex; a trait previously observed in P.
TABLE 1 Summary of biological and morphological features of
Platynota sp. Per1 under laboratory conditions.

Biological
Parameters

Traits Min Max Mean sd

Embrionic/Eggs
(days)

8 9 8.4 0.5

Larval (days) 24 27 25.4 1.2

Pupa (days) 6 8 6.8 0.8

Pre-oviposition
(days)

1 2 1.6 0.5

Oviposition (days) 8 9 8.4 0.5

Longevity (days)
Female 7 9 8.2 0.8

Male 5 7 5.9 0.9

Fecundity (eggs) 93 202 169.1 37.6

1st instar (mm)
Body length 1.9 2.1 2.0 0.1

Cephalic area 0.3 0.3 0.3 0.0

2nd instar (mm)
Body length 4.8 5.3 4.9 0.1

Cephalic area 0.4 0.4 0.4 0.0

3rd instar (mm)
Body length 7.4 8.4 8.0 0.4

Cephalic area 0.7 0.7 0.7 0.0

4th instar (mm)
Body length 1.0 12.4 10.7 3.4

Cephalic area 1.1 1.1 1.1 0.0

5th instar (mm)
Body length 13.3 15.1 14.4 0.6

Cephalic area 1.2 1.2 1.2 0.0

Pupa (mm)
Body length 6.5 7.4 6.9 0.3

Cephalic area 1.9 2.2 2.1 0.1

Adult (mm)

Body length 10.5 8.8 9.8 0.5

Head width 1.2 1.0 1.1 0.1

Wing
extension

18.2 16.0 17.1 0.8
frontie
Full data described in Supplementary Table 2.
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stultana (48, 49). The average adult length (9.8 mm), aligned with

the general size range of Platynota species, which are typically less

than 12 mm (50). The pest undergoes well-defined developmental

stages, with the larval phase being the longest, consisting of five

instars, a pattern commonly observed in the genus. Both larval and

cephalic sizes were consistent with previously reported data for

Platynota. Regarding reproduction, fertilized females laid

significantly fewer eggs (an average of 169 versus 283–308 eggs)

than is reported for other Platynota species, although egg mass

averages were similar (48, 49) (Table 1). It is important to note that

these observations were made under laboratory conditions and may

differ slightly from field conditions due to biotic factors (parasitoids,

predators, pathogens) and abiotic influences (precipitation,

temperature). Additionally, the life cycle of Platynota species may

vary depending on the host plant, as observed in other studies

(48, 51).

The use of ONT for sequencing both the COI region and the

complete mitogenome from total DNA demonstrated high

efficiency, achieving coverages of 3,100x and 342x, respectively.

These values exceed the 100x threshold, which is widely regarded as

the minimum coverage required for reliable DNA barcode analysis

in laboratory settings (52–54). The mtCOI region is well established

as a reliable and accurate marker for insect species identification

(17, 18). Furthermore, this study demonstrates the feasibility of

molecular classification without the need for nucleic acid extraction

in larvae of the genus Platynota, offering a rapid and efficient

alternative for such analyses. This approach is consistent with

previous findings in Bemisia tabaci (24). Phylogenetic analysis

using COI indicated that the studied specimen shares 92% genetic
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similarity with another member of the genus Platynota (family

Tortricidae, tribe Sparganothidini) (Figure 5).

The sequenced mitogenome was within the size-range of other

available complete mitogenomes of tortricids, ranging from 15,151

to 20,245 bp, with a typical genetic content, including 13 PCGs, 22

tRNA genes, two rRNA genes (12S and 16S), which is consistent

with the ancestral pattern of Lepidoptera (21, 55). Furthermore,

composition analysis indicated that the sequence was significantly

biased towards adenine (A) and thymine (T), with an AT content of

82.5%, the control regions were all biased towards AT in nucleotide

composition, which is consistent with most previously reported

insect mitogenomes (21). The phylogenetic analysis performed at

the mitochondrial level did not allow us to group our insect within

any of the clades formed in the phylogenetic tree, due to the lack of

available mitogenome data for members of the Tortricidae family

(Figure 4). Currently, mitogenomic information is only available for

six of the approximately 19 reported tribes (56). One of the tribes

with the most information available is the Archipini tribe, which

includes numerous species of global economic importance, with

around 1,709 recognized species (23). mtDNA is not only a

powerful tool for insect taxonomic and evolutionary classification

but also plays a crucial role in insect adaptation to environmental

changes, including insecticide resistance (57, 58). Several

insecticides target mitochondrial functions, such as oxidative

phosphorylation, disrupting energy metabolism (59). Mutations

in mtDNA can alter these functions, leading to insecticide

resistance by reducing the binding affinity of insecticidal

compounds or enhancing metabolic detoxification pathways (60,

61). Given these implications, mitochondrial genetic data are
FIGURE 4

Map of the mitogenome of Platynota sp. Per 1 and its phylogenetic relationship with other mitogenomes of the Tortricidae family. (A) Platynota sp.
Per1 mitogenome. Protein coding genes (orange) ribosomal genes (pale orange) and transfer RNA (tRNA) (red) are shown with standard
abbreviations. The line inside the circle (blue) indicates the distribution of AT content. (B) Phylogenetic distances between mitogenomes of Platynota
sp. Per1 and other members of the Tortricidae family. The tree was constructed using the ML method based on the GTR+G evolutionary model and
a bootstrap support model based on 1,000 replicates.
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essential for understanding resistance mechanisms and developing

effective pest management strategies (62).
5 Conclusions

This study presents the first documented record of Platynota sp.

(Lepidoptera: Tortricidae) as a pest of blueberry (V. corymbosum)

in Peru, providing critical insights into its biology, life cycle, and

economic impact. Our findings reveal that the larval stage inflicts

the most severe damage, underscoring the importance of early

detection and targeted pest management strategies to mitigate

production losses.

Morphological and molecular analyses confirmed the

placement of this species within the Platynota genus; however,
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species-level identification remains unresolved due to the absence of

closely related reference sequences. This suggests the potential

discovery of an undescribed species, highlighting the need for

further taxonomic and phylogenetic studies. The sequencing and

characterization of its complete mitochondrial genome provided

novel insights into its genetic composition and evolutionary

relationships within Tortricidae. The gene organization was

consistent with other members of the family, and the high AT

content aligns with typical lepidopteran mitogenomes. Notably, this

study reports the first mitochondrial genome for the Sparganotidini

tribe, establishing a valuable genetic resource for future comparative

genomic and evolutionary research.

These findings contribute to a deeper understanding of the

genetic diversity, ecological interactions, and pest potential of

Platynota sp. in Peruvian blueberry production.
FIGURE 5

Phylogenetic tree of pests collected from blueberry crops in Peru, constructed using NJ model on mitochondrial DNA mtCOI sequences. Bootstrap
values, derived from 1,000 replicates of the mtCOI region analyzed, are shown at the branch nodes. Values exceeding 50% are shown.
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Büller (MEKRB) in Universidad Nacional Agraria La Molina for

technical support with morphological identification of the pest

described here. Thanks to Eng. David Pavel Casanova Núñez-
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