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Stage-resolved transcriptomic
profiling of Anastrepha
ludens (Diptera: Tephritidae)
from egg to adult: molecular
signatures of a notorious
polyphagous fruit-fly pest
Daniel Cerqueda-Garcı́a1*, Ixchel Osorio-Paz1,
Javier Carpinteyro-Ponce2, Enrique Ibarra-Laclette3*,
Alma Altúzar-Molina1 and Martı́n Aluja1
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Cientı́fico y Tecnológico Biomimic®, Xalapa, Veracruz, Mexico, 2Biosphere Sciences and Engineering
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This study explores the transcriptional dynamics of the polyphagous Mexican

Fruit Fly, Anastrepha ludens, across five developmental stages, revealing distinct

gene expression patterns unique to each stage. We identified 9,762 DEGs

associated with the four developmental stages. During the egg stage, we

identified the greatest number of differentially expressed genes exhibiting a

pronounced activity of metabolic pathways, particularly the Mitogen-

Associated Protein Kinase (MAPK) signaling pathway, which is essential for

embryonic development and defense mechanisms. The second larval instar

stage mainly focused on growth, as shown by the overexpression of the

Transforming Growth Factor Beta (TGF-beta) pathway. In the third larval stage,

genes are significantly enriched in cuticle structure and transmembrane

transport. In the pupal stage, the importance of the TGF-beta and mTOR

pathways emerged, vital for tissue homeostasis and development. The adult

stage exhibited sustained expression of the FOXO pathway, enhancing stress

resistance crucial for survival and reproduction. Additionally, we noted

differences in odor-binding protein (OBP) expression between sexes, hinting at

their potential role in mating behavior. These findings provide fundamental

information about the life stages of A. ludens, highlighting the importance of

specific signaling pathways and OBPs, which could help improve mass rearing

processes and management strategies for this notorious tephritid pest.
KEYWORDS

Anastrepha ludens (Diptera: Tephritidae), transcriptional dynamics, transcriptomic
profiling, gene expression patterns, metabolic pathways
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1 Introduction

The widespread adoption of transcriptomics has transformed our

ability to chart the dynamic gene-expression programs of insect pests.

Stage-resolved datasets now exist for Tribolium castaneum (Herbst)

(Coleoptera: Tenebrionidae) (1), Bactrocera dorsalis (Hendel)

(Diptera: Tephritidae) (2), Anopheles gambiae Giles (Diptera:

Culicidae) (3), Acheta domesticus L. (Orthoptera: Gryllidae) (4) and

Bactrocera minax Enderlein (Diptera: Tephritidae) (5), among others,

and point to genes whose manipulation could underpin futuristic,

molecularly based control strategies. Translating such targets between

species, however, is not always straightforward: differences in gene

function, RNA-interference efficiency, and even gut uptake of double-

stranded RNA can limit direct transferability (e.g. 6, 7). At the same

time, notable successes—such as the developmental-gene

interventions reported for Drosophila suzukii (Matsumura) (Diptera:

Drosophilidae) (8)—demonstrate the practical value of species-

specific transcriptome resources. Our study therefore aims at

extending this knowledge base by identifying stage-enriched genes

in Anastrepha ludens (Loew) (Diptera: Tephritidae) that may support

the development of biologically based, environmentally-friendly pest-

management tools.

The highly polyphagous Mexican Fruit Fly, A ludens, is

distributed from the southern United States to Panama (9, 10).

Like other tephritid pests, female A. ludens lay batches of eggs (up

to 40 eggs per batch) into a fruit (11), and larval feeding causes

extensive pulp decay and premature fruit drop. This pestiferous fly

species attacks numerous wild and cultivated plants, including

Casimiroa edulis/C. greggii (wild/ancestral hosts), citrus (mainly

grapefruit and Citrus x aurantium), mango, peaches, manzano

pepper, and pomegranate (12, 13). Consequently, it is considered

one of the most economically important fruit pests across its

distribution range and a significant threat elsewhere due to global

climate change (10, 14, 15). Therefore, there is an urgent need to gain

further insight into this pest’s biology, ecology, genetics, and behavior

using state-of-the-art omics tools.

Various methods have been developed to combat this pest,

ranging from conventional control using bait sprays laced with

insecticides such as Malathion and more recently Spinosad® (a

bacterially derived insecticide) (16–18) to the use of synthetic host

marking pheromones (19), and transgenic genetic sexing for

enhancement of Sterile-Insect-Technique (SIT)-based programs

(18). SIT involves the mass production and release of sterile

males and can be more cost-effective and environmentally

friendly than conventional control methods (20). Sterilization can

be achieved through irradiation (21–24) or using genetic

manipulation of the insects. For example, a dosage-dependent

Tet-off transgenic embryonic sexing system (TESS) has been

developed, which induces female lethality during embryogenesis

and results in 100% male progeny (25). A similar approach using

CRISPR/Cas9 has been described in Anastrepha suspensa (Loew)

(Diptera: Tephritidae), targeting the Transfomer-2 (tra2) gene

involved in female development (26). However, not all methods

relying on genetic manipulation focus on male sterility, as some are

based on a conditional lethal system during the developmental
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stages (27). Furthermore, the CRISPR/Cas9 gene editing technique

has shown promise in optimizing SIT by targeting sex-

determination genes in insects such as Drosophila melanogaster

(Diptera: Drosophilidae) and A. gambiae, to improve male fitness

(28, 29).

Recent transcriptomic studies have shed light on the genetic

underpinnings of critical aspects of the biology of pestiferous

tephritid species. For instance, an in-depth transcriptomic analysis

of the melon fly, Zeugodacus cucurbitae (Coquillett), (Diptera:

Tephritidae) revealed notable effects on the development of larvae

that stemmed from irradiated eggs, specifically implicating the ImpE2

and Tpk-tok genes. The suppression of these genes resulted in

premature pupation, hindered larval development, and ultimately

led to mortality (30). In a study on B. dorsalis, two genes encoding

the receptors BdorOR13a and BdorOR7a-6 were identified in females.

These olfactory receptors (ORs) react to the volatile compound 1-

octen-3-ol and open promising avenues for developing effective female

attractants for monitoring B. dorsalis (31). It has been hypothesized

that ORs efficiently perceive odorants from the environment, perhaps

by changing their three-dimensional structure and allowing their

interaction with odorant-binding proteins (OBPs). The latter are

present in high concentrations in the sensillar lymph and their early

interaction with the odorants triggers the transduction cascade of

olfactory signals (32, 33).

Recent stage-resolved and functional transcriptomes within

Anastrepha are expanding the molecular toolkit: Segura-León et al.

(34) characterized 120 chemosensory genes from adult head

transcriptomes of A. ludens; Lemos-Lucumı ́ et al., (35) produced the

first third-instar larval micro-transcriptome of Anastrepha obliqua

(Macquart), linking gene-expression signatures to polyphagy;

Cárdenas-Hernández et al. (36) demonstrated, via comparative

larval metatranscriptomics, that gut-microbiota gene expression

shifts with host fruit—knowledge that could facilitate probiotic or

diet-based refinements of SIT; and Scannapieco et al. (37) assembled

stage- and sex-specific transcriptomes for Anastrepha fraterculus

Wiedemann (Diptera: Tephritidae), providing an additional

resource for identifying developmental and reproductive gene

targets. These studies underscore the significance of characterizing

the transcriptomic profiles across different developmental stages of

pests such as A. ludens, and offer valuable insights for more efficient

and targeted pest control strategies.

In this study, we performed a comprehensive transcriptomic

analysis of the life cycle of A. ludens, including the egg, two larval

stages, pupae, and female and male adults. We aimed at gaining

further insight into changes in gene expression during each life

stage of this important fruit pest. This analysis builds upon and

significantly expands the valuable information on the cytological

and transcriptomic analyses of A. ludens’ embryonic development

published by Gutiérrez-Ramos et al. (38). The morphology of the

immature stages of A. ludens was redescribed by Carroll and

Wharton (39), and we utilized this information to distinguish

between the two larval stages studied. By integrating these

findings with our transcriptomic analysis, we hope to significantly

contribute toward a comprehensive understanding of the molecular

processes and developmental events underlying the life cycle of A.
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ludens, shedding light on its biology and potential enhancements on

mass rearing, monitoring, and management.
2 Materials and methods

2.1 Biological material

We obtained samples of all developmental stages of A. ludens from

a laboratory colony established by the Red de Manejo Biorracional de

Plagas y Vectores at the Clúster Cientıfíco y Tecnológico Biomimic®,

Instituto de Ecologıá, A.C. – INECOL. The A. ludens colony has been

kept under continuous rearing in the laboratory for ca. 130 generations

but was refreshed with wild material from citrus fruit in 2015, following

conditions described by Aluja et al. (40). We underline the fact that we

decided to use a genetically more stabilized colony than a genetically

more variable field population to compare the results of ongoing

transcriptomic studies. Briefly, A. ludens adults were kept since their

emergence in 30x30x60 cm plexiglass cages under controlled

conditions (27 ± 1°C, 63 ± 5% of relative humidity, and a

photoperiod of 12:12 h light: dark) and fed ad libitum with an

artificial diet consisting of hydrolyzed protein: sucrose (1:3) and

water. Three samples (i.e., replicates) per sex with eight 8-day-old

individuals per sample were used for the transcriptomic analysis of this

developmental stage.

To sample eggs, an oviposition device filled with furcellaran (TIC

pretested® Burtonite 44 C Powder, TIC Gums, Belcamp, MD, USA)

gel (11 g/L) was placed on top of the roof of a cage containing ca. 7,000

sexually mature flies (mated females and males) during 24 h. Eggs

were separated from the furcellaran by rinsing them with sterile water

and excess of water was removed with a micropipette. In the end, 300

mg (fresh weight) of eggs (7,594 eggs on average) per replicate (total of

three replicates) were used for the transcriptomic analysis.

Larvae reared at 29 ± 1°C, 70 ± 5% relative humidity, and dark

conditions were fed ad libitumwith an artificial diet containing corn

cob powder (11.89%), yeast (7.93%), sugarcane (7.93%), wheat

germ (7.93%), sodium benzoate (0.47%), citric acid (0.4%), and

purified water (63.45%) (further details in 41). Pools of 40 and 10

individuals per replicate (we ran a total of three replicates) of five-

and eight-day-old larvae, respectively, were used for transcriptomic

analysis. The logic behind the 40/10 individuals per larval stage was

to homogenize the amount/weight of tissue in both stages, as second

instar larvae (five-day old) are significantly smaller than third instar

larvae (eight-day old). A second instar larvae measures on average ±

S.E. 9.71 ± 0.8 mm (N = 25), whereas a third instar larvae measures

11.09 ± 0.4 mm (N = 25), respectively. Finally, pupae were kept at

22 ± 1°C, 70 ± 5% relative humidity, and dark conditions. Samples

of pupae consisted of pools with ten eight-day-old pupae per

replicate (three replicates in total).

Samples of all developmental stages were frozen in liquid nitrogen

and stored at -80°C until they were analyzed. Three biological

replicates were sampled for each developmental condition.

It is important to note that all transcriptomes were generated

using whole-body samples for each developmental stage. We

acknowledge that while our approach provides a global view of
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gene expression, it limits the ability to resolve tissue-specific

expression, particularly for genes such as those involved in

circadian regulation, which may be expressed in specific neuronal

or peripheral tissues.
2.2 RNA-seq sample processing, assembly,
and annotation

To minimize circadian-related variability in gene expression, all

samples for the different developmental stages were collected at the

same circadian time point, specifically at Zeitgeber Time 6 (ZT6)—

six hours after lights-on—under controlled 12:12 h light: dark (LD)

conditions. This synchronized sampling approach was

implemented uniformly across all life stages and biological

replicates to ensure comparability of gene expression levels,

particularly for genes known to be under circadian regulation.

For RNA extraction, we used 200 mg of homogenized tissue

following the instructions of the Plant/Fungi RNA purification kit

(NorGen Biotek Corp; Thorold, ON, Canada). The purity of RNA

samples was determined by measuring absorbance at 230 and 280

nm. Samples were also analyzed using the Bioanalyzer 2100

(Agilent Technologies), and only RNAs with RIN values above

8.0 were used to generate the libraries for sequencing. RNA-seq

library construction was performed at the High-Throughput

Sequencing Unit of the Institute of Ecology, A.C. (INECOL). For

each condition, 3.5 mg of RNA were used with the TruSeq™ RNA

Sample Preparation v2 kit (Illumina). Library quality analysis was

carried out using the Bioanalyzer 2100 capillary electrophoresis

system (Agilent Technologies, Santa Clara, USA). Each cDNA

library was normalized to a final concentration of 20 mM based

on the results provided by the Bioanalyzer equipment. Finally, the

libraries were divided into groups to be sequenced on the

NextSeq500 equipment (Illumina) generating paired end reads in

the 2 x 150 bp format. The libraries were collaboratively sequenced

with the Advanced Genomics Unit (UGA-Langebio), CINVESTAV.

We processed the 18 RNA-seq libraries removing the low-

quality reads and trimming barcodes using fastp with default

parameters. Pre-processed samples were then fed into Trinity

v2.15.0 for generating a de novo transcriptome assembly. All

samples were read independently into Trinity using the –

sample_file argument. Final transcriptome assembly was

constructed based on all developmental stages. We then processed

the resulting assembly with TransDecoder to obtain the longest

isoforms and predict open reading frames (ORFs). We retained

ORFs whose similarity scores to known proteins were significant as

determined by BLASTP searches against UniProt. The resulting

BLAST hits were supplied to TransDecoder.Predict with the –

retain_blastp_hits flag, so that regions showing coding-like

sequence features and high sequence similarity to UniProt entries

were preferentially retained (Haas et al., https://github.com/

TransDecoder/TransDecoder).

We annotated the predicted amino acid sequences with the

InterProScan (42) and the eggNOG-mapper (v5.0) (43) pipelines.

The GO identifiers produced by InterProScan were parsed with
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GSEABase (44) to retrieve their full-term names and ontology

categories (BP, MF, CC), match each identifier to the Drosophila

GO-slim subset, and build a GeneSetCollection object that links every

unigene to its corresponding GO terms for downstream analyses.
2.3 Determination of differentially
expressed genes throughout
developmental stages

All libraries were mapped individually to a single global de novo

transcriptome assembly constructed from pooled reads across all

developmental stages. This strategy is widely recommended for

studies in non-model organisms, as it increases unigene recovery

and improves transcript contiguity and annotation (45–47).

We quantified the transcript expression for each library using

Salmon (48) and exported the quantification files to the R

environment using the tximportData library (49). Normalization

factors were calculated in edgeR (50). Differential expression was

then evaluated in limma-voom using a single quadratic time-course

model: the five developmental stages (egg, larval instar 2, larval instar

3, pupa, adult) were coded as an ordered numeric variable and fitted

with linear and quadratic terms (51). This approach tests each gene’s

expression trajectory across the entire life cycle—rather than making

separate pair-wise contrasts—and detects genes that rise, fall, or peak

at the developmental stage at which each gene reached its maximum

expression value. Unigenes were considered differentially expressed

when the overall time-course model was significant (FDR < 0.01),

independent of the direction of change. For every significant gene, we

identified the developmental stage at which the fitted expression

curve reached its maximum value and labeled the gene as stage-

enriched at that point.
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Lastly, using KEGG annotations, we assigned each stage-

enriched DEG to its corresponding pathway and, for every

developmental stage, compiled the pathways represented by the

genes that reached their maximum expression at that stage.
3 Results

3.1 De novo transcriptome analysis

The transcriptomic libraries comprise seventeen datasets with a

mean of 31.16 million high-quality reads (min: 23.24, max: 60.22). The

BUSCO analysis determined that the assembly is highly complete,

with 3,011 of the 3,114 expected orthologue groups being recovered

(96.7%). Of these, 904 BUSCOs were present as single-copy genes,

whereas 2,107 were detected in duplicated copies, suggesting either

residual haplotype redundancy or genuine gene duplication. Only 56

BUSCOs were fragmented (1.8%), and 47 were entirely missing

(1.5%). Overall, these metrics indicate a near-complete

representation of the conserved gene set in the assembly, and

independent mapping of each stage’s libraries showed that over 97%

of these conserved genes had transcriptional evidence at each stage

(see Supplementary Table S1).

The assembly resulted in 66,968 longest transcript isoforms. A

principal-components analysis of all transcripts (Figure 1A)

separates libraries broadly by stage: eggs at positive PC1 values;

pupae and third-instar larvae at intermediate PC2 positions; adult

males and females toward negative PC2; and second-instar larvae

near the origin. The heat-map in Figure 1B, generated from stage-

enriched differentially expressed genes, clusters eggs, L2, L3, pupae,

and adults into distinct groups, with L3 aligning with pupae and L2

aligning with adults.
FIGURE 1

(A) Principal‐components analysis of log2-CPM expression values for all libraries (PC1 = 23% variance; PC2 = 21%). Biological replicates cluster by
developmental stage (egg – black; L2 – red; L3 – green; pupa – blue; adult – cyan). (B) Heat map of the same samples showing hierarchical
clustering of stage-enriched differentially expressed unigenes. Rows represent genes, columns represent samples ordered by stage, and the top
color bar indicates stage identity. Color intensity reflects normalized expression (log2-CPM).
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3.2 Differentially expressed unigenes
related to developmental stages

Quadratic linear regression identified 9,762 DEGs associated

with the developmental stages. The stage with the highest gene

expression (peaking) was the egg stage, with 3,439 DEGs. The two

larval instars studied had 691 DEGs in stage two and 2,730 in stage

three. The pupal stage had 1,710 DEGs at its peak, while adults had

483, and 709 DEGs for females and males, respectively, totaling

1,192. The sequences and DEGs annotations are available in the

Supplementary Material.
3.3 Molecular functions related to different
stages

Our results show that the egg stage is characterized by

enrichment in 19 molecular functions, such as RNA binding,

DNA binding, metal ion binding, and hydrolase activity.

Unigenes involved in transcription regulation, chromatin binding,

and protein modification are also highly enriched (Figure 2).

During the larval stage, we found enrichment in three molecular
Frontiers in Insect Science 05
functions in the second instar: the ribosomal structure and function,

GTPase activity, and phosphatase activity. In larval stage 3, genes

are significantly enriched in cuticle structure and transmembrane

transport. In the pupal stage, we found enrichment in six molecular

functions, including chitin binding, DNA-binding transcription

factor activity, acyltransferase activity, carbohydrate binding,

peptidase activity, and lyase activity. Finally, in adult male A.

ludens, we found enrichment in three molecular functions:

oxidoreductase activity, phosphotransferase activity with alcohol

group as acceptor, and lipid binding.
3.4 Selected KEGG pathways related to
developmental stages

Using the KEGG database, we identified the peaking pathways in

the different developmental stages of A. ludens (Figure 3). Our

analysis revealed that the Starch and sucrose metabolism pathway,

FoxO signaling pathway, Phosphatidylinositol signaling system,

mTOR signaling pathway, Drug metabolism - other enzymes, TGF-

beta signaling pathway, MAPK signaling pathway - fly, Wnt signaling

pathway, Dorso-ventral axis formation, Drugmetabolism - cytochrome
FIGURE 2

Differentially Expressed Genes (DEGs) for each developmental stage grouped in the molecular function of gen ontology. Expression values are
shown in log2-CPM (counts per million).
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P450, Metabolism of xenobiotics by cytochrome P450, Toll and Imd

signaling pathway, and Hedgehog signaling pathway - fly were

significantly enriched in the egg samples of A. ludens. These pathways

are involved in various cellular processes, including signal transduction,

cell growth and differentiation, drug metabolism, and detoxification of

xenobiotic compounds. These findings suggest that the embryos of A.

ludens are actively modulating their metabolism and stress response

pathways to support embryonic development. An intriguing result was

the enrichment of Circadian rhythm – fly pathway in the egg, given that

in other insects, such as D. melanogaster, a functional central circadian

clock typically emerges during the larval instar 2. The early expression in

eggs might reflect preparatory transcriptional events or peripheral

circadian activity in non-neural tissues. However, since whole-body

samples were used, gene expression from functionally relevant tissues

may have been masked by other tissues with weak or no rhythmic

activity. Therefore, these results must be interpreted with caution, and

future studies incorporating tissue-specific transcriptomics

are warranted.

Furthermore, our analysis showed that the longevity regulating

pathway - multiple species, neuroactive ligand-receptor interaction,

and nitrogen metabolism were significantly enriched in the third
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instar larvae of A. ludens. These pathways are involved in regulating

neuronal signaling, protein metabolism, and nitrogen balance,

respectively, suggesting their importance in larval development

(52–54). In the pupal stage, we observed significant enrichment of

the Glycolysis/Gluconeogenesis pathway, ECM-receptor

interaction, Apoptosis - fly, Arginine and proline metabolism,

and Fatty acid metabolism. These pathways are involved in

energy metabolism, cell signaling, programmed cell death, and

amino acid metabolism, suggesting their importance in the pupal

development of A. ludens (55–58). In the adult stages, we observed

significant enrichment of the Phototransduction - fly pathway in

males (59) and the Hippo signaling pathway - fly and Oxidative

phosphorylation pathways in females (60, 61).
3.5 Chemoreception and odorant-binding
proteins throughout developmental stages

We identified OBPs whose expression profiles show the highest

accumulation of transcripts in specific developmental stages

(Figure 4). Obp56b is differentially expressed in the second larval
FIGURE 3

Dot plot of number of genes and abundance of Differentially Expressed Genes (DEGs) mapped in the KEGG metabolic pathways for each
developmental stage. Expression values are shown in log2-CPM (counts per million).
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instar and reaches its highest relative transcript levels during this

stage, although its overall expression remains low. Similarly,

Obp50e, Obp56c, and Obp56d show their highest transcript levels

in the third larval instar, relative to other stages, but do not rank

among the most highly expressed OBPs overall. Two OBPs (Obp99c

and Obp44a) exhibited a significant gene expression peak during

the pupal stage. We identified one OBP (Obp19b) with a significant

expression peak in adult females. Finally, we found five OBPs

transcripts (Obp8a, Obp99b, Obp83a, Obp83abL1, and Obp19d)

significantly expressed in adult males. These findings suggest that

different types of OBPs play a critical role in the chemoreception of

A. ludens during specific developmental stages.

In addition to OBPs, two ionotropic receptors—glutamate

receptor ionotropic (or kainate 2-like, IDs: UN004236 and

UN004237) and sensory neuron membrane protein 2 (ID:

UN005667)—as well as the odorant receptor 30a-like (ID:
Frontiers in Insect Science 07
UN005447), were identified as differentially (or preferentially)

expressed genes, the former in third-instar larvae, and the latter

two in the pupae.
4 Discussion

In this study, we investigated the transcriptional peaks of genes

in five developmental stages of the pestiferous tephritid A. ludens to

gain insight into the specific molecular processes that are active

along its development, all the way from eggs to adults. We

discovered that the sampled stages clustered in three groups. The

eggs were the most distinct, followed by adults, while larvae and

pupae were more similar. We identified the most DEGs in the egg

stage, with the highest number of peaks related to metabolic

pathways. To place our findings on molecular changes along the
FIGURE 4

Stage-enriching of DEGs (differentially expressed genes) annotated as odorant-binding protein (OBP). Black dots show log2-CPM (counts per million)
values for the three biological replicates at each developmental stage (egg, L2, L3, pupa, adult (female and male). The blue line is a LOESS-smoothed
curve (gray band, 95% confidence interval) summarizing the expression trend. Panel headers indicate the stage where the transcript reaches its peak
expression and its OBP gene or sub-family annotation.
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various developmental stages in an organismal context, we will

discuss metabolic DEGs and metabolic pathways, highlighting their

physiological significance and roles in the organism’s interaction

with the environment.
4.1 Cellular communication

The egg stage shows a marked over-representation of

transcripts with nucleic-acid-binding functions; most notably,

twelve predicted bicoid (Bcd) RNA-binding proteins reach their

expression maximum in eggs. These proteins bind and anchor bcd

mRNA to the anterior cortex of the oocyte, establishing the

anterior–posterior polarity of the embryo (62). Surprisingly, in

the widely distributed pestiferous tephritid B. dorsalis, an absence

of bicoid proteins has been reported (63).

Cellular communication is of paramount importance in

multicellular organisms. The mitogen-associated protein kinase

(MAPK) pathway is a crucial link between external signals and

intracellular behavior, particularly during embryonic development.

Our study revealed a higher expression of unigenes associated with

the MAPK signaling pathway in the egg phase (Figure 3). The role

of this pathway in embryogenesis has been extensively investigated

in D. melanogaster (64). Moreover, the MAPK pathway is known to

be involved in stress responses, including UV radiation, reactive

oxygen species (ROS) production, and immune challenges (65).

In Ceratitis capitata (Diptera: Tephritidae), the activation of the

classical MAPK pathway (ERK 17/2) has been observed in response

to peroxide production via the immune response of hemocytes (66).

Additionally, it has been demonstrated that both adherent and

phagocytic activities of hemocytes in C. capitata require activation

of this pathway (67). Here, we found that the expression of this

pathway is highest during the egg stage, and although it gradually

decreases in later stages, its activity remains relatively high

compared to basal levels in third-instar larvae, pupae, and adults

(Figure 3). This suggests that the MAPK pathway may significantly

coordinate embryonic developmental events in A. ludens.

Furthermore, the observation of the MAPK as a peaking pathway

during the egg stage could indicate the activation of defense

mechanisms or the development of immune responses to protect

the embryo from potential threats. Interestingly, the second instar

larvae did not exhibit the same level of overexpression of many

unigenes as observed in the other developmental stages, suggesting

a growth-focused phase during this larval feeding stage.

Interestingly, we observed significant enrichment of circadian

rhythm-associated genes during the egg stage. In other model

insects, such as D. melanogaster, although core clock gene

transcription begins during embryogenesis, the establishment of a

functional circadian system in the central brain is delayed until the

second larval instar. The transcriptional activation observed in A.

ludens eggs may therefore represent an anticipatory expression or

reflect activity in peripheral tissues. Nonetheless, our results must be

viewed in light of the fact that whole-body RNA extractions were used,

which can dilute tissue-specific signals. This is especially relevant for

circadian genes, which are known to be highly tissue- and neuron-
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specific. Thus, further validation using dissected tissues or single-cell

RNA-seq would help elucidate the spatiotemporal dynamics of

circadian gene regulation in A. ludens.
4.2 Metamorphosis

The TGF-beta signaling pathway is a crucial regulator of cellular

processes such as differentiation, proliferation, migration, and

apoptosis, making it essential for tissue homeostasis and

development. Extensive research has documented the pivotal role

of the TGF-beta pathway in governing tissue and organ

differentiation, as well as development during metamorphosis

(68). In D. melanogaster, blocking TGF-beta signaling has

resulted in developmental arrest before metamorphosis (69).

Similarly, in the hemimetabolous insect Gryllus bimaculatus (De

Geer) (Orthoptera: Gryllidae), TGF-beta signaling has been

implicated as a modulator of metamorphosis through its

involvement in the juvenile hormone biosynthesis (70). These

findings underscore the conserved role of the TGF-beta pathway

in regulating metamorphosis and its intricate interactions with

other signaling pathways. In line with these studies, our results

show significant overexpression of the TGF-beta pathway during

two critical stages of development: the egg and pupal stages.
4.3 Growth control and metabolism
management

The Forkhead box class O (FoxO) family of transcription

factors primarily regulates cell growth and adaptation to nutrient

availability. While the transcriptional regulation of FoxO is not well

understood, its post-translational regulation has been extensively

studied (71). The insulin and/or insulin-like growth factor type 1

(IGF-1) pathway is critical in inhibiting FoxO through

phosphorylation. During nutrient scarcity, the insulin/IGF-1

pathway is suppressed, leading to FoxO activation, which

promotes the release of glucose and fatty acids as energy sources.

Additionally, FoxO inhibits translation and growth, conserving

energy for essential survival functions and allowing the organism

to adapt to environmental nutrient levels (72). FoxO can also be

directly activated or inhibited by extracellular signals, including

nutrient levels, cellular stresses (UV and ROS), and developmental

signals (73, 74). Overexpression of FoxO in D. melanogaster has

been linked to better responses to various stress stimuli, such as

oxidative stress, heat, and immune challenges (75, 76). Notably,

silencing FoxO in D. melanogaster does not affect its developmental

phenotype, except for increased sensitivity to oxidative stress in

nutrient-rich conditions (77). Likewise, diets high in sugar inhibit

FoxO activation, decreasing lifespan in D. melanogaster (78).

Monitoring the expression of FoxO transcripts could offer a

practical biomarker for the physiological stress that A. ludens

experiences under different environmental challenges, including

g-irradiation which is critical for the successful application of the

Sterile Insect Technique (SIT). Irradiation has been shown to
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damage the midgut and alter its resident microbiota (79), impair

courtship behavior (80), and reduce adult survival or fecundity

unless optimized doses are used (81, 82). In our data, the FoxO

signaling pathway peaks first in the egg stage, declines in the second

larval instar, and rises again in the third instar, remaining elevated

in the adult stage (Figure 3). The timing of this second peak

coincides with the life stage that is most radio-tolerant in B.

dorsalis (83), supporting the idea that heightened FoxO activity

enhances stress resilience. No genes assigned to the IGF-1 signaling

pathway appeared among the stage-enriched DEGs, indicating that

their expression remained relatively constant across all stages under

our laboratory-rearing conditions. Consequently, FoxO regulation

in A. ludens is likely governed by a basal IGF-1 input rather than by

stage-specific transcriptional surges.

Additionally, the mTOR pathway is also known to regulate FoxO

transcription factors. When activated, mTOR suppresses FoxO activity

through phosphorylation. Thus, mTOR activity regulates FoxO

localization and activity, influencing cellular responses related to

metabolism, proliferation, and survival (84, 85). Both mTOR and

FoxO are critical cell metabolism and survival regulators, but their

activation or inhibition depends on the context and environmental

signals. Generally, mTOR activation is associated with nutrient

abundance, growth factors, and adequate cellular energy levels, while

FoxO activation occurs under nutrient deprivation or cellular stress

conditions. The interaction between FoxO and mTOR is crucial for

maintaining a proper balance between cell growth and survival in

response to environmental conditions and nutrient availability. In this

regard, it is important to note that all developmental stages were raised

under laboratory conditions with consistent access to a high-quality

artificial diet. This environment likely promoted nutrient-rich signaling

and mTOR activation, especially during larval stage 2 when growth

demands are greatest. The moderate activity of FoxO under these

conditions indicates baseline regulatory functions, but its expression

patterns may change significantly in field conditions characterized by

intermittent food supply or environmental stress. Furthermore, the

activity of the FoxO/mTOR signaling pathways in calorie-restricted

environments is associated with improved health and longevity in

many organisms (86). Exploring these pathways under natural

conditions could provide valuable insights into the optimal

characteristics for rearing these insects.

The egg stage exhibited the highest number of stage-enriched

DEGs in both the mTOR and FoxO pathways, a concordant pattern

with their shared roles in metabolic regulation and cell-growth control

during early development; however, the latter does not demonstrate

direct pathway interaction. This combined expression may help the

organism adapt to sudden changes in nutritional resources or

environmental challenges. In the second larval instar, the mTOR

pathway exhibited a peak of overexpression, contrasting with FOXO.

During this developmental stage, the animal may be programmed to

cope with optimal food resource conditions. Notably, the mTOR

pathway was one of the few pathways overexpressed during the

second larval stage and this overexpression of mTOR unigenes

persisted until the pupal stage.

Our findings revealed that adult males exhibit a higher number

of stage-enriched mTOR-pathway transcripts than females
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(Figure 3). Sex-biased TOR activity has been documented in

other dipterans: in Drosophila, rapamycin predominantly extends

female lifespan via intestinal autophagy (87). Besides, mTORC1

activity is enriched in male germline stem cells and early

spermatogonia, whereas female germline differentiation relies

more on insulin/TOR integration (88). Nevertheless, functional

assays will be required to determine whether differences in mTOR

activity contribute directly to sex-specific differences in fitness in

this species.
4.4 Environmental challenge

The cytochrome P450 family comprises many monooxygenase

proteins involved in the oxidation-reduction reactions of various

endogenous or xenobiotic compounds. Cytochrome P450

expression is widespread in prokaryotes and eukaryotes, and its

functions, in addition to toxin metabolism, include nutrition,

growth, and development. This family is highly diverse, to the

extent that many isoforms can be found in a single organism, with

different tissue expression patterns throughout the life cycle,

influenced by environmental factors such as diet (89). Their

diversity is such that in D. melanogaster alone, 86 genes encoding

these proteins have been identified (90), and when comparing

among insect species, no more than 30-50% identity has been

found. This diversity is observed even within the same order of

insects (91).

Endogenous substrates of insect monooxygenases include

juvenile hormones and ecdysteroids such as 20-ecdysone and

pheromones (92, 93). Targeted activation and/or inhibition of

P450s in holometabolous insects results in changes in development,

morphology, and survival (94, 95). Therefore, P450 activity is

very important for physiological processes such as development.

In A. ludens, the expression of this protein family peaked during

the egg stage, followed by the third larval instar, pupal stage, and

adulthood (Figure 3). Like most pathways, it was not overexpressed in

larval stage 2. The increased expression of cytochrome P450 genes

observed in the egg and adult stages may be connected to

physiological processes that require higher metabolic activity, like

development or detoxification. While it’s tempting to interpret this

pattern as an adaptation to environmental exposure—since these

stages mark entry and exit points into new environments—this idea is

still speculative and needs further research into the specific functions

of individual genes.

In instar 2 larvae, which in nature feed within host fruit but in

this study developed on an artificial diet, the expression profile is

dominated by genes involved in protein synthesis, carbohydrate

metabolism and other growth-related processes. Although the

nutritional context differs, the relative paucity of differentially

expressed genes associated with defense or differentiation,

alongside enrichment of growth-related functions, may suggest a

physiological focus on somatic development during this stage.

However, this pattern should be interpreted with caution as it

may also reflect transcriptional continuity from earlier stages or low

regulatory turnover. However, upon reaching stage 3, which
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precedes pupation and metamorphosis, transcription is reactivated,

resulting in gene overexpression. In the case of P450, this

overexpression could represent preparation for metamorphosis,

given its essential role as a hormonal regulator. In contrast to the

latter, a study on B. dorsalis demonstrated downregulation of P450

genes during the pupation process (96). This contrasting pattern

highlights the species-specific regulation of P450 expression during

development and underscores the complexity of metabolic

adaptations in different insect species; however, alternative

explanations like isoform-specific expression or developmental

programming cannot be ruled out. Further research is needed to

elucidate the specific mechanisms and functional significance of

these regulatory patterns in the context of metamorphosis and

adaptation to environmental challenges.
4.5 Energy metabolism

Carbohydrates, proteins, and lipids are the primary energy sources

for living organisms. Lipids play an essential role in the life of insects, as

they are not only used for growth and development but also for flight,

migration, diapause, starvation, oogenesis, embryonic nutrition,

synthesis of sex pheromones, cuticular waxes, and various defensive

secretions (97). The variation in nutrient availability faced by

organisms determines nutrient intake and metabolism regulation. In

this regard, the lack of lipids in an artificial diet used for mass rearing

fruit flies reflects the low amount of lipids in the diet of wild flies (i.e.,

fruit pulp), but this is not a limitation because insect intestinal cells can

synthesize fatty acids from sugars or amino acids (98). In addition to

the number of nutrients in the diet, the regulation of nutrient

metabolism is also due to gene regulation. Among the genes that

regulate lipid metabolism are FOXO, ecdysone receptor, and its early

genes, sterol regulatory element binding protein (SREBP), hormone

receptor-like 96 (HR96), hepatocyte nuclear factor (HR96), and nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-kB).
The expression profile of unigenes related to energy metabolism in

A. ludens highlights the significance of lipid metabolism, which was

upregulated across all analyzed stages. Specifically, during the larval

stage 2, we recorded a significant overexpression of fatty acids

metabolism compared to glucose metabolism (Figure 3), suggesting

that lipids are used as a primary energy reserve in tephritid flies. In a

study investigating the lipid profile throughout the development of C.

capitata, it was observed that lipids accumulate during the larval phase

until the prepupal phase. After that, there is a slight decrease in lipid

levels during the pupal phase and the initial stage of the adult phase,

followed by a significant decrease toward the final hours of

metamorphosis (99). The utilization of lipids for energy production,

as reserves, and various processes such as male pheromone synthesis,

cuticle formation in both sexes, and egg synthesis in females, requires

the upregulation of metabolic machinery dedicated to lipid metabolism.

However, our observations suggest that fatty-acid metabolism in

A. ludens larvae is directed mainly toward non-energetic functions.

Aerobic energy production—indicated by oxidative-phosphorylation

transcripts—is low in larval stages but rises markedly in pupae and

adults (Figure 3). By contrast, anaerobic energy generation relies chiefly
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on carbohydrates: glycolysis- and gluconeogenesis-related genes are

up-regulated at every stage except second-instar larvae (Figure 3).

The expression profile of oxidative phosphorylation observed in

the different stages of A. ludens suggests a preference for anaerobic

metabolism in the egg and larval stages. Interestingly, during

pupation, B. dorsalis exhibits a decrease in the transcription of

oxidative phosphorylation genes, further emphasizing the dynamic

regulation of metabolic pathways during development (96). Given

that energy metabolism is largely regulated by the availability of

environmental resources, a more significant activity of anaerobic

metabolism could be expected during the natural development of

these organisms inside fruits due to the possible lack of oxygen in

these; however, in artificial rearing conditions, oxygen is not

limited. In this context, it has been reported that B. dorsalis

increases the expression of genes related to lipid metabolism and

gluconeogenesis during anoxic development (100). On the other

hand, sensitivity to hypoxia treatments has been demonstrated in

tephritid flies, specifically in the egg and larval stages 1 and 2 of C.

capitata (101). Low expression of mitochondrial respiratory

proteins does not necessarily imply a complete inability to use

oxygen. Organisms could regulate oxygen utilization more

efficiently in these early developmental stages, using limited

resources and prioritizing vital functions. Along these lines, a

study in D. melanogaster showed that mitochondrial oxidative

capacity is highly variable during development, but the organism

can maintain mitochondrial respiration in all stages (102). Detailed

studies of mitochondrial function in tephritid flies are still scarce,

rendering aerobic‐energy metabolism a promising target for

future research.
4.6 Proline/arginine

Proline is the primary precursor for arginine synthesis and vice

versa. Arginine and proline metabolism has been shown to protect

tephritid andDrosophila flies from low temperatures and freezing (103,

104). Furthermore, proline can be an energetic fuel in flying insects,

doubling their respiratory capacity (105, 106). Therefore, the

expression profile of unigenes involved in this metabolism is of

interest, as it may provide clues on their potential role in tephritid

flies. Our results show overexpression of these genes in almost all stages

studied, except the second larval instar and adult females. Therefore, we

do not consider proline an energy source in these flies. Although

proline has been linked to cold tolerance in other dipterans, our flies

were reared under steady, non-stressful laboratory conditions that do

not replicate such environmental pressures. As a result, any proposed

role for proline in stress protection remains speculative in this context.

Future studies specifically designed to test cold or desiccation stress will

be necessary to assess this hypothesis.
4.7 Odorant-binding proteins

Like other insects, olfaction in Anastrepha species is crucial for

locating hosts, mating, foraging, oviposition, and even avoiding
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predators. There are several strategies for controlling this pest (107),

many of them targeting the olfactory system, which comprises

seven classes of proteins involved in the olfactory signal

transduction pathway (odorant-binding proteins (OBPs),

chemosensory proteins (CSPs), odorant receptors (ORs),

ionotropic receptors (IRs), odorant degrading enzymes (ODEs),

sensory neuron membrane proteins (SNMPs) and Niemann-pick

type C2 (NPC2) (108). Of these, OBPs are undoubtedly the best

studied. They bind with odorants from the environment and shuttle

them to trigger the ORs located on the membranes of olfactory

sensory neurons (32, 33).

In the transduction cascade of olfactory signals, the OBPs

interact with odorants and transport the chemical signal through

the aqueous lymph of sensillas until it reaches the olfactory

receptors (32, 33). Its distinct expression pattern, its high

molecular divergence and its affinity for specific odorants, suggest

that these proteins could act as a filter, selecting the odorants that

will trigger the olfactory responses (109). Although not all odorants

are necessarily associated with an OBP to stimulate olfactory

receptors (110), it has been suggested that a combination of the

number and types of OBPs expressed in a species and at which

developmental stage and tissues these genes are expressed could

influence its specificity and sensitivity to odorants (111, 112).

There are several OBPs expressed mainly in the insect antennas,

and it has been proven that many of them are responsible for the

detection of pheromones and/or host plant volatiles (113–115);

however, it has also been found that OBPs expressed in organs other

than the antenna are involved in gustatory perception (109). In A.

ludens, during its life cycle, Obp56b is highly expressed in the larval

stages (mainly in the larval stage 2) but not in adults emerging from

pupae. It has been reported that orthologs to this protein are

expressed in the pharyngeal labral sense organ (LSO) cells in D.

melanogaster. Pharyngeal LSO belongs to the internal taste organs

that help D. melanogaster in triggering regurgitation as a response

to harmful food or to enhance the sucking/ingestion of appropriate

food (116). LSO seems to be stimulated by the presence of sugar,

producing a characteristic searching behavior in D. melanogaster

(117). Anastrepha ludens larvae are routinely mass-reared on an

artificial diet containing ~8% sucrose, a level similar to that found in

ripe host fruit pulp (41). Consequently, basal expression, and the

early up-regulation, of sugar-responsive OBPs are consistent with

larval requirements to detect and ingest carbohydrate-rich food,

whether in natural fruit or in the artificial medium provided. OBPs

genes such as Obp56c and Obp56d exhibit their highest transcript

levels in the third larval instar. This is consistent with previous

studies reporting that ortholog genes in D. melanogaster are

expressed in all sensilla on the antenna, the maxillary palp, and

the larval olfactory system in the dorsal larval organ (117). It is

worth mentioning that other unigenes with similar expression

profiles are those homologs coding to the gustatory receptor of

trehalose (Trehalose_recep), which can control the feeding response

in the presence of sugars (118, 119).

Three OBPs genes with peak expression in the pupal stage have

been identified. The ortholog to obp99c in A. obliqua (Macquart)

(which, together with A. ludens, belongs to the most derived group
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within Anastrepha) (120) is upregulated in virgin and

reproductively active males, suggesting its relevance in mating

selection (121). For its part, orthologs to Obp83cd in both A.

obliqua and A. fraterculus (Wiedemann), are expressed in

immature flies before mating (122). However, OBP99C proteins

have also been reported to recognize benzaldehyde in Drosophila

(123), a volatile compound present in many fruits whose

concentration depends on ripeness (124) and is used as a bait

component to attract some Anastrepha species (125). In a previous

study, we reported that the emergence of Rhagoletis completa

Cresson (Diptera: Tephritidae) adults, a diapausing species, was

accelerated in the presence of walnut fruits (126). While there is no

evidence of diapause in A. ludens, the emergence of adults can be

delayed up to several weeks (127). Thus, the up regulation of

Obp99c may be more critical for A. ludens pupae, helping to

sense surrounding fruits and synchronize adult emergence.

Another OBP identified in the pupa of A. ludens was Obp44a,

which has also been reported as upregulated in B. dorsalis, playing a

role in environmental chemodetection (128).

Some OBPs differentially expressed in adults show distinct

expression patterns in males and females. The upregulation of

Obp19b in females may be related to pheromone recognition and

mating. This OBP has also been documented to be upregulated

during female maturation in C. capitata (129), and in D.

melanogaster, it is co-modulated with Obp56h in mating behavior,

which can affect copulation latency (130). Among the five OBPs

with peak expression in males, the non-sensory OBP 99b has been

used as a marker in B. dorsalis to identify male age (131). It is

suggested that the function of this OBP, involved in pheromone

response or transport, is like that of mammalian lipocalin (132), but

further investigation is needed to understand its precise function.

However, the upregulation of Obp99b in mature A. ludens males

could support the predicted function of this OBP.

We also observed two OBPs transcripts belonging to the Obp83

cluster (Obp83a and Obp83abL1) that are mainly expressed in male

adults emerging from the pupa. These OBPs play a role in

modulating behavioral responses to odorants containing specific

functional groups, such as acetophenone and 2-heptanone (133).

Acetophenone, a volatile compound found in various plants, can

attract or repel certain insect species (134). It specifically attracts

females of Diachasmimorpha longicaudata, a widespread parasitoid

of tephritid flies (135, 136). The last OBP gene with significant

expression in males was Obp19d. This protein does not exhibit

differences between sexes in D. melanogaster and is likely involved

in detecting food quality. OBP19d proteins are expressed in the

proboscis and are present in the olfactory system (137). In a

previous study, we observed the upregulation of Obp19d in newly

emerged and five-day-old antennae of A. ludens adults exposed to

CeraTrap®, an attractant formulated with enzymatically hydrolyzed

protein obtained from pig intestinal mucosa (138). It is worth

noting that the differences between sexes were subtle in this context.

Regarding ionotropic receptors also identified here as differentially

expressed, the glutamate receptor (or kainate 2-like) is a

transmembrane channel activated by glutamate, a neurotransmitter

(139, 140). It plays an important role in neural development and
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central nervous system function (141, 142). Its presence in third-instar

larvae developmental stage may suggest that it is critical for the

maturation of neural circuits during this period. The upregulation

of this receptor could be associated with synaptic plasticity and the

formation of neural connections necessary for the larvae to process

sensory information effectively, which is crucial as they prepare for the

transition to pupation. The sensory neuron membrane protein 2

(SNMP2) identified in the pupae is indicative of the preparation of

sensory systems for adult functions. SNMP2 is known to be involved

in the detection and processing of pheromones, which are vital for

reproductive behavior in adult flies (143–145). Therefore, its increased

expression during the pupal stage likely reflects developmental

processes required for establishing pheromone detection

mechanisms in adults.

The upregulation of the odorant receptor 30a-like gene during

pupation further supports the idea of sensory system refinement in

preparation for adulthood. This receptor is part of a broader family

responsible for detecting a wide array of odor molecules (146, 147).

The differential expression of odorant receptor genes during the

pupal stage indicates the reorganization of the olfactory system,

ensuring the adult fly will possess a functional and highly responsive

olfactory network, critical for locating food, mates, and

oviposition sites.

In summary, the differential expression of these ionotropic and

odorant receptors underscores the complex molecular transformations

that occur during the development of the Mexican fruit fly. These

changes ensure that the sensory systems are fully matured and

operational by adulthood, allowing the fly to optimally navigate

through its environment and fulfill key biological functions.
5 Conclusions

Although care was taken to synchronize all sample collections

to a common time point (i.e., ZT6) during the light phase, we

acknowledge that gene expression in many biological processes,

including metabolism, signaling, and neuronal activity, may still be

modulated by circadian oscillations. If the endogenous clock

becomes active earlier than expected in A. ludens, some observed

differences in gene expression between stages could partly reflect

circadian phase rather than the developmental state alone. A more

comprehensive temporal sampling strategy across the 24-h cycle

would be necessary to fully disentangle these effects. Future studies

focusing on high-resolution temporal expression, ideally using

tissue-specific sampling, would help clarify the interaction

between developmental progression and circadian regulation in

this species.

Nonetheless, this study offers an in-depth examination of gene

transcription peaks across the five developmental stages of A. ludens,

providing insight into the specific molecular processes prevalent at

each stage. Our findings uncovered significant gene expression

patterns that mirror the unique physiological and environmental

challenges encountered at each developmental stage. During the egg

stage, we identified the greatest number of differentially expressed
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genes. We observed a notable set of stage-enriched DEGs maps to the

Mitogen-Activated Protein Kinase (MAPK) signaling pathway,

rendering MAPK one of the prominent stage-peaking pathways,

which is well known for relaying extracellular cues to intracellular

responses. This intense expression during the egg stage suggests that

the MAPK pathway may coordinate significant developmental events

in the fly and activate defense mechanisms. Relatively few genes reach

their expression peak in the second larval instar, implying that this

feeding stage relies mainly on transcripts already active earlier,

consistent with a physiological emphasis on continued growth

during this feeding phase. However, we observed an overexpression

of the Transforming Growth Factor Beta (TGF-beta) pathway,

underscoring its conserved role in regulating metamorphosis.

The pupa stage revealed a continued overexpression of the

TGF-beta pathway and expression of the mTOR pathway, both

crucial for tissue homeostasis and development. Here, we also

observed high transcription of the OBP Obp99c, which could play

a significant role in mate selection and detecting volatile

compounds in fruits. The adult stage displayed distinctive

characteristics, with sustained high expression of the FOXO

pathway, enhancing stress resistance and crucial for adult survival

and reproduction in varied environments. Notably, we observed

differences in odor-binding protein (OBP) expression between the

sexes. Overexpression of Obp19b in females could be linked to

pheromone detection and mating, while Obp99b was overexpressed

in males, suggesting a role in pheromone response or transport.

In summary, this study offers a comprehensive view of the

distinctive cellular processes across the different developmental

stages of A. ludens, highlighting the importance of metabolic and

signaling pathways and the crucial role of odor-binding proteins.

This knowledge could significantly contribute to developing more

effective pest management strategies and provide a solid foundation

for future research in this critical field. From a practical perspective,

our work highlights the need to pay closer attention to egg handling

in fruit fly mass-rearing facilities, as our findings show that it is the

developmental stage exhibiting the highest number of stage-

enriched differentially expressed genes. It is thus likely that if eggs

are not adequately handled, the quality of the resulting adults may

be compromised.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: https://www.ncbi.nlm.nih.gov/,

PRJNA1253706.
Author contributions

DC-G: Data curation, Formal analysis, Software, Validation,

Visualization, Writing – original draft, Writing – review & editing.

IO-P: Formal analysis, Writing – original draft, Writing – review &
frontiersin.org

https://www.ncbi.nlm.nih.gov/
https://doi.org/10.3389/finsc.2025.1618382
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Cerqueda-Garcı́a et al. 10.3389/finsc.2025.1618382
editing, Investigation. JC-P: Formal analysis, Validation, Visualization,

Writing – review & editing. EI-L: Conceptualization, Formal analysis,

Methodology, Supervision, Writing – review & editing. AA-M:

Investigation, Methodology, Project administration, Supervision,

Writing – review & editing. MA: Conceptualization, Funding

acquisition, Project administration, Resources, Supervision,

Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was partially

funded by the Asociación de Productores y Empacadores

Exportadores de Aguacate de México (Project APEAM-INECOL
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