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The red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae), a

cosmopolitan stored-product pest frequently infesting sauce-flavor Daqu (a

multi-microbial fermented starter), may experience mitochondrial genome

variations under the selective pressure exerted by this enzyme-rich substrate.

Here we test whether feeding on sauce-flavor Daqu is associated with

mitogenomic differences in T. castaneum. We present the complete

mitochondrial genome of T. castaneum from this environment: a 15,885 bp

circular DNA (GenBank PV563855) retaining ancestral insect architecture with

71.81% A+T content and slight positive AT skew. The genome contains 37

functional elements: 22 tRNA genes (all exhibiting atypical cloverleaf structures

except trnS1(AGN)), 13 protein-coding genes (PCGs), 2 rRNA genes, and a 1,238

bp A+T-rich control region (82.80% AT). Eleven PCGs initiate with ATN codons,

while cox1 (CTG) and nad1 (TTG) show divergent initiation. Ten PCGs terminate

with TAA/TAG codons. Gene order aligns with basal insect mitogenomes.

Comparative analysis with Jiangsu (China) and California (USA) strains revealed

conserved structural features, though sequence/assembly discrepancies require

further investigation to assess potential pressure-induced mutations. While these

differences may reflect adaptations to the enzyme-rich Daqu environment,

technical and geographical factors could also contribute; further functional

studies are needed to establish causal links.
KEYWORDS

Tribolium castaneum, mitochondrial genome, sauce-flavor Daqu, comparative
genomics, genetic variation
1 Introduction

The red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae), is a major pest

of stored grains and grain products. In sauce-flavor baijiu production regions of China,

T. castaneum is a predominant pest infesting sauce-flavor Daqu, the critical fermentation
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starter for this distinctive liquor. Sauce-flavor Daqu, a wheat-based

fermentation starter for Chinese baijiu, differs from conventional

stored grains by having a porous and thermophilic structure. This

substrate supports a diverse microbial community (including

Bacillus spp., Aspergillus fungi, and lactic acid bacteria) and

accumulates metabolites like organic acids, and Maillard reaction

products. These characteristics may have facilitated the adaptive

evolution of T. castaneum. Mitochondrial variations could enhance

survival in Daqu environments by improving heat tolerance during

high-temperature fermentation (60-65 °C) and detoxification of

organic acids. Such adaptations may increase infestation

persistence, leading to microbial imbalance and starter quality

deterioration. Identifying these genomic signatures could inform

targeted pest management in baijiu production.

In eukaryotic cells, mitochondria serve as energy-producing

organelles primarily through oxidative phosphorylation processes

(1). The mitochondrial genome (mtDNA) of insects consists of a

circular double-stranded DNA molecule measuring 15,000-18,000

base pairs (2). These maternally inherited genomes employ a

variant genetic code for translation (3), maintaining high

structural conservation across species. A typical insect

mitochondrial genome contains 37 coding elements comprising

13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, and 22

transfer RNA (tRNA) genes, accompanied by a non-coding control

region responsible for transcription and replication initiation (2, 4).

The non-protein coding components include tRNA genes

(identified by their corresponding amino acid designations) and

rRNA genes encoding both small (rrnS) and large (rrnL)

mitochondrial ribosome subunits. Protein-coding sequences

produce polypeptides essential for electron transport chain

complexes: NADH dehydrogenase subunits (complex I, nad

genes), cytochrome B (complex III, cob), cytochrome c oxidase

subunits (complex IV, cox genes), and ATP synthase components

(complex V, atp genes).

Prior to this study, two complete T. castaneummitogenomes were

available: a 15,881 bp genome from a California laboratory population

(NC_003081; Friedrich et al., 2003) (5) and a 15,883 bp genome from

a Jiangsu laboratory strain (KM009121; Liu et al., 2016) (6). Both share

conserved features including 13 PCGs, 22 tRNAs, and 2 rRNAs. Here,

we assemble a third mitogenome from a Guizhou population

maintained on sauce-flavor Daqu, representing distinct geographical

and dietary conditions. To investigate unresolved questions about

substrate-specific variations (e.g., Daqu adaptation) and

intercontinental micro-differentiation, we conducted comparative

analyses among these three lineages: Guizhou (Daqu-fed), Jiangsu

(grain-fed laboratory), and California (grain-fed laboratory).
2 Materials and methods

2.1 Sample collection

The T. castaneum specimens used in this study were collected in

2022 from infested sauce-flavor Daqu in Moutai Town, Guizhou

Province, China (27°51′ N, 106°22′ E). These beetles have been
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maintained on sauce-flavor Daqu in the laboratory since collection.

We pooled thirty adult beetles (15 males, 15 females) for analysis

and stored them at -80 °C in the Entomology Laboratory of

Moutai Institute.
2.2 Construction of the genomic library
and sequencing

Total genomic DNA was extracted from insects using the

TIANamp Genomic DNA Kit (Tiangen, Beijing, China) following

themanufacturer’s protocol. DNA concentrations were standardized to

0.3 ng/mL for all samples. Whole genome shotgun (WGS) sequencing

was conducted through next-generation sequencing (NGS) technology

on the Illumina NovaSeq platform. A library with 400 bp inserts was

constructed and sequenced using paired-end methodology at

Personalbio (Nanjing, China). Raw sequencing data were transferred

to a computer workstation for processing. Initial quality assessment

was performed using FastQC v.0.11.9, followed by adapter removal

with Trim Galore v.0.6.5. Final data validation was conducted through

repeat FastQC analysis.
2.3 Genomic assembly

High-quality processed sequencing data were first assembled

into Contigs using A5 miseq v20150522 (7), followed by Scaffold

construction with SPAdes v3.9.0 (8). Gap filling between contigs

was performed through collinearity analysis using Mummer v3.1

(9). Final mitochondrial sequence correction was completed using

Pilon v1.18 (10). Assembly accuracy was validated through: (1)

BLASTn-confirmed terminal overlaps for circularization, (2)

uniform depth distribution averaging 1,580.97× (Supplementary

Figure S1), and (3) >95% read concordance rate with Q≥30 scores

derived from high-quality data (96.97% HQ reads).
2.4 Annotation and bioinformatic analysis

The assembled mitochondrial genome was annotated using the

MITOS web server (http://mitos.bioinf.uni-leipzig.de) (11).

Sequence alignment was performed with SnapGene software

using sequences detailed in Table 1. The nad3 protein homology

mo d e l w a s b u i l t w i t h SW I S S -MODEL ( h t t p s : / /

swissmodel.expasy.org/; accessed on 28 July 2025). Bar graphs

were drawn using GraphPad Prism 8.0.
3 Results

3.1 Genome organization and base
composition

We sequenced the mitochondrial genome of the T. castaneum

population from Moutai Town, Guizhou, China, reared on Sauce-
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flavor Daqu. The read sequencing produced 2.9 billion bases (Gb).

MiSeq reads corresponding to the mitochondrial genome were

separated from nuclear genomic reads (see Methods), with

approximately 0.41% of the 19,670,196 total reads representing

putative mitochondrial reads. The average sequencing coverage

depth was 1580.97×(median = 1580) across the mitochondrial

genome (Supplementary Figure S1). These reads produced a

mitochondrial genome assembly (gMT) of the China isolate of T.

castaneum with a total length of 15,885 bp (GenBank PV563855),

sharing 98.86% identity with the California strain (5) and 98.87%

with the Jiangsu strain (6). Features of the mitochondrial genome

were annotated to identify 22 tRNA genes, 2 rRNA genes, 13

protein coding genes (7 nad subunits, 3 cox, 2 atp, and 1 cob),

and a non-coding AT-rich control region (1238 bp) (Figure 1). The

overall mitogenome exhibited a nucleotide composition of 39.80%

A, 9.81% G, 18.38% C, and 32.01% T, with a markedly biased A+T
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content of 71.81% (Table 2). This A+T value slightly exceeds those

reported for the California (5) population (71.68%) and Jiangsu (6)

laboratory strain (71.00%), suggesting potential lineage-specific

genomic adaptations.
3.2 PCGs and codon usage

In PCGs, four (nad4, nad4l, nad5, nad1) of the 13 PCGs were

coded on the N-strand, with the other nine genes (cox1, cox2, cox3,

atp8, atp6, nad2, nad3, nad6, and cob) were coded on the C-strand.

Among the 13 PCGs, the longest was the nad5 gene (1,713 bp) and

the shortest was the atp8 gene (159 bp). The start codons of cox1

(CTG) and nad1 (TTG) in this study exhibit striking contrast with

those of the Jiangsu and California populations (5, 6). Specifically,

the Jiangsu population demonstrates AAT for cox1 and ATT for

nad1, while the California population (5) utilizes AAA and ATA as

start codons for cox1 and nad1, respectively (Table 3). Notably, the

remaining 11 PCGs uniformly employ ATN start codons across all

analyzed populations. Among the 13 PCGs, ten terminated with

standard stop codons (TAA/TAG), while nad5 used ATT, and the

remaining two ended with incomplete stops (single T) (Table 3). It

is generally accepted that incomplete codon structures signal a halt

of protein translation in insects and other invertebrates (12). With

the exception of atp8, cox2, and cox3, all single-nucleotide variants
TABLE 1 Mitochondrial genomes used in this study.

Species Population
GenBank
accession

Reference

T. castaneum California NC_003081 (5)

T. castaneum Jiangsu KM009121 (6)

T. castaneum Moutai PV563855 This study
FIGURE 1

Mitochondrial genome map of Tribolium castaneum.
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(SNVs) resulted in nonsynonymous mutations (Figure 2). Notably,

higher frequencies of nonsynonymous mutations were observed in

nad5, nad4, nad4l, and nad1 (Figure 2).

In the present study, the nad3 gene comprises 354 nucleotides

encoding 117 amino acids, contrasting with previously reported

360-nucleotide sequences encoding 119 amino acids in other

populations (5, 6). Sequence alignment revealed a thymine

insertion at position 5,594 within the nad3 locus (Figure 3). This

single-nucleotide insertion induces a 7-bp frameshift (original

initiation codon ATA at position 5,529 → revised ATT at

position 5,536), resulting in complete divergence of the first 20

amino acid residues compared to published sequences. Crucially,

this frameshift modifies the open reading frame (ORF), altering the

protein’s tertiary structure at the N-terminus while preserving

downstream structural domains (Figure 3C), suggesting potential

compensatory mechanisms in mitochondrial translation.
3.3 tRNA and rRNA genes

All 22 tRNAgeneswere identified,witha combined lengthof 1,435

bp (range: 59–71 bp; Table 3). Notably, only trnS1 (AGN) deviated

structurally, lacking the dihydrouridine (DHU) arm characteristic of

canonical cloverleaf folds (Supplementary Figure S2). The remaining

21 tRNAs exhibited standard cloverleaf secondary structures

(Supplementary Figure S2). Gene boundaries were determined

primarily by homology-based alignment using MITOS, with
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secondary-structure prediction (tRNAscan-SE) serving as validation.

Eight tRNA genes were located on the minor strand, and fourteen on

themajor strand. The rrnL and rrnS genesmeasured 1,261 bp and 757

bp, respectively (Table 3).
3.4 Control region

The control region of T. castaneum, a highly variable segment

critical for mitogenome replication and transcription initiation,

spans 1,238 bp between trnI and rrnS (A+T content: 82.80%; AT-

skew: -0.078; GC-skew: -0.001), with population-specific variations:

1,237 bp/82.30% A+T in the Jiangsu population and 1,239 bp/

82.50% A+T in the California population (4). Sequence alignment

revealed 26 single nucleotide variants (SNVs) between the reported

mitochondrial genome control region and the Jiangsu population

(6), 20 SNVs compared to the California population (5), including 7

shared SNVs (Supplementary Figure S3).
4 Discussion

The mitochondrial genome of T. castaneum from sauce-flavor

Daqu, was sequenced as a circular molecule of 15,885 bp with a high

A+T content (71.81%). It includes 13 protein-coding genes (PCGs),

22 tRNA genes, 2 rRNA genes, and a 1,238 bp control region

(82.80% A+T). Key observations include unique initiation codons
TABLE 2 Base composition of different regions of the mitochondrial genome of T. castaneum.

Region A% C% G% T% A+T% G+C% AT_skew GC_skew

Whole genome 39.8 18.38 9.81 32.01 71.81 28.19 0.109 -0.304

nd2 36.42 20 8.76 34.83 71.24 28.76 0.022 -0.391

cox1 29.89 22.94 15.92 31.25 61.14 38.86 -0.022 -0.181

cox2 37.08 22.34 11.39 29.2 66.28 33.72 0.119 -0.325

atp8 45.28 12.58 5.66 36.48 81.76 18.24 0.108 -0.379

atp6 34.08 21.28 10.12 34.52 68.6 31.4 -0.007 -0.355

cox3 31.93 18.96 14.12 34.99 66.92 33.08 -0.046 -0.146

nd3 30.79 20.62 9.89 38.7 69.49 30.51 -0.114 -0.352

nd5 26.09 8.41 18.51 46.99 73.09 26.91 -0.286 0.375

nd4 25.07 8.98 18.64 47.31 72.38 27.62 -0.307 0.35

nd4l 27.08 7.99 17.01 47.92 75 25 -0.278 0.361

nd6 34.55 19.8 7.47 38.18 72.73 27.27 -0.05 -0.452

cob 31.84 22.89 12.02 33.25 65.09 34.91 -0.022 -0.312

nd1 24.82 9.67 17.03 48.48 73.29 26.71 -0.323 0.276

rrnL 43.46 16.57 7.38 32.59 76.05 23.95 0.143 -0.384

rrnS 34.48 7 17.04 41.48 75.96 24.04 -0.092 0.418

Control region 42.14 4.29 4.29 49.29 91.43 8.57 -0.078 0
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TABLE 3 Summary of the mitogenome of T. castaneum.

Feature Strand
Position

(start-end)
Length
(bp)

Initiation_codon Stop_codon Anticodon Intergenic_nucleotide

trnI N 1-63 63 GAT -3

trnQ C 61-129 69 TTG -1

trnM N 129-196 68 CAT 6

nd2 N 203-1,207 1,005 ATA TAA -2

trnW N 1,206-1,272 67 TCA -1

trnC C 1,272-1,332 61 GCA 2

trnY C 1,335-1,398 64 GTA 4

cox1 N 1,403-2,941 1,539 CTG TAA 1

trnL2 N 2,943-3,007 65 TAA

cox2 N 3,008-3,692 685 ATA T(AA)

trnK N 3,693-3,763 71 CTT 33

trnD N 3,797-3,862 66 GTC

atp8 N 3,863-4,021 159 ATT TAG -7

atp6 N 4,015-4,686 672 ATG TAA -1

cox3 N 4,686-5,471 786 ATG TAA 2

trnG N 5,474-5,535 62 TCC

nd3 N 5,536-5,889 354 ATT TAG -2

trnA N 5,888-5,954 67 TGC -1

trnR N 5,954-6,016 63 TCG -1

trnN N 6,016-6,079 64 GTT

trnS1 N 6,080-6,138 59 TCT

trnE N 6,139-6,204 66 TTC -2

trnF C 6,203-6,267 65 GAA 1

nd5 C 6,269-7,981 1,713 ATA ATT -3

trnH C 7,979-8,043 65 GTG -3

nd4 C 8,041-9,376 1,336 ATG T(AA) -7

nd4l C 9,370-9,657 288 ATG TAA 2

trnT N 9,660-9,722 63 TGT

trnP C 9,723-9,788 66 TGG 2

nd6 N 9,791-10,285 495 ATC TAA -1

cob N 10,285-11,424 1,140 ATG TAA -2

trnS2 N 11,423-11,490 68 TGA 17

nd1 C 11,508-12,458 951 TTG TAG

trnL1 C 12,459-12,522 64 TAG

rrnL C 12,523-13,783 1,261 20

trnV C 13,804-13,872 69 TAC

rrnS C 13,873-14,629 757 623

Control
region

N 14,648-15,885 1238 –
F
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for cox1 (CTG) and nad1 (TTG), differing from previously reported

populations, and a frameshift mutation in nad3 caused by a

thymine insertion at position 5,594, which altered the open

reading frame (ORF) while preserving downstream structural

domains. The control region showed minor variations in length

(1,238 bp) and A+T content (82.80%) compared to the Jiangsu

(1,237 bp; 82.30% A+T) and California (1,239 bp; 82.50% A+T)

populations (5, 6).

The PCGs of the mitochondrial genome reported in this study

differ from those of two previously reported populations, including

single nucleotide variants (SNVs) and insertions/deletions (indels).

SNVs caused nonsynonymous mutations in all genes except atp6

and cox3. These mutations altered amino acid sequences, potentially

modifying subunit secondary structures and interactions. We

hypothesize that the observed SNVs may confer advantages in

Daqu-adapted T. castaneum. This hypothesis requires validation

through: (1) thermal tolerance tests comparing survival at 60-65 °C;

(2) metabolic assays of detoxification enzymes; (3) fitness

assessments tracking development and reproduction. A T-base

insertion in the nad3 gene changed its initiation site, resulting in

distinct differences in the first 20 amino acids compared to the nad3

genes of the Jiangsu (6) and California (5) populations, while

subsequent sequences remained nearly identical. The nad3
Frontiers in Insect Science 06
frameshift may signify adaptive remodeling under Daqu’s unique

stresses, mirroring T. castaneum mitochondrial adaptations to

environmental pressures. For instance, in cold-adapted Laodelphax

striatellus, cytB/nad5mutations enhance ATP synthesis efficiency by

27% at 4°C despite reduced flight capacity (13); similarly, Curculio

chinensis exhibits altitude-driven divergence in atp6/8 genes (dN/

dS=0.38) to optimize hypoxia tolerance (14). Analogously, the nad3

frameshift mutation could reconfigure energy metabolism for

Daqu’s high-temperature (60–65 °C) and acidic milieu, though

functional validation remains essential.

The control region’s exceptional variability—demonstrated by

length polymorphisms (1,238 bp vs. 1,237/1,239 bp in comparative

strains) and 26 SNVs relative to the Jiangsu population (see Results

3.4)—aligns with its reduced selective constraints. This permits

accumulation of neutral mutations through mechanisms like G-C

tandem repeat expansion (15) and elevated mutation rates (16),

paralleling patterns in Psittaciformes (17).
5 Conclusions

This study presents the first mitochondrial genome of T.

castaneum adapted to sauce-flavor Daqu (15,885 bp; GenBank
FIGURE 2

Distribution of single-nucleotide variants (SNVs) in protein-coding genes (PCGs) across T. castaneum populations. (A) SNV density versus Jiangsu
strain (KM009121). (B) SNV density versus California strain (NC_003081).
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PV563855), revealing population-specific signatures including

unique initiation codons (cox1 CTG, nad1 TTG), an nad3

frameshift mutation, and control region polymorphisms. While

methodological variations may influence genomic interpretations,

these features suggest potential responses to Daqu-specific

conditions like organic acids and high-temperature fermentation.

Future investigations could examine functional implications

through enzyme activity measurements and expanded

geographical sampling across Chinese baijiu production regions,

providing deeper insights into pest adaptation mechanisms relevant

to fermented food industries.
Frontiers in Insect Science 07
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The sequencing depth and coverage map for mitochondrial genomes.
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Predicted secondary structures of tRNA products encoded by tRNA genes.
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(R) trnS2 (S) trnT (T) trnV (U) trnW (V) trnY.

SUPPLEMENTARY FIGURE 3

Alignment and sequence similarity analysis of Control region.
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