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Introductiom:Habitat fragmentation alters environmental structure and imposes

selective pressures on dispersal-related traits in insect vectors, potentially driving

morphological adaptations that enhance flight performance. In this study,

weinvestigate how landscape metrics influence the size and shape of the head

and wings in two Triatominae species, Triatoma garciabesi and T. guasayana,

which present differing ecological strategies. We hypothesize that individuals

from more fragmented landscapes exhibit phenotypic shifts associated with

enhanced dispersal capacity and increased morphological symmetry.

Methods: To test this, we combined community-based sampling of triatomines

with geometric morphometrics and multiscale landscape metrics. We applied

geometric morphometrics and generalized linear models (GLM)-based analyses

to assess the effects of habitat fragmentation on flight-related morphology.

Results: Our results reveal that T. garciabesi shows increased head asymmetry

and narrower wings in highly fragmented landscapes, while T. guasayana exhibits

subtle shifts in head shape asymmetry and greater sexual dimorphism. In both

species, head and wing sizes tended to be larger in fragmented habitats,

especially in females, suggesting differential morphological responses that may

reflect species-specific dispersal strategies.

Discussion: Habitat fragmentation differentially affects T. garciabesi and

T. guasayana, leading to distinct dispersal syndromes. Triatoma garciabesi

shows greater plasticity, highlighting the role of landscape structure in shaping

adaptive dispersal traits.
KEYWORDS

adaptation, dispersion, fluctuating asymmetry, habitat fragmentation, Triatoma
garciabesi, Triatoma guasayana
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/finsc.2025.1651021/full
https://www.frontiersin.org/articles/10.3389/finsc.2025.1651021/full
https://www.frontiersin.org/articles/10.3389/finsc.2025.1651021/full
https://www.frontiersin.org/articles/10.3389/finsc.2025.1651021/full
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/finsc.2025.1651021&domain=pdf&date_stamp=2025-09-08
mailto:federico.fiad@mi.unc.edu.ar
https://doi.org/10.3389/finsc.2025.1651021
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/insect-science#editorial-board
https://www.frontiersin.org/journals/insect-science#editorial-board
https://doi.org/10.3389/finsc.2025.1651021
https://www.frontiersin.org/journals/insect-science


Fiad et al. 10.3389/finsc.2025.1651021
Background

Habitat fragmentation caused by human activities in natural

environments, altering ecosystem characteristics such as area

reduction, loss of vegetation, changes in microclimatic conditions

and the isolation of remaining vegetation fragments (1, 2). These

changes reduce the size of habitat patches, supporting smaller

populations and increasing the risk of stochastic extinction (3).

Furthermore, greater inter-patch distances increase dispersal

challenges, potentially intensifying the extinction vortex (3, 4).

These effects are further exacerbated by deforestation and global

temperature increases, significantly modifying the ecology and

behaviour of many organisms (5). Some studies on insects

involved in disease transmission show increased prevalence in

deforested areas (6–8). However, other studies suggest that forest

conservation could boost vector abundance, potentially enhancing

their invasion of human environments (9, 10). These contrasting

conclusions may arise from differences in the ecological dynamics,

life history, and phenotypic traits of insect vectors, which exhibit

distinct dispersal behaviours, habitats, and interactions with

their environments.

Dispersal refers to the movement from birth to breeding sites

and involves three stages: emigration, transience, and immigration

(11–14). Its evolution balances the costs and benefits at each stage,

which are shaped by individual, social, and environmental factors

(13, 15–17). Morphological phenotypic traits underlying dispersal

are classified as enabling traits (necessary for dispersal), enhancing

traits (which reduce costs or improve efficiency), and matching

traits (which facilitate non-random movements) (3). In fragmented

landscapes, dispersal is further challenged by increasing distances

between habitat patches, requiring traits that improve efficiency and

reduce costs (18). Adverse developmental environments can

amplify genetic variation or reduce developmental stability,

increasing phenotypic plasticity and enabling individuals to adapt

to fragmented habitats. This plasticity may lead to genetic changes

through genetic assimilation or accommodation (19–22).

Head and wing size and shape are key determinants of dispersal

in insects and influence flight performance, orientation, and energy

efficiency (18, 23–25). Morphological variation in these traits can

mediate responses to selective pressures imposed by habitat

fragmentation, promoting the evolution of forms that optimize

flight in open or structurally complex environments. For instance,

narrower wings may reduce energetic costs during long-distance

flight, while changes in head morphology may relate to enhanced

sensory processing or aerodynamics (23, 24, 26). These associations

between form and function suggest that morphological traits may

reflect adaptations to environmental structure and provide insight

into dispersal dynamics in changing landscapes (3).

Symmetry in biological structures, a fundamental feature

controlled by the genome, reflects developmental stability. In

contrast, deviations from symmetry, such as fluctuating asymmetry

(FA), indicate an organism’s capacity to buffer environmental

variability and maintain consistent phenotypic expression (27, 28).

Together, these mechanisms highlight how phenotypic traits and

their plasticity mediate dispersal processes in fragmented habitats,
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providing insights into the evolutionary dynamics of species.

Specifically, developmental stability buffers environmental variation

and ensures consistent phenotypic expression within individuals

possessing a particular genotype and environment (29). Thus,

research on developmental stability along an anthropization

gradient represents a valuable approach to understanding how

environmental modification influences the dispersive characteristics

of an insect species. To our knowledge, this is the first study using this

approach in Triatominae species (review in 30).

This study focuses on Triatoma garciabesi Carcavallo, Cichero,

Martinez, Prosen & Ronderos, 1967 and T. guasayana

Wygodzinsky & Abalos, 1949 (Hemiptera: Reduviidae,

Triatominae), secondary vectors of Trypanosoma cruzi Chagas,

1909 (Kinetoplastida, Trypanosomatidae), the etiological agent of

Chagas disease. These species sustain the parasite transmission

cycles in sylvatic environments and may connect wild and

domestic cycles (31, 32). Both are spread across Argentina,

Bolivia, and Paraguay (33, 34). Triatoma garciabesi, an arboreal

species linked to birds, inhabits the loose bark of Prosopis sp. and

maintains high population densities year-round (35). In contrast, T.

guasayana, a terrestrial species associated with mammals, resides in

dry cacti, fallen logs, and bromeliads, with population densities

declining in winter (36, 37). Both species are known to invade rural

houses during summer in the western Chaco Seco ecoregion of

Argentina (35, 38–42).

Habitat degradation caused by human activities affects

triatomine populations, promoting their dispersal into artificial

ecotopes (43). Host populations decline and habitat loss impose

selective pressures on flight-related traits, potentially enhancing

mobility in dynamic landscapes (3, 44). For these two species, a

recent study demonstrates that flight-dispersal characteristics

changed in response to varying degrees of anthropization (45).

These findings may be linked to the direct impact of fragmentation

on the phenotypic specialization hypothesis, which proposes that

landscape fragmentation exerts selective pressure on populations.

Combined with greater inter-patch distances, this pressure may

drive the evolution of alternative dispersal strategies (3).

In this research, we aim to understand how landscape

fragmentation acts as a selective pressure on the phenotypic

plasticity of flight-related traits in two species of triatomines.

Particularly, our goal was to determine the effects of landscape

metrics on changes in the shape and size of the head and wings in

both species of triatomines. We hypothesize that habitat

fragmentation promotes phenotypic shifts in flight-related traits in

T. garciabesi and T. guasayana, favouring morphologies associated

with enhanced dispersal capacity. Moreover, these phenotypic changes

are shaped according to the life-history characteristics of each species,

which could lead to different responses depending on their

reproductive strategies, life cycles, and ecological adaptations.

Specifically, we expect individuals from more fragmented landscapes

to exhibit larger head and wings and particular shape modifications

that improve aerodynamic efficiency. Moreover, we predict that

morphological symmetry will be higher in these populations,

suggesting directional selection towards optimal flight performance

rather than increased developmental stress.
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Methods

Study area and insect collection

The study was conducted between 2017 and 2020, during the

warm season’s beginning (October to December) and ending

(February to March). Sampling occurred in 131 dwellings across

14 rural communities in the Cruz del Eje and Ischilıń departments

(northwest Córdoba, central Argentina), situated at the southern

edge of the Gran Chaco region (Figure 1). All dwellings were

georeferenced using a GPS device (Garmin Etrex 30) and

assigned a unique code. This selected region, part of the Arid

Chaco, has historically been endemic for Chagas disease and is

characterized by a semi-desert climate with annual precipitation

ranging from 400 to 700 mm, mostly concentrated in summer. The

area experiences hot summers with temperatures exceeding 40°C

and cold winters with lows below 5°C (46–48). The terrain consists

of gently rolling plains with saline-alkaline soils and diverse natural

vegetation, including Aspidosperma quebracho-blanco Schltdl.,

1861, Prosopis sp. L., 1767, Celtis sp. L., 1753, and Geoffroea

decorticans (Gillies ex Hook. & Arn.) Burkart, 1949 forests and

shrublands dominated by species such asMimozyganthus carinatus

(Griseb.) Burkart, 1939 and Larrea divaricate Cav., 1800 (49). Land

use in the region includes extensive livestock farming and the
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cultivation of various crops, including vegetables, fruits, and

grains (50).

Previous research defined an anthropization gradient with three

levels (45). This gradient was established by classifying land cover

into two categories: natural (including forests, shrublands, and

water bodies) and artificial (comprising bare soil, managed

pastures, and crops). The expansion of the agricultural frontier in

this region has resulted in varying levels of anthropization, ranging

from highly modified agricultural landscapes to areas with

minimally disturbed natural environments. Highly anthropized

areas are characterized by replacing natural vegetation with crops

and pastures, while intermediate areas exhibit a mosaic of human

activity and natural vegetation fragments. Low-anthropization areas

largely preserve native ecosystems. In some regions, poor soil

conditions and water scarcity have constrained agricultural

expansion, leading to lower levels of human intervention.

Community-based vector surveillance was employed to capture

triatomines in the study area (42). During fieldwork, each

household owner received a plastic bag to collect triatomines

found inside their homes. After 15 days, the bags were retrieved

to gather the specimens. In the laboratory, the collected triatomines

were taxonomically identified, sexed, photographed, dissected, and

preserved in 70% alcohol. Taxonomic identification followed the

keys of Jurberg et al. (51) and Lent and Wygodzinsky (52). For this
FIGURE 1

(A) Location of the Dry Chaco Ecoregion in South America (shaded in grey). (B) Study area located in the departments of Cruz del Eje and Ischilıń, in the
northwest of Córdoba Province, Argentina. (C) Characterization of anthropogenic environmental disturbance based on supervised land-cover classification
(45). Black points indicate rural dwellings where triatomines were collected. (D) Landscape characterization around each dwelling. Concentric circles
represent the spatial buffers used for landscape metric extraction, with diameters ranging from 200 to 3000 meters.
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study, only 155 T. garciabesi and 331 T. guasayana collected at the

beginning of the summer season were considered to minimize

seasonal variation (53).
Landscape fragmentation and the
influence on phenotypic variation

Metrics were analyzed to evaluate the relationship between

landscape features and phenotypic traits. Flight-dispersal traits in

T. garciabesi and T. guasayana are known to be influenced by

anthropization pressures (45). Landscape fragmentation can

increase dispersal time and energy costs, reduce success, and

highlight the importance of patch geometry and matrix suitability

(3, 45, 54). Percentage of natural vegetation cover (PLAND),

number of patches (NP), landscape shape index (LSI), and

aggregation index (AI) were selected to assess their influence on

phenotypic changes. FRAGSTATS v4.2.598 was used to calculate

these metrics based on a natural-anthropic land cover map derived

from supervised classification (45). Landscape metrics were

extracted at 15 scales, represented by buffers with diameters

ranging from 200 to 3000 meters around each dwelling, using

QGIS 3.26.2 (Figure 1).
Geometric morphometrics and asymmetry
assessment

We employed landmark-based geometric morphometrics to

quantify variations in head and wing shapes (55). High-resolution

photographs of the dorsal view of the head and both sides of the

wings of all individuals were captured using a Zeiss SV 11

stereomicroscope paired with an Olympus VG 160 digital camera.

Ten landmarks on the head and eleven on each side of the wings

were digitized using tpsDIG v2.32 (56) (Figure 2). A landmark

recording was performed twice for each individual to evaluate
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digitizing errors. Specimens with damaged structures that

impeded accurate landmark placement were excluded from

the analysis.

Landmark coordinates were reflected to generate mirror images,

obtaining shape and size variables for the head and wings (57).

Generalized Procrustes analysis was then used to superimpose all

configurations (58). For the head, this process allowed the

separation of symmetric and asymmetric variation components

through object symmetry analysis. For the wings, the right and

left configurations were compared, treating each side as a separate

configuration (57).
Statistical analysis

To test for directional asymmetry (DA) and FA while

accounting for measurement error, Procrustes ANOVA was

performed (57). The variation among individuals, corrected for

asymmetry effects, represented the symmetric component. The

variation due to differences between the right and left sides

indicated DA, while the individual × reflection interaction

captured FA, reflecting variability in right-left differences among

individuals. Procrustes superimposition and ANOVA were carried

out using the gpagen and bilat.symmetry functions, respectively,

from the geomorph package in RStudio (59).

Then, Procrustes ANOVA and pairwise comparisons were

performed to assess differences in the shape components of the

head and wings with anthropization levels. These results allowed us

to identify the size and shape variables related to landscape metrics

in the species’ heads and wings. The size and shape variables that

showed significant differences across anthropization levels were

used to develop the models.

From the selection of response variables, Partial Least Squares

(PLS) analyses were conducted to identify the scale at which

fragmentation most effectively explained phenotypic variation.

This was determined by the strength of the relationship between
FIGURE 2

Representation of type II morphological landmarks and type I landmarks identified on the head and wings of Triatoma garciabesi and T. guasayana.
(A) Head: 1 and 10, right and left extremities of the clypeus; 2 and 9, the base of the antenniferous tubercle; 3 and 8, the anterior base of the compound
eye; 4 and 7, maximum curvature of the compound eyes; 5 and 6, the posterior base of the compound eyes. (B) Wings: 1, intersection of postcubitus
(Pcu) and Pcu + first anal vein; 2, intersection of Pcu and cubitus (Cu) - Pcu; 3, intersection of Cu and Cu - Pcu; 4, bifurcation of radial (R) and media (M)
veins; 5, intersection of Cu and M - Cu; 6, intersection of M - Cu; 7, on vein M; 8, on the subcostal vein (Sc) at the wing’s extreme edge; 9, intersection
of veins R and Cu; 10, intersection of vein M and the extension of veins Cu - Pcu; 11, intersection of Pcu and Cu.
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landscape metrics and phenotypic traits, including symmetric and

asymmetric shape components and centroid size variations in both

triatomine species. Before the analysis, each landscape metric was

standardized to have a mean of zero and a standard deviation of

one. Variables that did not show significant effects in the Procrustes

ANOVA or the comparisons across anthropization levels were

excluded from further analyses. This decision was made because

no statistical evidence was found to support a relationship between

morphological changes in shape or size and the landscape

metrics analyzed.

To test the relationship between landscape fragmentation and

changes in shape and size components of flight dispersal traits in

both species of triatomines, we performed two different approaches

due to the differences in dimensions of the response variables. To

avoid multicollinearity between variables, the variance inflation

factors (VIFs) were calculated for each model, discarding the

models with a VIF value > 5 (60). A Procrustes regression

analysis was performed using the function procD.lm from the

geomorph R package for the multidimensional shape components.

This function allowed us to assess statistical hypotheses describing

patterns of shape variations for a set of Procrustes shape variables.

To evaluate statistical significance, a permutation-based Procrustes

ANOVA using residual randomization was employed; this analysis

provides a robust evaluation of effects by generating pseudo-values

through the permutation of residuals relative to the fitted model,

preserving the data structure (61). Additionally, a multi-model

inference approach based on the Akaike information criterion

(AIC) was applied to estimate the effects of predictors and their

relative importance on the response variables (60). AIC scores were

calculated using log-likelihoods, incorporating parameter penalties.

The parameter penalty was based on the model’s number of

parameters and the covariance matrix’s dimensions. This

comprehensive approach allowed for a robust evaluation of model

performance while accounting for the multivariate structure of

the data.

For the unidimensional response variable, the centroid size (CS) of

the study structures. The relationship between CS and the landscape

metrics was tested using a generalized linear model (GLM). A

lognormal distribution function and an identity link were used. The

selection of models was based on AIC by comparing nested models

following a backwards procedure (60). The assumptions of normality,

homogeneity and independence in the residuals were met in all the

models. The significant p-value was set at p < 0.05.
Results

Overall patterns of symmetry and
asymmetry concerning anthropization
levels in Triatoma garciabesi and T.
guasayana

As shown in Table 1, the Procrustes ANOVA results revealed

distinct patterns of symmetry and asymmetry concerning symmetry

(individual factor), DA, and FA in T. garciabesi and T. guasayana.
Frontiers in Insect Science 05
In T. garciabesi, the results indicated that the head shape was

statistically significant in FA variation. Symmetry and FA were the

main sources of wing shape and size variation. While in T.

guasayana, head shape, wing shape, and size variation were

statistically significant in symmetry, DA, and FA.

Table 2 presents the summary statistics for the pairwise

comparison of symmetry and asymmetry in head and wing shape

across levels of anthropization for T. garciabesi and T. guasayana.

The results of head shape asymmetry for the first species revealed

differences between intermediate and low levels of anthropization,

with the low level of anthropization exhibiting lower FA values.

Furthermore, the symmetric component of wing shape differed

significantly between intermediate and low levels of anthropization.

Regarding the second species, head shape symmetry displayed

significant differences between high and low anthropization levels

and intermediate and low levels. Head and wing shape asymmetry

also showed significant differences between low and intermediate

levels of anthropization, however, the observed FA differences

between anthropization levels were subtle. Based on these results,

only those terms showing significant effects were analyzed further to

assess whether they varied across levels of anthropization (Table 2).
Effective spatial scales for morphological
responses to landscape fragmentation

Overall, the results obtained from the PLS analyses indicated

different patterns between the species and the shape and size

components. The asymmetric shape (Supplementary Figures S1A-

C) and size (Supplementary Figures S1D-F) of the head, as well as

the symmetric shape (Supplementary Figures S1G-I) and the size of

the wing (Figurea S1J-L) of T. garciabesi were associated with

landscape metrics measured at distances ranging from 600 to

3000 meters from the dwellings. Moreover, the comparison

between the effect size of the PLS from 600 to 3000 meters

showed no significant differences, indicating that the shape and

size components were not scale-dependent. The distances at 200

and 400 meters showed no significant association, meaning that the

shape and size components of the head and wings indicate little

relationship with landscape predictors at those scales. Compared to

T. garciabesi, the asymmetric head shape component of T.

guasayana begins to be associated with landscape metrics from

1400 to 3000 meters (Supplementary Figures S2A-C), while the

symmetric component shows an association from 2400 to 3000

meters (Supplementary Figures S2D-F). The comparison between

the effect size of the PLS in both asymmetrical and symmetrical

components of head shape showed no significant differences. There

was no evidence that the landscape metrics had an influence on the

centroid size (CS) of the head (Supplementary Figures S2G-I),

asymmetry (Supplementary Figures S2J-L), and CS of the wing

(Supplementary Figures S2M-O). Given the flight-dispersal

capacity ranging from 200 to 2000 meters of the triatomines (62,

63) and the results presented in this section, we defined the effect

size at 2000 meters to T. garciabesi and 2400 meters to

T. guasayana.
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Symmetric and asymmetric morphological
responses to landscape metrics in Triatoma
garciabesi

From the total set of models for T. garciabesi, we selected 16 for

head shape and size and wing shape and size, as these models had a

VIF < 5. Three candidate models for the asymmetric head shape

component and two for the symmetric wing shape component had

DAIC < 3 (Table 3). The top-ranked models for asymmetric head

shape included the effects of landscape configuration (AI, LSI) and

composition (NP) measured at 2000 meters. Overall, head shape

asymmetry increased with higher number of patches and landscape

shape index but decreased with aggregation index (Figures 3A-C).

The highest level of asymmetry was observed in the compound eyes,

with greater deformation occurring in landscapes with numerous

patches, higher landscape shape index, and lower aggregation index.

Meanwhile, the best-ranked models for symmetric wing shape

included sex and number of patches as predictor variables
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(Figures 3D, E). Wings were broader and more rounded in

landscapes with fewer patches, whereas in landscapes with

numerous patches, they were narrower and more pointed.

As with the asymmetric component of the head, three models

with DAIC < 3 were selected for the centroid size of the head

(Table 3). The top-ranked models included numer of patches,

aggregation index, landscape shape index, and sex as factors

associated with changes in CS. We observed a positive linear

relationship between CS and number of patches and landscape

shape index, suggesting that head size tends to be larger in

landscapes with numerous patches of complex shapes (Figure 4).

Additionally, there was a negative relationship between head CS

and aggregation index. Regarding the CS of the wing, the top-

ranked models included number of patches, PLAND, and sex as

predictor variables. The model revealed a positive linear

relationship between number of patches and CS, indicating that

wing size tends to be larger in landscapes with numerous patches.

Additionally, female wings were larger than those of males.
TABLE 1 Results of Procrustes ANOVA for the effects of individual, side, and their interaction on the shape of the head and wing and wing size in
Triatoma garciabesi and T. guasayana.

Species Module Factor Df SS F p-value

Triatoma garciabesi

Head Shape

Individual 94 0.135 1.88 0.079

Side 1 0.001 1.661 0.002**

Individual x side 94 0.071 6.887 0.0001***

Error 190 0.021

Wing

Shape

Individual 93 0.158 4.443 0.0010**

Side 1 0.0002 0.602 0.083

Individual x side 93 0.035 5.497 0.0001***

Error 188 0.013

Size

Individual 93 1.05e-05 10.704 0.0001 ***

Side 1 6.90e-09 0.652 0.228

Individual x side 93 3.65e-06 3.725 0.0001 ***

Error 188 1.98e-06

Triatoma guasayana

Head Shape

Individual 261 0.28 1.868 0.007**

Side 1 0.0007 1.223 0.0003**

Individual x side 261 0.15 6.97 0.0001***

Error 524 0.043

Wing

Shape

Individual 287 0.476 4.308 0.0001***

Side 1 0.0007 1.796 0.004*

Individual x side 287 0.11 6.891 0.0001***

Error 576 0.032

Size

Individual 287 2.98e-05 20.282 0.0001 ***

Side 1 1.76e-07 34.33 0.0001 ***

Individual x side 287 1.45e-05 9.851 0.0001 ***

Error 576 2.95e-06
Df, degrees of freedom; SS, sum of squares; F, Goodall F ratio; Z, Z-score. *p<0.05, **p<0.005, ***p<0.001.
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TABLE 2 Pairwise comparisons of shape symmetry and asymmetry in the head and wing of Triatoma garciabesi and T. guasayana across levels of anthropization.

Species Module Shape component Level of anthropization Distance between vectors Upper Confidence Limit (UCL 95%) p-value

1.09 0.378

0.99 0.678

0.77 0.731

1.31 0.719

1.19 0.357

0.94 0.037*

1.25 0.083

1.15 0.174

0.89 0.006**

0.89 0.627

0.83 0.252

0.64 0.703

0.49 0.163

0.51 0.036*

0.40 0.0001***

0.60 0.112

0.62 0.057

0.48 0.004**

0.65 0.967

0.66 0.364

0.49 0.120

0.46 0.286

0.47 0.728

0.35 0.015*
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Triatoma garciabesi

Head

Symmetry

HI 0.77

HL 0.57

IL 0.42

Asymmetry

HI 0.73

HL 0.87

IL 0.97

Wing

Symmetry

HI 1.17

HL 0.98

IL 1.06

Asymmetry

HI 0.56

HL 0.66

IL 0.38

Triatoma guasayana

Head

Symmetry

HI 0.42

HL 0.53

IL 0.71

Asymmetry

HI 0.54

HL 0.61

IL 0.60

Wing

Symmetry

HI 0.27

HL 0.48

IL 0.44

Asymmetry

HI 0.36

HL 0.28

IL 0.40

Comparison groups between levels of anthropization.
HI, High level vs Intermediate level; HL, High level vs Low level; IL, Intermediate level vs Low level.
*p<0.05, **p<0.005, ***p<0.001.
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However, the model did not reveal a significant relationship

between wing size and PLAND (Figure 4).
Symmetric and asymmetric morphological
responses to landscape metrics in Triatoma
guasayana

The VIF calculated for the models allowed us to select 24

models for head shape and size and 21 for wing shape and size.

Six models with DAIC < 3 were selected for the head shape: two for

the symmetric component and four for the asymmetric component

(Table 3). Only one model was selected for a symmetric wing shape.

The top-ranked model for the symmetric head shape included

number of patches and sex, while the models of asymmetric head

shape contained PLAND, number of patches, aggregation index and

landscape shape index as predicted variables. All the landscape

metrics were measured at 2400 meters in this case. For symmetric

head shape, the models indicated a positive linear relationship with

number of patches (Figure 5A). In landscapes with few patches, the

head shape was elongated in the anteroposterior direction and

wider laterally. In contrast, in landscapes with numerous patches, it
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became more compressed in both the anteroposterior and lateral

directions. Furthermore, we observed differences between sexes in

the symmetric head shape (Figure 5B).

The models revealed a positive linear relationship for asymmetric

head shape with PLAND, number of patches, aggregation index, and

landscape shape index measured at 2400 meters (Figures 5C-F). The

shapes derived from the models exhibited subtle changes in

asymmetry, primarily in the region extending from the clypeus to

the base of the compound eyes. Head asymmetry was low in landscapes

with higher PLAND and aggregation index values and lower number

of patches and landscape shape index values. Conversely, head

asymmetry was greater in landscapes with lower PLAND and

aggregation index values and higher number of patches and

landscape shape index values. In the highest recorded asymmetry

values, slight deformations were observed in the region mentioned

above, shifting towards the right and generating a head with a slight

curvature. Meanwhile, the best-ranked model for symmetric wing

shape included only sex as a predictor variable (Figure 5G).

One head and wing centroid size model with DAIC < 3 was

selected (Table 3). In both the head and wings, sex was the only

predictor variable that explained size variation. Overall, the females

had higher heads and wings than the males (Figures 6A, B).
TABLE 3 Results of model selection (DAIC) for the effects of landscape metrics and sex on the symmetric and asymmetric head and wing shape
components in Triatoma garciabesi and T. guasayana.

Species Module
Response
variable

Model DAIC R2 p-value Model predictors

Triatoma garciabesi

Head

Asymmetry

M4 0 0.21 0.009** AI2000m

M3 1.32 0.18 0.023* LSI2000m

M2 2.24 0.23 0.016** NP2000m

CS

M14 0 0.60 0.0001*** LSI2000m + Sex

M15 0.03 0.60 0.0001*** AI2000m + Sex

M12 0.09 0.60 0.0001*** NP2000m + Sex

Wing

Symmetry
M5 0 0.16 0.035* Sex

M2 0.03 0.26 0.04* NP2000m

CS
M12 0 0.54 0.0001*** NP2000m + Sex

M18 2.00 0.53 0.0001*** NP2000m + PLAND2000m + Sex

Triatoma guasayana

Head

Symmetry
M2 0 0.09 0.0001*** NP2400m

M5 1.09 0.28 0.0001*** Sex

Asymmetry

M1 0 0.09 0.04* PLAND 2400m

M2 0.01 0.09 0.04* NP2400m

M4 0.03 0.10 0.028* AI2400m

M3 0.04 0.10 0.027* LSI2400m

CS M5 0.01 0.40 0.0001*** Sex

Wing
Symmetry M5 0 0.17 0.0001*** Sex

CS M5 0 0.46 0.0001*** Sex
NP, number of patches; LSI, landscape shape index; AI, aggregation index; PLAND, percentage of landscape covered by patches; sex, individual’s sex.
*p<0.05, **p<0.005, ***p<0.001.
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Discussion

Our study further supports the hypothesis that the

fragmentation of the landscape acts as a selective pressure on

developmental stability in structures related to flight dispersion

(3). Previous research by Fiad et al. (45) demonstrated that

anthropization influences T. garciabesi and T. guasayana, leading

to phenotypic changes across an anthropization gradient. However,

the relationship between fragmentation and developmental stability

regarding flight dispersal remained unclear. Here, we examine the

direct impact of fragmentation on developmental stability related to

flight dispersion in two Triatominae species. The primary focus of

this study is that habitat fragmentation due to anthropization

gradients influences the variation in flight-related traits differently
Frontiers in Insect Science 09
between the two triatomine species studied. These differences can

likely be attributed to their life history characteristics and their

varying sensitivity to changes in their surrounding landscape. The

effects of fragmentation caused by anthropization on morphological

traits such as head and wing structure may be more pronounced in

T. garciabesi than in T. guasayana. For T. garciabesi, the greater

degree of asymmetry in the eyes and head and the greater size of the

head indicate a stronger response to landscape fragmentation,

particularly in environments with numerous habitat patches and

higher landscape complexity. These findings may reflect phenotypic

specialization in response to fragmented habitats, supporting the

hypothesis that landscape fragmentation influences dispersal

decisions by increasing costs. These drive phenotypic

specializations that enhance the ability to cross the matrix and
FIGURE 3

Relationship between landscape metrics at 2000 meters through an anthropization gradient on the symmetric and asymmetric shape of the head
(A–C) and wings (D, E) of Triatoma garciabesi. Deformation grids illustrate the shape changes in the corresponding structures (head or wings) along
the gradient of each explanatory variable. NP, number of patches; LSI, landscape shape index; AI, aggregation index; sex, individual’s sex.
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travel longer distances (3). In contrast, T. guasayana exhibited less

pronounced morphological changes, possibly indicating lower

sensitivity to habitat fragmentation or a more rigid response to

landscape modifications. This variation between the species

suggests that the degree of landscape alteration can shape species-

specific adaptations, with T. garciabesi demonstrating greater
Frontiers in Insect Science 10
sensitivity to environmental pressures. Overall, these results

underline the importance of considering the interplay between

landscape characteristics when studying morphological

adaptations in response to habitat anthropization. This study is

the first to examine how landscape fragmentation shapes

morphological changes in two triatomine species.
FIGURE 4

Relationship between landscape metrics at 2000 meters through an anthropization gradient on the centroid size (CS) of the head (A–D) and wings
(E–G) of Triatoma garciabesi. NP, number of patches; LSI, landscape shape index; AI, aggregation index; PLAND, percentage of landscape covered
by patches; sex, individual’s sex.
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FIGURE 5

Relationship between landscape metrics at 2400 meters through an anthropization gradient on the symmetric and asymmetric shape of the head
(A–F) and wings (G) of Triatoma guasayana, obtained from the set of best-supported models under a multimodel inference approach. Deformation
grids illustrate the shape changes in the corresponding structures (head or wings) along the gradient of each explanatory variable. NP, number of
patches; LSI, landscape shape index; AI, aggregation index; PLAND, percentage of landscape covered by patches; sex, individual’s sex.
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Developmental stability and
morphological adaptation to
fragmented habitats in Triatoma
garciabesi

Our findings reveal that head asymmetry differs significantly

between intermediate and low anthropization levels, suggesting that

specific environmental pressures may influence developmental

stability in particular habitats. Previous studies have detected

shape variations between these levels (45), and our results

indicate that these differences may be driven by FA rather than

symmetrical modifications. This aligns with findings in other

Triatominae species, where increased FA has been associated with

environmental stress during insect development (review in 30).

Several stress factors may contribute to this pattern, including

extreme temperatures, changes in vegetation cover, the quality of

food sources from hosts, and exposure to environmental chemicals

such as insecticides (45, 64–68). Beasley et al. (69) postulated that

the relationship between FA and stress is stronger when the source

of stress is anthropogenic. Furthermore, it has been proposed that

this species is sensitive to vegetation changes and landscape features

(40, 45, 68). In this context, environmental stressors such as changes

in the availability of suitable refuges and/or reduced food sources

for this species due to landscape anthropization could be key

factors. Increasing anthropization in the Arid Chaco has led to

the reduction of large extensions of mature forest and a decline in

avian biodiversity (70–73). This process directly affects T. garciabesi

by reducing the availability of both shelters and bird hosts, which

serve as a crucial blood source for this species. The resulting habitat

degradation could further exacerbate the stress experienced by

individuals in more fragmented environments. These stress

factors, associated with habitat loss and reduced food availability,

may directly impact the developmental stability of specific

morphological structures. Our results indicate that habitat

fragmentation increases FA in T. garciabesi, particularly in the

anteocular region, where asymmetry was greatest in highly

fragmented landscapes. In contrast, compound eyes tended to

remain more symmetrical in those environments. FA-driven
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changes in head morphology involved compression of the

anteocular region, resulting in more compact heads with greater

ocular convexity. These characteristics resembled those described

for macropterous individuals of T. guasayana, which tend to have

shorter anteocular distances and smaller head sizes than

micropterous specimens (23, 24, 74). These changes could suggest

potential flight-related adaptations. Alternatively, such

asymmetrical modifications may reflect developmental instability

rather than true adaptation. Since FA reflects perturbations during

development, it may disrupt the integration between eye shape and

head structure, potentially affecting visual performance and limiting

effective dispersal in fragmented landscapes. This altered head

morphology may partially explain the observed reduction in

population density from low to intermediate and highly

anthropized areas (45).

Beyond the head, we also found significant differences in wing

shape symmetry between intermediate and low anthropization

levels. This suggests that habitat fragmentation may influence this

trait through selective pressures that disrupt the canalization

process (22). Additionally, the relationship between wing

symmetry and patch number suggests an adaptation process to

fragmentation. In highly fragmented landscapes with intermediate

levels of anthropization, an adaptive response may arise, favouring

individuals with traits that enhance long-distance flight. In contrast,

phenotypic characteristics may be better suited for short-range

dispersal in less fragmented environments, corresponding to low

or high anthropization levels. Despite these differences in wing

shape, wing asymmetry remained stable across the fragmentation

gradient. This persistence suggests that wing asymmetry may be

relatively conserved and potentially useful as an indicator of local

environmental adaptation (30). Its maintenance could also be

driven by developmental constraints or functional factors such as

flight, which may restrict morphological variability and regulate

developmental stability (3, 75).

Although the centroid size of the head and wings in T.

garciabesi was associated with landscape metrics, the weak

relationship coefficients suggest these effects are not biologically

significant. Only sex emerged as a relevant factor, indicating sexual

dimorphism in those traits and suggesting that females were larger
FIGURE 6

Relationship between landscape metrics at 2400 meters through an anthropization gradient on the centroid size (CS) of the head (A) and wings (B)
of Triatoma guasayana. Sex, individual’s sex.
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than males. The existence of sexual dimorphism is well-known in

Triatominae (76, 77). According to Cox et al. (78) and Fairbairn

et al. (79), sexual dimorphism may be the result of ecological and

reproductive pressures. In triatomines, it could be related to feeding

habits, population density, habitat, or climatic changes (76, 80, 81).

Some authors have proposed that insects with larger heads and

wings have greater dispersal capacity (3, 82, 83). In the context of

the sexual dimorphism observed in this study, this could enhance

flight performance in mated females.
Landscape fragmentation and
morphological resilience in Triatoma
guasayana

Head shape symmetry in T. guasayana differed significantly

between low and intermediate levels of anthropization, as well as

between low and high levels. Additionally, variations in both the

symmetric and FA components of head shape drove differences

between low and intermediate anthropization levels. In contrast,

differences between low and high anthropization levels were solely

attributed to changes in the FA component. The FA component of

wing shape also differed significantly between low and intermediate

levels of anthropization. Previous studies have reported head and

wing shape differences between these levels of anthropization,

suggesting that such changes may reflect morphological

adaptations to enhance flight dispersal in more fragmented

landscapes (45). However, the weak correlation between

landscape metrics and both the symmetric and FA shape

components suggests that landscape fragmentation might

indirectly influence phenotypic plasticity.

Fragmentation may reduce the variation of local conditions

within patches while increasing variation among patches (4). These

local conditions create patch-specific selective pressures that act on

the phenotypic plasticity of the populations inhabiting them,

potentially altering dispersal propensities (3). The less pronounced

morphological changes observed in T. guasayana compared to T.

garciabesi align with previous findings. Our results, along with those

of Fiad et al. (84, 45), suggest that, in this species, seasonality may play

a more significant role than anthropization metrics in shaping flight-

related traits.

In a study conducted in the arid Chaco of La Rioja province, T.

guasayana was more frequently found in areas with low vegetation

cover near houses (≤100 meters) and intermediate vegetation cover

within a 1000 meters radius. Our findings indicate that both the

symmetric and asymmetric components of shape begin to associate

with landscape metrics beyond 2400 meters from houses. This

suggests that these shape components influence dispersal beyond

this distance, to fragmentation metrics such as PLAND, number of

patches, aggregation index, and landscape shape index. These

associations may reflect a direct impact of fragmentation on

developmental stability related to flight dispersal. Wing
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asymmetry mechanically compromises flight performance and

function in insects (85–87).

Triatoma guasayana exhibits a dispersal strategy predominantly

adapted for flight, enabling a greater number of individuals to

traverse the landscape and more frequently invade rural dwellings

(36). Thus, individuals with lower asymmetry in flight-related traits

may have an advantage for dispersal. Individuals of T. guasayana that

develop during winter and emerge as adults in early summer, within a

2400 meters radius around houses, are the most likely to fly and

invade households in the Arid Chaco. In these cases, domestic

animals serve as a key food resource. The availability of such

resources, combined with the surrounding semi-wild environments,

may favour the persistence of wild foci that invade households during

warmer seasons. The relatively lower evidence of developmental

instability within the 2400 meters radius could enable these insects

to explore different environments until suitable ones are identified for

establishment and colony growth. This reflects greater resilience to

environmental pressures associated with anthropization. This pattern

may also explain why, in this area, captures of T. guasayana were

three times higher than those of T. garciabesi, and why their density

index remained similar across anthropization levels (45).

In summary, T. guasayana appears to exhibit greater

morphological stability and adaptability to fragmented

environments compared to T. garciabesi. Its flight-oriented

dispersal strategy and lower developmental instability near human

dwellings may enhance its ability to exploit semi-wild and domestic

ecotones. This resilience may partially explain its higher prevalence

across the anthropization gradient and its potential role as a

persistent vector in rural areas of the Arid Chaco. These findings

have important epidemiological implications, as they suggest that T.

guasayana may maintain high dispersal potential and population

densities even in fragmented landscapes. This, in turn, could facilitate

its role as a bridge vector between sylvatic and domestic

environments, increasing the risk of Chagas disease transmission in

human-occupied areas.
Conclusion

Our results show that habitat fragmentation imposes differential

selective pressures on Triatoma garciabesi and T. guasayana,

leading to divergent dispersal behaviour. T. garciabesi exhibits

higher developmental instability and marked morphological shifts

in fragmented landscapes, suggesting a more plastic and potentially

more energetically costly dispersal syndrome. In contrast, T.

guasayana maintains more stable morphological traits across the

fragmentation gradient, which may reflect a more conservative or

less environmentally responsive dispersal strategy. These species-

specific responses highlight the role of habitat structure in shaping

dispersal-related traits and point out the importance of

incorporating landscape configuration into our understanding of

the adaptive and movement dynamics of these vector species.
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SUPPLEMENTARY FIGURE 1

Effect of landscape metrics, measured at different radius (200 to 3000 m)

around of each visited dwellings, on different morphological traits of Triatoma
garciabesi. Each point in the figure represents the mean Pearson correlation

coefficient (r) of linear regressions, Effect Size (Z) and p-value associated.

SUPPLEMENTARY FIGURE 2

Effect of landscape metrics, measured at different radius (200 to 3000 m)
around of each visited dwellings, on different morphological traits of Triatoma

guasayana. Each point in the figure represents the mean Pearson correlation
coefficient (r) of linear regressions, Effect Size (Z) and p- value associated.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/finsc.2025.1651021/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/finsc.2025.1651021/full#supplementary-material
https://doi.org/10.3389/finsc.2025.1651021
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Fiad et al. 10.3389/finsc.2025.1651021
References
1. Fahrig L. Effects of habitat fragmentation on biodiversity. Annu Rev ecol. evolution
systematics. (2003) 34:487–515. doi: 10.1146/annurev.ecolsys.34.011802.132419
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Córdoba: Sector Provincia de Córdoba. Convenio INTA-PNUD (1989).

48. Cabido M, Zeballos SR, Zak M, Carranza ML, Giorgis MA, Cantero J, et al.
Native woody vegetation in central Argentina: Classification of Chaco and Espinal
forests. . Appl Vegetation Sci. (2018) 21:298–311. doi: 10.1111/avsc.12369
frontiersin.org

https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
https://doi.org/10.1111/ele.13535
https://doi.org/10.1111/ecog.02538
https://doi.org/10.1111/j.1365-2435.2007.01326.x
https://doi.org/10.1016/j.cois.2019.06.002
https://doi.org/10.4269/ajtmh.2006.74.3
https://doi.org/10.4269/ajtmh.2011.10-0041
https://doi.org/10.4269/ajtmh.13-0256
https://doi.org/10.1111/j.1365-2699.2010.02442.x
https://doi.org/10.1371/journal.pone.0057519
https://doi.org/10.1007/s10980-007-9108-4
https://doi.org/10.1111/j.1461-0248.2008.01267.x
https://doi.org/10.1111/mec.14848
https://doi.org/10.1017/S1464793104006645
https://doi.org/10.1111/j.1469-185X.2011.00201.x
https://doi.org/10.1146/annurev.ento.42.1.207
https://doi.org/10.1641/0006-3568(2000)050[0217:ESAAEF]2.3.CO;2
https://doi.org/10.1086/432559
https://doi.org/10.1016/j.actatropica.2008.09.026
https://doi.org/10.1590/0037-8682-0249-2015
https://doi.org/10.1007/s42690-019-00092-9
https://doi.org/10.1007/s42690-019-00092-9
https://doi.org/10.1371/journal.pone.0186441
https://doi.org/10.1186/1471-2148-13-118
https://doi.org/10.1146/annurev.es.17.110186.002135
https://doi.org/10.1146/annurev.es.17.110186.002135
https://doi.org/10.3390/sym7020843
https://doi.org/10.1007/s11692-007-9008-1
https://doi.org/10.3390/pathogens14010098
https://doi.org/10.1016/0035-9203(92)90433-D
https://doi.org/10.1051/vetres/2009009
https://doi.org/10.1186/s13071-017-2350-y
https://doi.org/10.3897/BDJ.8.e58076
https://doi.org/10.1046/j.1365-2915.2000.00254.x
https://doi.org/10.1590/S0074-02761993000100006
https://doi.org/10.1590/S0074-02762001000400004
https://doi.org/10.1093/jmedent/42.4.571
https://doi.org/10.1111/j.1365-2915.2008.00746.x
https://doi.org/10.1111/jvec.12199
https://doi.org/10.1016/j.actatropica.2019.04.028
https://doi.org/10.1016/j.actatropica.2021.106158
https://doi.org/10.1016/j.actatropica.2021.106158
https://doi.org/10.1016/j.pt.2004.10.007
https://doi.org/10.1186/s13071-024-06258-w
https://doi.org/10.1111/avsc.12369
https://doi.org/10.3389/finsc.2025.1651021
https://www.frontiersin.org/journals/insect-science
https://www.frontiersin.org


Fiad et al. 10.3389/finsc.2025.1651021
49. Cabido MR, Zak MR. Vegetación del norte de Córdoba. Secretarıá de Agricultura
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