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and Sporns, 2009). The resulting brain networks are remarkable 
stable in healthy individuals but have been shown to break down 
in various brain disorders. This in turn opens up for the discovery 
of the function of the hubs and connectors that are controlling the 
activity within and between brain networks. We argue that a better 
understanding of the detailed breakdown of the sub-components of 
the resting state networks in brain disorders opens for a principled 
way to discover novel targets with DBS.

IntrInsIc network dynamIcs
Over the last few years the focus of modern neuroimaging has 
started to shift from the study of extrinsic to intrinsic brain activity 
(Biswal et al., 2010). This change has been brought about by the 
realization that while the vast majority of neuroimaging studies 
have been devoted to studying task-related changes in brain activ-
ity, the additional energy associated with this activity is remark-
able low, often less than 5% (Raichle and Mintun, 2006). Instead, 
the majority of brain energy consumption is devoted to intrinsic 
brain activity.

This intrinsic brain activity was mapped during the rest period 
in cognitive studies where researchers found a network of brain 
regions with remarkably high rates of change in metabolic markers 
such as cerebral blood flow, oxygen extraction and BOLD fMRI (Lou 
et al., 1999). This network of brain regions was termed the Default 
Mode Network where the main regions in the network showed the 
largest deactivations during extrinsic cognitive tasks (Raichle and 
Mintun, 2006). While the network was initially thought to subserve 
internal modes of cognition such as representations of self (Buckner 
et al., 2008), this view is challenged by the persistence of the default 
mode network during light anesthesia in humans (Greicius et al., 
2008) and monkeys (Vincent et al., 2006), as well as during early 
stages of sleep (Fukunaga et al., 2006).

IntroductIon
Over the last couple of decades, deep brain stimulation (DBS) 
has shown remarkable clinical efficacy and safety in helping with 
otherwise treatment-resistant problems such as movement disor-
ders and chronic pain (Kringelbach et al., 2007b; Deniau et al., 
2010). The underlying principles and neural mechanisms of DBS 
are not yet fully understood but translational research has shown 
that DBS directly changes brain activity in a controlled manner 
(McIntyre and Hahn, 2010) and that, in principle, the resulting 
effects are reversible (Perlmutter and Mink, 2006). Many chronic 
brain disorders are linked to disturbances in finely balanced oscil-
latory brain networks, and we have previously proposed that an 
important principle by which DBS might work is to help restore 
the balance of resting state networks (Kringelbach et al., 2010). 
Thus the identification and understanding of the structural and 
functional architecture of these neural networks have the potential 
to direct novel targets and treatments with DBS.

The purpose of this perspective is to review the current state-
of-the-art in characterizing the structural and functional architec-
ture of the brain with a view to how this can best be modulated 
through DBS. We will focus on the analysis of the spontaneous 
brain activity that give rise to the intrinsic dynamics of the brain, 
which can be measured as spatially and temporally segregated net-
works (Deco et al., 2011). Some of this activity can be measured 
with functional neuroimaging as spontaneous fluctuations in blood 
oxygen level-dependent (BOLD) functional MRI (fMRI) signal. 
These intrinsic measures are stable across sessions and participants, 
and remarkably quick to acquire over only a matter of minutes 
(Greicius, 2008), which opens up for their use in even severely 
impaired patient groups. The functional activity is linked to struc-
tural brain connectivity which can now be measured in vivo, and 
which to some extent constrain the functional networks (Bullmore 

Balancing the brain: resting state networks and deep  
brain stimulation

Morten L. Kringelbach1,2,3*, Alexander L. Green3 and Tipu Z. Aziz2,3

1 Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
2 Centre for Functionally Integrative Neuroscience, University of Aarhus, Aarhus, Denmark
3 Nuffield Department of Surgery, John Radcliffe Hospital, Oxford, UK

Over the last three decades, large numbers of patients with otherwise treatment-resistant 
disorders have been helped by deep brain stimulation (DBS), yet a full scientific understanding of 
the underlying neural mechanisms is still missing. We have previously proposed that efficacious 
DBS works by restoring the balance of the brain’s resting state networks. Here, we extend 
this proposal by reviewing how detailed investigations of the highly coherent functional and 
structural brain networks in health and disease (such as Parkinson’s) have the potential not only 
to increase our understanding of fundamental brain function but of how best to modulate the 
balance. In particular, some of the newly identified hubs and connectors within and between 
resting state networks could become important new targets for DBS, including potentially in 
neuropsychiatric disorders. At the same time, it is of essence to consider the ethical implications 
of this perspective.

Keywords: resting state networks, oscillations, spontaneous activity, affective disorders, movement disorders

Edited by:
Chiara Saviane, Scuola Internazionale 
Superiore di Studi Avanzati, Italy

Reviewed by:
Hiroki Toda, The Tazuke Kofukai Medical 
Research Institute Kitano Hospital, 
Japan
Jens Kuhn, University of Cologne, 
Germany

*Correspondence:
Morten L. Kringelbach, Department of 
Psychiatry, Warneford Hospital, 
University of Oxford, Oxford OX3 7JX, 
UK.  
e-mail: morten.kringelbach@psych.
ox.ac.uk

Frontiers in Integrative Neuroscience www.frontiersin.org May 2011 | Volume 5 | Article 8 | 1

PersPective Article
published: 02 May 2011

doi: 10.3389/fnint.2011.00008

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org/Integrative_Neuroscience/about
http://www.frontiersin.org/integrative_neuroscience/10.3389/fnint.2011.00008/abstract
http://www.frontiersin.org/integrative_neuroscience/10.3389/fnint.2011.00008/abstract
http://www.frontiersin.org/people/mortenkringelbach/26131
http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive
http://www.frontiersin.org/Integrative_Neuroscience/editorialboard


Other strands of research have focused on measuring the tempo-
ral correlation of spontaneous low-frequency BOLD signal fluctua-
tions (Biswal et al., 1995). The measurement of these spontaneous 
fluctuations across various brain regions in the absence of an overt 
task has identified multiple functional resting state networks 
including the default mode network (Lowe et al., 1998; Greicius 
et al., 2003). Sophisticated independent component analyses of rest-
ing state patterns have identified at least seven networks which stay 
coherent over several minutes (Damoiseaux et al., 2006). Based on 
their brain components, these networks have been classified in (1) 
primary input–output networks (including sensorimotor, visual, 
auditory regions), (2) higher integrative networks (including atten-
tion, language, default mode, and executive regions; Beckmann 
et al., 2005), and (3) cortico-subcortical networks (including 
structures as the thalamus, basal ganglia, and cerebellum; Fox and 
Raichle, 2007). Interestingly, regions of the default mode network 
will remain tightly coherent but tend to show negative correlations 
with task-positive regions in the other networks.

The intrinsic activity of the human brain must be closely related 
to the large-scale anatomical connectivity between brain regions. 
Techniques such diffusion spectrum imaging and graph theory 
have revealed that the human brain exhibits a special kind of topol-
ogy known as small-world architecture (Watts and Strogatz, 1998), 
which is characterized by high levels of local clustering among 
neighboring nodes (Hagmann et al., 2007; Bullmore and Sporns, 
2009). Some nodes have higher connectivity in comparison with 
other nodes and are called hubs (He et al., 2009). The default mode 
network mostly consists of hubs, and in particular the precuneus 
and posterior cingulate cortex have been proposed to form the 
structural core (Hagmann et al., 2008). In general, structural and 
functional connectivity are linked, with the former predicting the 
latter (Honey et al., 2007). However, strong functional connectiv-
ity can exist between regions with no direct structural connection 
but that indirect connections and inter-regional distance to some 
extent can account for this (Honey et al., 2009).

This opens up the question of why these resting state networks 
exist in the first place. A long line of research has shown that the 
brain is primarily concerned with creating predictions optimizing 
input–output, which are then compared and updated accordingly 
(Friston, 2005). A potential explanation of the brain dynamics at 
rest has therefore been proposed to be linked to this constant state 
of exploration (Deco et al., 2011). The dynamics of the resting 
state networks could represent a metastable state; i.e., a state which 
persists for an extended period of time away from the natural equi-
librium state. The brain is constantly exploring the potential func-
tional network configurations, which over longer time windows will 
come to reflect the anatomical connectivity but over shorter time 
scales may be considerably more varied according to the impact of 
environmental demands. Computational models have shown how 
the important parameters in this process include local and global 
dynamics, noise, and signal transmission delay (Deco et al., 2009).

What has become clear is that neither the general neural dynam-
ics, the structural connectivity, or the functional resting state 
networks are fully formed at birth but are being shaped during 
development (Fransson et al., 2007). As a result, important differ-
ences exist between infants, children, and adults (Gao et al., 2009; 
Supekar et al., 2010; Fan et al., 2011). The maturational processes 

must be driven foremost by extrinsic, environmental demands 
(Power et al., 2010) but also by intrinsic changes such as white 
matter maturation reshaping structural connectivity (Hagmann 
et al., 2010). It has been proposed that the epigenetic influences 
on shaping the neural dynamics of the resting state networks are 
at least as important as genetic factors, and can have a lasting 
impact on a number of important variables influencing quality 
of life, especially during the first 18 months (Parsons et al., 2010). 
One major variable of quality of life is overall hedonic tone, i.e., 
the likelihood of enjoying life and not suffering from anhedonia 
in mental disorders such as depression and anxiety. We have pre-
viously speculated that the default mode network may have an 
important role in shaping our overall well-being (Kringelbach 
and Berridge, 2009) (see Figure 1).

BalancIng restIng state networks In dIsease
In general, resting state networks have been found to undergo 
significant, if sometimes only temporary changes in chronic 
brain disorders such as neuropsychiatric disorders (Greicius, 
2008; Broyd et al., 2009). The causes of these perturbations are 
currently not well understood but it is clear that successful treat-
ments somehow rebalance resting state networks. In disorders 
with no known pathology such as depression and anxiety, the 
subsequent rebalancing can occur spontaneously, or through care-
fully targeted interventions of either a cognitive nature (Teasdale 
et al., 2000) or even through more invasive methods such as DBS 
(Bewernick et al., 2010).

In pathological disorders with known pathologies like 
Parkinson’s disease (PD) or chronic pain, spontaneous rebalanc-
ing is much less common and treatments often relies on heavily 
on understanding the system through the appropriate translational 
methods. In the case of PD, significant progress has been made 
through a number of animal models including the highly success-
ful 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model 
in higher primates (Langston et al., 1983). This model has helped 
identify a number of efficacious DBS targets such as the subthalamic 
nucleus (STN; Bergman et al., 1990; Aziz et al., 1991).

In PD, the loss of dopaminergic cells means that the basic oscil-
lations between cortex and subcortical regions become unbal-
anced. Human studies have found there are strong increases in 
beta (15–30 Hz) oscillatory activity in the STN when the patients 
are without dopaminergic medication, while therapeutic effective 
STN stimulation of larger than 70 Hz has the effect of suppressing 
this noisy activity in the basal ganglia (Brown et al., 2004).

Careful animal and human experimentation have thus given a 
better understanding of some of the fundamental principles of the 
breakdown in PD of how brain regions oscillate and communicate 
(Schnitzler and Gross, 2005). DBS has in turn brought some relief 
for over 60,000 PD patients since the early 1990s.

On the basis of this experimentation, some conclusions can be 
drawn about the neural and systems level mechanisms of action of 
DBS. The effects of DBS are closely linked to at least three factors: 
(1) the stimulation parameters (including frequency, amplitude, 
pulse width, and duration); (2) the intrinsic physiological proper-
ties of the neural tissue which may change with disease state; and 
(3) the interactions between the electrode and the geometric con-
figuration of the surrounding neural tissue and specific anatomy 
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 connectors such as the subgenual cingulate cortex, orbitofrontal 
cortex, ventral pallidum, and nucleus accumbens (Giacobbe et al., 
2009; Bewernick et al., 2010). These reward-related brain regions 
are known to modulate hedonic state and as such could be respon-
sible for the debilitating anhedonia found in affective disorders 
(Kringelbach, 2005; Berridge and Kringelbach, 2008). One possible 
hypothesis is thus that DBS for affective disorders could work by 
modulating the hedonic circuitries in order to alleviate anhedonia 
(Kringelbach and Berridge, 2009; Kringelbach et al., 2010).

novel research avenues
The future of direct brain interventions will rely on having a 
much better understanding of the fundamental nature of intri-
cate dynamics of the resting state networks. Most of the current 
evidence has come from neuroimaging techniques such as BOLD 
fMRI and positron emission tomography which are only indirect, 
correlational measures of neural activity. The dynamic nature of 
the short and long-term brain activity means that we will need a far 
more detailed understanding of underlying signals, including com-
putational modeling (Deco et al., 2011). More temporally suitable 
neuroimaging methods such as magnetoencephalography (MEG) 
are starting to address these shortcomings (Hansen et al., 2010).

In fact, combining MEG and DBS may offer new insights into 
the fine-grained temporal neural dynamics of aberrant brain 
states, while at the same time providing novel insights into the 
fundamental principles as first demonstrated in 2006 (Kringelbach 
et al., 2007a) (see Figure 1C). The technical challenges of using an 
invasive technique with a highly sensitive method are significant 
but not insurmountable. One subsequent study used simultane-
ous MEG and local field potential (LFP) recordings from the DBS 
electrode to demonstrate that an image analysis method called 
beamforming is capable of suppressing the high-amplitude artifacts 
caused by the DBS wire and electrode and extracting artifact-free 
virtual electrode time-series (Litvak et al., 2010). Another study 
using DBS, LFP, and MEG found frequency-specific functional 
connectivity between basal ganglia and cortex in PD, suggesting 

of the targeted region (Kringelbach et al., 2007b). The evidence 
clearly shows that DBS affects multiple neural elements; foremost 
myelinated axons – and to a lesser degree cell bodies.

The fundamental mechanism of DBS is through stimulation-
induced modulation of the activity of larger brain networks 
(Montgomery and Baker, 2000; Vitek, 2002; McIntyre et al., 2004; 
Kringelbach et al., 2007b; McIntyre and Hahn, 2010). This has 
been confirmed by optogenetic experiments in rodents which show 
that the therapeutic effects within the STN can be accounted for 
by direct selective stimulation of afferent axons projecting to this 
region (Gradinaru et al., 2009).

Despite the remarkable successes in treating PD with DBS, it is 
not clear at this point if the existing targets and treatments are the 
most efficacious. The oscillatory activity clearly reflects a variety of 
motor and cognitive–emotional processes but it is not clear how dis-
ease severity or extrinsic task demands affect the neural dynamics of 
PD (Vardy et al., 2010). Neuroimaging studies have, however, shown 
that the default mode network exhibits specific changes in PD (van 
Eimeren et al., 2009; Delaveau et al., 2010). Significant functional dif-
ferences were found in the posterior cingulate cortex and precuneus, 
and connectivity analysis showed that the medial prefrontal cortex and 
rostral ventromedial caudate nucleus were functionally disconnected 
in PD. Some of these changes can be restored with administration of 
levodopa (Delaveau et al., 2010). Yet, so far DBS has not been used in 
any of the affected hubs of the default mode network in PD.

The large body of PD research mapping the underlying mech-
anisms of DBS has not yet been matched by a similar body of 
evidence for the emerging DBS treatment of neuropsychiatric 
disorders (Kopell and Greenberg, 2008). Interestingly, however, it 
should be noted that many of the brain structures involved in move-
ment disorders are also implicated in affective disorders. This is for 
example demonstrated by how severe depression can be reversibly 
induced by DBS for PD (Bejjani et al., 1999; Temel et al., 2006).

From the present perspective, these transient changes are of 
considerable interest taken together with the demonstrated altered 
activity in affective disorders for many of the main hubs and 
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FIgure 1 | (A) The brain’s default mode network is a steady state circuit of 
the brain where activity increases during rest (Gusnard and Raichle, 2001). 
The coloring indicates brain areas with significant levels of blood flow. (B) In 
the normal brain, this brain network can be described in terms of functional 
connectivity graphs. More strongly connected regions (indicated by heavier 
orange lines) are clustered near each other while weakly correlated regions 
are placed further away with the line width proportional to the connection 
strength (Gao et al., 2009). (C) Deep brain stimulation causally alters brain 
activity and future challenges include how to best restore this default network 
in malignant brain disorders. We made a tentative start by using MEG to 

investigate how a deep brain stimulation electrode implanted in the PVG/PAG 
can help a wider network alleviate the suffering of chronic pain (Kringelbach 
et al., 2007a). The three-dimensional rendering shows the significant 
increases in activity in shades of orange, e.g., in regions such as the 
mid-anterior orbitofrontal cortex (white circle), while the other colors 
represent landmark brain structures: thalamus (green), cerebellum (blue), and 
brainstem (light blue). IFG_L, IFG_R left and right inferior frontal gyrus; LTC_L, 
LTC_R, left and right lateral temporal cortex; PCC, posterior cingulate cortex/
retrosplenial; PL_L, PL_R, left and right parietal lobes; vmPFC, ventromedial 
prefrontal cortex.
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resting state networks in disease could bring significant benefits for 
future treatments of chronic brain disorders. The demonstrated 
clinical efficacy and safety of DBS means that this technique is 
an important tool for rebalancing the resting state networks 
(Kringelbach et al., 2010).

In this perspective article, we have reviewed the current evi-
dence for DBS as a tool for modulation of the activity of the highly 
coherent functional and structural brain networks in health and 
disease. In particular, we have focused on how some of the hubs 
and connectors within and between resting state networks of the 
brain could become important new stimulation targets, including 
potentially in neuropsychiatric disorders.

Overall, DBS remains an important tool both for alleviating 
human suffering and for obtaining novel insights into the nature 
of fundamental brain function. Combining DBS with a better 
understanding of the intrinsic activity of the brain may come to 
serve as an important tool for rebalancing resting state network 
activity in chronic brain disorders. Yet, this promising avenue for 
discovering novel DBS targets must be guided by careful ethi-
cal considerations (Kringelbach and Aziz, 2009; Schlaepfer and 
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dIscussIon
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