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Associative forms of synaptic plasticity, including spike-tim-
ing-dependent plasticity (STDP; Abbott and Nelson, 2000; Dan 
and Poo, 2004), state that if neuron A consistently fires 10 ms 
before neuron B the synapse between them will be a strong one. 
However, current synaptic learning rules, such as STDP, do not 
speak effectively to the processing of temporal information. 
Consider two scenarios: (1) presynaptic neuron A fires twice 
100 ms apart and post-synaptic neuron B consistently fires only 
immediately after the second spike in A; (2) again neuron A fires 
twice 100 ms apart, but now neuron B fires only after the first 
spike in A and never after the second one. By most accounts STDP 
predicts that in both scenarios LTP of baseline synaptic strength 
will be induced (note that the pre

1
–post relationship in scenario 

#2 should dominate over potential LTD induced by the post–pre
2
 

relationship). At neocortical synapses this LTP is expected to be 
accompanied by a change in STP toward increased depression. 
But in scenario #1 increased depression is computationally coun-
terproductive if the computation being performed is temporal in 
nature. That is, if the goal is to detect the second spike in A it is 
important for the post-synaptic neuron to discriminate between 
A

first
 and A

second
. This would be best achieved by preferentially 

increasing the strength of the second EPSP from A – changing 
STP towards facilitation.

It is often implicitly assumed that STP is essentially an epiphe-
nomenon of baseline synaptic strength – strong synapses favor short-
term depression and weak synapses favor short-term facilitation. 
However, there is evidence that while CA1 and neocortical LTP are 
both NMDA-dependent they differ in their effects on STP. Although 
LTP results in little or no alteration in STP in CA1 synapses, STP 
of neocortical synapses changes after the induction of LTP or LTD 
(Markram and Tsodyks, 1996; Buonomano, 1999; Selig et al., 1999; 

IntroductIon
Since Donald Hebb’s famous postulate that if neuron A connects 
to neuron B and “repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place in one or both 
cells such that A’s efficiency, as one of the cells firing B, is increased” 
(Hebb, 1949) decades of research have revealed much about the 
rules and mechanisms underlying the long-term changes in syn-
aptic strength thought to underlie learning and memory (Brown 
et al., 1990; Dan and Poo, 2004; Malenka and Bear, 2004). But one 
issue that was not addressed by Hebb, or in current learning rules, 
is the temporal dimension; specifically, what, if anything, deter-
mines when within a train of presynaptic action potentials should 
a synapse be at its strongest?

Since Eccles et al. (1941) described short-term synaptic plasticity 
(STP) at the neuromuscular junction over 60 years ago, hundreds 
of studies demonstrated that synaptic efficacy is not a constant but 
varies dramatically over the course of hundreds of milliseconds as 
a result of recent activity (Zucker, 1989; Zucker and Regehr, 2002; 
Abbott and Regehr, 2004). However, in contrast to long-term syn-
aptic plasticity, which is embedded in a solid theoretical framework, 
the computational function of changes in synaptic strength on the 
order of tens to hundreds of milliseconds is not known. On theo-
retical grounds STP has been proposed to contribute to a number 
of different functions including temporal processing (Buonomano 
and Merzenich, 1995; Buonomano, 2000; Fortune and Rose, 2001), 
gain control (Abbott et al., 1997; Chance et al., 1998; Rothman et al., 
2009), network stability (Galarreta and Hestrin, 1998; Sussillo et al., 
2007), and working memory (Maass and Markram, 2002; Mongillo 
et al., 2008). But there has been little discussion regarding long-term 
plasticity of STP as a means to enhance the underlying neuronal 
computations (see however Seung, 2003).
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Bender et al., 2006; Hardingham et al., 2007). Additionally, neocor-
tical STP also undergoes developmental and experience-dependent 
changes, and varies from one cortical area to another (Finnerty et al., 
1999; Reyes and Sakmann, 1999; Atzori et al., 2001; Zhang, 2004; 
Speed and Dobrunz, 2008). While these observations suggest that the 
changes in STP are not simply an epiphenomenon, it remains pos-
sible that the observed changes in STP are all secondary to the control 
of initial synaptic strength. An issue that has not been addressed 
experimentally or theoretically is whether STP itself is governed by 
learning rules that operate independently and in parallel of those 
governing long-term plasticity of baseline synaptic strength.

Given the inherent temporal complexity of neuronal firing 
patterns and the importance of temporal information to corti-
cal computation (Mauk and Buonomano, 2004), we suggest that 
synapses may have mechanisms in place to control the dynamics of 
STP. For example, given a train of presynaptic spikes, synapses may 
come to express short-term depression or facilitation depending 
on whether the post-synaptic cell consistently fires early or late in 
the train, respectively.

MaterIals and Methods
To examine the contribution of STP to the discrimination of spa-
tiotemporal stimuli we used a simple feed-forward network, in 
which the afferents convey the time-varying patterns generated by 
the stimuli. These inputs synapse onto post-synaptic neurons which 
act as classifiers. Initially these post-synaptic units were simulated 
as integrate-and-fire neurons (Figures 1 and 2), and latter as a 
multi-compartmental model with active conductances (Figure 4).

Model neuron (sIMple)
Post-synaptic neurons were modeled as conductance based 
 integrate-and-fire (IAF) units:

dV t

dt
g V g E V g E VL

( )
( ) ( )= − ⋅ + − + −Ex Ex Inh Inh

 
(1)

where g
L
 = 0.1 μS, E

Ex
 = 3 mV, and E

Inh
 = −3 mV. If V(t) > 1 mV a 

spike was elicited and V(t + dt) was reset to 0. Upon arrival of a 
presynaptic action potential g

Ex
 and g

Inh
 increase by the effective 

synaptic efficacy (see below) and decay exponentially back to 0 
with time constant τ

Ex
 = τ

Inh
 = 5 ms. For the simulations shown in 

Figure 2 a “noise current” withdrawn from a normal distribution 
with mean 0 and SD 0.015 was also present.

Model neuron (coMplex)
In Figure 4 we implemented temporal synaptic plasticity in a 
reconstructed layer 3 pyramidal neuron, which includes a variety 
of passive and active membrane mechanisms (described in detail 
in Mainen and Sejnowski, 1996). The model neuron was obtained 
from the SenseLab Project database at http://senselab.med.yale.
edu/ (ModelDB database, accession number #2488). The model 
incorporates the following currents:

•	 low	density	Na+ channels in the soma and dendrites, and high 
density Na+ channels in the axon hillock and initial segment 
(Hodgkin and Huxley kinetics);

•	 fast	K+ channels in the axon and soma (Hodgkin and Huxley 
kinetics);

•	 slow	 non-inactivating	 K+ channels responsible for spike 
afterhyperpolarization;

•	 calcium-dependent	K+ channels;
•	 high-threshold	Ca2+ channels.

This model was also implemented using the NEURON simula-
tion environment (Hines and Carnevale, 1997) and it contained 
104 dendritic compartments. Each compartment was comprised by 
an odd number of segments, each of which no longer than 50 μm, 
which resulted in a total of 242 dendritic segments. The total num-
ber of segments being simulated, including soma and myelinated 
axon, was 283. The resting membrane potential was approximately 
−70 mV, the observed action potential threshold was approximately 
−56 mV and the input resistance in response to 0.1 nA of injected 
current was 95 MΩ. The densities and distribution of the current 
mechanisms were based on the original publication. This imple-
mentation resulted in a model neuron that would frequently fire 
action potentials as small bursts of doublets in response to evoked 
inputs (as originally reported). All the simulations were performed 
with an integration time step of 0.1 ms, at a temperature of 37°C.

In vivo neurons are constantly bombarded by ongoing back-
ground synaptic activity which causes significant instantaneous 
fluctuations in the membrane potential and resistance. To mimic 
these effects, we simulated noise by adding background synaptic 
activity, which we modeled by randomly distributing 1000 synapses 
(800 Ex and 200 Inh) on the dendritic tree. Excitatory and inhibi-
tory synapses, respectively, were spontaneously active at rates of 1 
and 5.5 Hz (Poisson statistics; Ho and Destexhe, 2000), had reversal 
potentials of 0 and −80 mV, respectively, and upon activation their 
conductance would increase instantaneously and decay exponen-
tially with time constants of 5 and 10 ms (Chance et al., 2002). 
Background synaptic weights were adjusted such that background 
excitation and inhibition were “balanced” (Chance et al., 2002), i.e., 
background synaptic activity did not alter the model neuron’s aver-
age resting membrane potential compared to rest. The empirically 
determined background excitatory and inhibitory synaptic weights 
were 0.12 and 0.35 pA, which caused a decrease in the input resist-
ance of the cell to 74 MΩ (note that the inhibitory synapses were 
part of the “background” noise, they carried no signal and were not 
plastic). Moreover, background synaptic activity caused significant 
variations in the membrane potential as expected, resulting in a 
“basal” V

m
 SD of 0.5 mV (Figure 4C). This SD value is on the low 

end of the values observed in vivo but in this model an SD of just 
2.3 mV, and zero weight on the “driving inputs” (Chance et al., 
2002), would be sufficient to cause spontaneous firing at 0.4 Hz, 
essentially leaving no room for an increase in the weights of the 
excitatory synaptic inputs. The “driving” input synapses had the 
same characteristics as the excitatory background synapses, except 
that they were active at the times specified by the Poisson input 
patterns, their synaptic weight was plastic and, when indicated, 
they exhibited short-term dynamics.

sIMulatIon of short-terM synaptIc plastIcIty
Short-term synaptic plasticity was simulated as described previ-
ously (Markram et al., 1998a; Maass and Markram, 2002; Mongillo 
et al., 2008). Briefly, STP is characterized by three parameters: U 
(fraction of synaptic efficacy used by the first action potential), 
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other hand, if the post-synaptic neuron fires at any point dur-
ing a “negative” stimulus the synaptic weights of each synapse 
are decreased in proportion to their contribution to the incorrect 
spike.

Neurons had 10 incoming synapses, with initial strengths [0 
0.01] (Figures 1, 2) or [0 10−4] μS (Figure 4) drawn from an uni-
form distribution. To determine the change in the post-synaptic 
weight (∆w) at each learning step the tempotron learning kernel 
was normalized to 1 and multiplied by a constant of 10−3 (Figures 1 
and 2) or 2 × 10−4 (Figure 4), which determines the learning rate. 
∆w was divided by U to normalize the changes in synaptic strength 
(U alters the temporal profile of the PSP, which can slow the effec-
tiveness of the tempotron learning rule) and the synaptic weights 
were bounded between [10−9 and 0.15] μS.

teMporal synaptIc plastIcIty
There are a number of different potential implementations for the 
plasticity of the U, τ

D
, and τ

F
 variables (previously discussed in 

abstracts: Carvalho and Buonomano, 2008; Gutig et al., 2008). Here 
we focus on a rule that changes the U parameter. We have explored 
similar types of rules to control τ

D
 and τ

F
, however they did not 

generally improve performance significantly compared to U plas-
ticity alone (see below), and since plasticity of the time constants 
is more speculative these results are not included here.

Since the value of U should be dependent on the timing and num-
ber of presynaptic spikes in relation to the post-synaptic spike, a vari-
able that tracks the presynaptic spike train is required. Thus we defined 
a variable S that reflects the number of spikes at each presynaptic ter-
minal, and can be thought of as a saturating presynaptic Ca2+ sensor:

dS

dt

S S S

S
t t

s

n

n

= − +
−( ) ⋅ −( )∑τ

δmax

max

( )

 
(4)

where τ
S
 (1 s) and S

max
 Eq. 4 represent the decay time constant and 

maximal value of S, respectively.
Since low and high values of U favor facilitation and depression, 

respectively, we used an equilibrium based equation (Eq. 4) to control 
U. At the time of the post-synaptic spike the presynaptic variable U 
(which in this model relates to P

r
) of each synapse i was updated by:

∆U
U F t dt S t

F F t dt S

U

U U

=
− −( )( ) ⋅ < ( ) ≤

− −( )( ) ⋅

max pre post

pre

if

if

α

α

0 1

ttpost( ) >





 1
 

(5)

where t
pre

 represents the time of the last presynaptic spike to pre-
cede t

post
, and FU  corresponds to a reasonable equilibrium or default 

value of F (recall that F is essentially the running value of U Eq. 
2) at the time of the post-synaptic spike (in all simulations shown 
here a value of 0.5 was used, Table 1). Thus if the post-synaptic 
spike occurs after one presynaptic spike (S < 1; or well after the last 
presynaptic spike) U will converge towards U

max
 (0.9) and favor 

paired-pulse depression (PPD). If the post-synaptic spike occurs 
after more than one presynaptic spike (S > 1) U will converge 
towards an appropriate value that will yield F FU=  at the time of 
the last presynaptic vesicle release to precede the post-synaptic 
spike. Note that the value of F at the time of the last presynaptic 
spike is used because it reflects the degree of facilitation the last 
time the synapse was used – which is ultimately what contributes 

τ
D
 (time constant of recovery from depression) and τ

F
 (time con-

stant of synaptic facilitation). High values of U, which is bounded 
between 0 and 1, favor depression and low values facilitation. U 
together with τ

D
 and τ

F 
control the time-varying values of depres-

sion (D) and facilitation (F) variables. D is best thought of as a 
recovery variable, and the kinetics of D and F at each synapse are 
described by:

dD

dt

D
D F t t

D

n
n

= − − ⋅ ⋅ −( )∑( )1

τ
δ

 
(2)

dF

dt

U F
U F t t

F

n
n

= − + ⋅ − ⋅ −( )∑( )
( )

τ
δ1

 
(3)

The presynaptic spike train at each synapse is represented by 
Σ

n
δ(t − tn), where the Dirac function δ(t) equals 0 at all values 

except when there is a presynaptic spike at time t, when it equals 
1. The initial values of D and F are 1 and U, respectively. When 
there is a presynaptic spike, immediately after synaptic release, D 
is decreased by DF, and recovers thereafter to 1 with time con-
stant τ

D
. Similarly, upon a presynaptic spike, F is increased by 

U(1 − F) and subsequently recovers back to U with time constant 
τ

F
. Hence, F is related to the degree of facilitation and its initial 

value (U) represents an unfacilitated synapse. Presynaptic efficacy 
is determined by the product of D and F. Total effective synaptic 
efficacy was obtained by multiplying the presynaptic efficacy with 
the post-synaptic weight, w (see below). In Figure 1 τ

D
 = 100 ms, 

τ
F
 = 200 ms, and the weights w were 1.00 and 0.08 for the “PPF 

only” and “PPD only” conditions, respectively. In all simulations 
U was bounded between 0.1 and 0.9 (except in Figure 1, where U 
was bounded between (0.05 and 0.95) to improve visualization. 
Unless otherwise noted the values of τ

D
 and τ

F 
were selected from 

a uniform distribution between 1 and 1200 ms.

stIMulI
Stimuli were composed of 10 inputs, and the duration of each pat-
tern was 250 ms. The inputs followed random Poisson statistics: 
at each time point the presence or absence of a spike was drawn 
from a uniform distribution set to yield an average rate of 20 Hz. A 
refractory period of 5 ms was imposed, which recovered with a time 
constant of 2 ms. Each stimulus set consisted of five spike patterns 
which were presented randomly, for a total of 5 × 500 presentations 
(Figure 2) or 5 × 200 presentations (Figure 4). During testing the 
stimuli were presented in the forward direction (which was used 
for training), and in the reverse direction. A total of 20 different 
stimulus sets were built from different random number seeds, each 
set was tested on a different simulated neural network, each also 
based on different random number generator seeds.

supervIsed learnIng rule
We used the tempotron learning rule (Gutig and Sompolinsky, 
2006) to train each neuron to respond exclusively to one target 
(positive) Poisson pattern but not the others (negative patterns). In 
brief, in this supervised learning rule, if the post-synaptic neuron 
did not fire to the target (“positive”) stimulus the weights of the 
synapses whose activity contributed to the maximum voltage are 
increased in a manner proportional to that contribution. On the 
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to the behavior of the post-synaptic neuron. This results in a more 
efficient learning rule in part because ∆U is adjusted according 
to the potential strength before the synapses was used (for after 
release F can be high either because there was significant facili-
tation or because there was many presynaptic pulses that drove 
F towards its asymptote). While more effective computationally, 
this implementation is less biologically plausible as it requires 
temporarily “storing” the value of F. An implementation that relies 
on the running value of F, however, is also effective, but slower in 
converging. Note additionally, that although we propose that the 

FIgure 1 | Metaplasticity of short-term plasticity. (A) Shift Problem. The 
goal is for the post-synaptic unit (red) to fire to the shift pattern (left), but not to 
the synchronous pattern (right). (B) If both input synapses exhibit the same 
type of STP the shift problem cannot be solved. The traces depict the voltage 
contribution of each input (light and dark blue) to the total post-synaptic 
voltage (red). PPF or paired-pulse depression in both inputs cannot solve the 
problem because the neuron’s peak response (red trace) will always be to the 
second or first pulse of the Synch pattern, respectively. Each input exhibits 
PPF or PPD depending on whether the inputs have a low or high U, 
respectively. (C) A simple learning rule that adjusts the variable U (“Pr”) at 
each synaptic terminal can solve the shift problem. 

∆U
S t S t

S t S ti
i i

i i

=
⋅ ≤

− ⋅ − >




α
β

( ) ( )
( ( ) ) ( )

1
1 1

. S is a variable that reflects the number of 

presynaptic spikes (see Materials and Methods). Training: Pairing post-synaptic 
depolarization (I) – which generates a spike and acts as the “supervisor” – 
with the coincident presynaptic spikes of the Shift pattern results in PPF at 
synapse 1 and PPD at synapse 2, in addition to conventional post-synaptic LTP 
at both synapses (driven by STDP). The rationale is that the time of the 
post-synaptic spike in relation to a presynaptic spike train determines whether 
those synapses will show PPD (early pairing) or PPF (late pairing). By pairing 
post-synaptic depolarization with either the first or second spikes of the 
synchronous pattern the post-synaptic neuron will also learn to respond 
selectively to the synch pattern.

FIgure 2 | Temporal synaptic plasticity enhances the discrimination of 
complex spatiotemporal patterns. (A) Sample of three (out of five) spike 
patterns of one stimulus set – three forward patterns and their reverses are 
shown. Each pattern is composed of 10 inputs. (B) Performance during 
training on the FWD patterns in an IAF neuron. The blue line depicts learning 
without short-term plasticity and the green line depicts training when 
synapses were assigned random but fixed STP values. In the red line 
condition synapses were “metaplastic,” i.e., U underwent long-term plasticity, 
guided by the temporal synaptic plasticity learning rule. The yellow line depicts 
retraining with the shuffled STP values obtained from the simulations shown 
in red again in the absence of STP plasticity. The tempotron learning rule alone 
(no STP) performed well (blue), yielding 5–7% errors. Here an error is a failure 
to detect the target (forward) pattern or firing to any of the non-target patterns. 
Training for longer periods (2000 trials) or stopping training when a fixed error 
level is achieved (e.g., 20%) yields results similar to the ones shown in (C). (C) 
Performance during testing. Filled bars represent total errors (FWD + REV), 
and the dotted bars represent the REV errors (e.g., an output unit trained to 
recognize pattern #1 responded to pattern #1 presented backwards). Notice 
that the inclusion of synapses with random (but “fixed”) STP values before 
training improves performance significantly (green). However, using temporal 
synaptic plasticity to tune STP (starting with random values) further decreases 
the number of errors (red). (D) Top row: Response of IAF neuron trained to 
recognize the stimulus shown in the first row of A (three overlaid test 
presentations are shown). Synapses do not exhibit short-term plasticity. 
Bottom row: as above, but synapses exhibit STP, whose parameters were 
adjusted by the temporal synaptic plasticity learning rule during training. 
Notice the effectiveness of temporal synaptic plasticity in preventing the 
neuron to fire to the reverse pattern. Each plot shows three trials represented 
in different shades of blue or red.
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there are two possible global patterns of activity. In the “synch” pat-
tern both inputs spike in synchrony; in the “shift” pattern only one 
of the spikes is synchronous (Figure 1A). The task is to discrimi-
nate between both patterns by having the post-synaptic neuron 
fire to the shift but not the synch pattern (we will refer to this as 
the shift problem) – implicit here is that it must also discriminate 
between “Input1 first” and an “Input2 first” shift patterns, mak-
ing this a true spatiotemporal task. One can see that this task is 
impossible to solve if the synapses are static (no STP), because the 
sum of the synchronous EPSPs will be the same independent of 
the global pattern. Additionally one can see that the task is also 
impossible if both synapses exhibit the same type and magnitude 
of STP (Figure 1B). Specifically, if both synapses exhibit paired-
pulse facilitation (PPF) any set of synaptic strengths that result 
in firing to the shift pattern must also produce a spike in response 
to the second pulse of the synch pattern. Similarly, if both syn-
apses exhibit PPD, the maximal response must occur at the first 
pulse of the synch pattern (assuming no temporal summation, but 
the argument holds taking temporal summation into account). 
However, the post-synaptic neuron can respond selectively to the 
shift pattern if input 1 exhibits PPF and input 2 PPD (Figure 1C, 
right panels). Thus the mere presence of STP does not allow this 
simple circuit to solve the shift problem, but if there were a learn-
ing rule that guided synapses toward facilitation or depression, 
depending on the global temporal structure of pre- and post-
synaptic activity, the shift problem can be solved.

Experimental and theoretical studies indicate that STP is generally 
a presynaptic phenomenon that relies on the balance of two oppos-
ing variables, one controlling depression and the other facilitation 
(Gingrich and Byrne, 1985; Varela et al., 1997; Markram et al., 1998a; 
Zucker and Regehr, 2002; Abbott and Regehr, 2004). Depression is 
viewed as arising from the depletion of the readily releasable pool of 
synaptic vesicles (Schneggenburger et al., 2002), while facilitation is 
associated with the accumulation of residual calcium in the presyn-
aptic terminal, which can enhance subsequent transmitter release 
(Katz	and	Miledi,	1968;	Burnashev	and	Rozov,	2005). In a quantitative 
description of STP by Tsodyks and Markram (Markram et al., 1998a) 

trigger for plasticity of U is a post-synaptic spike – which must 
be retrogradely communicated to the presynaptic terminal – that 
because of the nature of the tempotron learning rule it is actu-
ally the peak post-synaptic voltage that triggers STP plasticity. We 
further stress that the current implementation is meant as a proof 
of principle that plasticity of STP improves temporal processing, 
not as a mechanistic hypothesis as to how exactly such plasticity 
would be implemented.

As with the tempotron, presynaptic plasticity was modulated 
with a kernel that equals 1 at t

post
 and decays to 0 for the preceding 

time points (with time constant τ
K
) – thus preventing plasticity of 

short-term plasticity at synapses that fired significantly before the 
post-synaptic spike.

The desired steady-state values and gain constants used in the 
simulations presented here were determined empirically and are 
presented in Table 1.

spIke-tIMIng-dependent plastIcIty
In Figure 1 we used STDP to change the post-synaptic weights. 
STDP was implemented according to (Song et al., 2000):

∆
∆
∆

τ

∆ τw
A t

A ti

d
t d

p
t p=

− <
≥






−

e

e

∆ /

/

0

0
 

(6)

Where w
i
 is assumed to be controlling the synaptic weight 

and ∆t = t
post

 − t
pre

. In Figure 1 initial weights were 0.05 and 
A

p
 = A

d
 = 5 × 10−4, τ

p
 = 30, and τ

d
 = 40 ms. During training the post-

synaptic neuron was depolarized 20 ms after the last spike of path-
way P1 (Figure 1C) or 5 ms after the last spike of the target interval.

results
To provide a simple demonstration of the computational value of 
plasticity of short-term plasticity (which we will refer to as tempo-
ral synaptic plasticity) we describe a toy problem that cannot be 
solved unless STP is “learned.” Consider a post-synaptic neuron 
that receives inputs from two presynaptic neurons. Each of the 
presynaptic neurons fires a pair of spikes separated by 100 ms, but 

FIgure 3 | Complex relationship between final synaptic weights and 
values of U. (A) Change in both w and U over the course of training for one 
simulation. The origin of each arrow marks the initial value of w (initially all weak) 
and U; the arrowhead marks the values of w and U for each synapse after 

training. Arrow colors reflect each of the five output units (each trained to 
recognize a different pattern). (B) Final values of w and U for all synapses across 
all 20 experiments. (C) Initial (blue) and final (red) distribution of U values across 
all 20 experiments.
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U values should be preferred (so that not too much presynaptic 
efficacy is used in the first pulse, allowing for PPF). To mimic a 
potential experimental protocol, during training we depolarized 
the output neuron to make it fire in the middle of the shift pattern, 
and implemented a rule that altered U (see Figure 1C). The rule 
assumes the presence of a parameter S that tracks the number of 
presynaptic spikes and can be thought of as a saturating Ca2+-sensor 
(see Materials and Methods). If the presynaptic neuron only spiked 
once before the post-synaptic spike (S ≤ 1) U increases (favoring 
PPD), in contrast, if it spiked more than once (S > 1) U decreases 
(favoring PPF). This simple rule was able to solve the shift problem 
(Figure 1C), demonstrating that a STP learning rule can solve an 
otherwise unsolvable spatiotemporal problem.

In these simulations we implemented pre- and post-synaptic 
learning rules in an essentially independent manner (see Materials 
and Methods). The presynaptic learning rule, temporal synaptic 

a parameter U determines in part whether a synapse exhibits depres-
sion or facilitation. U reflects the fraction of presynaptic efficacy that 
is used by the first spike, and if one were to assume the presence of 
many synaptic boutons U would be related to the probability of 
vesicle release (Pr), which is known to be one of the determinants 
of whether a synapse exhibits short-term facilitation or depression. 
In addition to U, this description of STP assumes the presence of 
two time constants that govern the time course of depression and 
facilitation (τ

D
 and τ

F
) and, together, these three variables can be used 

to fit a wide range of different flavor of STP (Markram et al., 1998b; 
Gupta et al., 2000), here we will assume these time constants are fixed.

It is possible for the simple circuit presented in Figure 1A to solve 
the shift problem if we assume the presence of a learning rule that 
controls U (“Pr”). If the post-synaptic cell fires after the first presyn-
aptic action potential, high U values are desirable (causing PPD); 
whereas if it fires after the second presynaptic action potential low 

FIgure 4 | Temporal synaptic plasticity applied in realistic conditions 
and background synaptic input. (A) 3D reconstruction of the modeled 
realistic multicompartment neuron. The location of the driving input synapses 
is indicated by the red circles (branches in green). (B) Performance of the 
realistic neuron under the same conditions described in Figure 2C, and as in 
Figure 2C the filled bars represent total errors, and the dotted bars the REV 
errors. The presence of STP + temporal synaptic plasticity outperformed the 
other conditions. (C) Top row: a sample pattern (FWD and REV). Middle row: 

response of the realistic neuron (C and D) to three repeated presentations 
of the stimulus above. Synapses do not exhibit short-term plasticity. 
Bottom row: as above, but synapses exhibit STP, whose parameters were 
adjusted by the temporal synaptic plasticity learning rule during training. 
Notice the effectiveness of temporal synaptic plasticity in preventing the neuron 
to fire to the reverse pattern. This neuron fires in short bursts of doublets and 
the horizontal dotted line indicates the approximate action potential  
threshold.
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are generally firing to the reverse of their target pattern. The lack 
of selectivity to the forward versus reverse patterns indicates that 
discrimination relies in large part not on the temporal structure 
of the stimulus, but on the detection of synchronous spike sets 
that are exclusive to a particular stimulus. The presence of non-
plastic (“fixed”) STP significantly increased the discrimination 
of forward versus reverse spatiotemporal patterns. Specifically, 
when the parameters controlling STP were randomly assigned, 
discrimination improved to 28 ± 2% total errors (green bars in 
Figure 2C). Interestingly in the presence of static STP most of 
the errors were now produced by between pattern confusion – 
indicating that the presence of STP improved direction selectivity. 
Next we incorporated the temporal synaptic plasticity learning 
rule, which resulted in a highly significant improvement in per-
formance (10 ± 2%, red bar). These results establish that plasticity 
of STP improves the discrimination of complex temporal stimuli. 
Importantly, the differences in performance during testing were 
not an outcome of the asymptote during training (i.e., training 
different groups to the same value did not alter the improvement 
produced by STP plasticity). As a further control we shuffled the 
U parameter of each synapse obtained at the end of training across 
synapses, and then retrained the output units with the tempotron 
alone (i.e., the STP parameters were held constant during train-
ing). This procedure resulted in increased percentage of errors 
(29 ± 3%, orange bar in Figure 2C), similar to the levels of the 
“Random STP” condition (green bar). This control shows that if 
STP at each synapse is “tunable” there is a significant improvement 
in performance, which is not a result of the statistical distribution 
of different flavors of STP.

Implicit in the notion that synapses may adjust their short-
term plasticity to better process the temporal features of stimuli 
is that U should not be correlated with post-synaptic weights 
in any simple fashion. To examine the changes in U we plotted 
the pretraining and posttraining values of U and w (for a single 
experiment) in Figure 3A. The plot reveals that changes in U and 
w do not simply reflect initial values or a uniform shift. Across 
all synapses and experiments there was a complex relationship 
between U and w, after training (Figure 3B). Additionally, training 
resulted in a significant change in the distribution of U, the final 
distribution was bimodal with a peak around 0.2–0.3 and one at 
the upper boundary (Figure 3C). Note that in Eq. 5, there are two 
equilibrium points, and when the post-synaptic spike occurs after 
multiple presynaptic spikes U should be driven towards a value 
that results in F FU=  (0.5) at the time of the “last” presynaptic 
spike. The two neighboring “peaks” in Figure 3B (around 0.22 
and 0.3) reflect this. For example, in the case of two presynaptic 
spikes, followed by a post-synaptic spike, a value of U = 0.3 will 
yield a value of approximately 0.51 (U + U * (1 − U); assuming the 
time constant τ

F 
is very large relative to the presynaptic interspike 

interval) at the time of the second presynaptic spike. Similarly in 
the case of three presynaptic spikes, Eq. 5 will drive U to values 
around 0.22. The presence of these multiple “peaks” demonstrates 
that the final values are strongly dependent on the structure of 
the temporal patterns. And the absence of a simple relationship 
between U and w, indicates that in these simulations STP is not 
an epiphenomenon of baseline synaptic strength determined by 
the post-synaptic terminal.

plasticity, governs the dynamics of STP – determining whether 
short-term depression or short-term facilitation is induced and 
the temporal profile of the effective synaptic strength. The post-
synaptic learning rule was STDP, which is responsible for govern-
ing the traditional “weight” of the synapse associated with AMPA 
receptor number and conductance. However, since the mechanisms 
of STP are not fully understood, and because post-synaptic mecha-
nisms may contribute to STP (Rozov and Burnashev, 1999; Bagal 
et al., 2005) it should be stressed that our approach represents 
a simplification.

teMporal synaptIc plastIcIty: dIscrIMInatIon of coMplex 
spIke patterns
We next examined whether plasticity of STP enhances the ability 
of feed-forward networks to discriminate complex spatiotemporal 
patterns (Figure 2A; see Materials and Methods). Output neurons 
were trained to discriminate the input patterns by adjusting the 
post-synaptic weights according to a previously described super-
vised learning rule (Gutig and Sompolinsky, 2006). In brief, if the 
post-synaptic neuron did not fire to the target (“positive”) stimu-
lus the weights of the synapses whose activity contributed to the 
maximum voltage are increased in a manner proportional to that 
contribution. On the other hand, if the post-synaptic neuron fires at 
any point during a “negative” stimulus the synaptic weights of each 
synapse are decreased in proportion to their contribution to the 
incorrect spike. At each trial during training we randomly presented 
one of five spike patterns (each pattern consisted of 10 inputs) 
with average firing rates of 20 Hz. During testing we included the 
reverse (backward) version of the spike patterns to ensure that the 
output units were discriminating the spatiotemporal structure of 
the patterns.

The goal of the output neuron is to adjust its 10 synaptic weights 
in a manner that it fires an action potential selectively to its target 
pattern. In the absence of STP, the tempotron learning rule per-
formed well, yielding 5–7% errors (Figure 2B). However, when we 
tested performance not only in response to the original stimuli, but 
to their reverse patterns as well, performance degraded to 40 ± 1% 
errors (an error is a failure to detect the positive pattern or fir-
ing to any of the non-target patterns, Figure 2C, blue solid bar). 
Analyzing the errors in more detail reveals that the output units 

Table 1 | Values of the constants used in the computer simulations.

Umax 0.9

FU 0.5

D+ 0.1

F+ 0.4

D− 0.2

F− 0.2

αU 0.05

ατD+ 10

ατF+ 10

ατD− 25

ατF− 20

τK 10 ms

τS 1000 ms

Smax 4
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Stevens, 1999; Fortune and Rose, 2001), a hypothesis consistent 
with experimental data suggesting that STP contributes to interval 
selective responses in the frog auditory system (Edwards et al., 
2007). In these previous models, STP contributed to spatiotempo-
ral processing by altering the internal state of complex recurrent 
neural networks. Here we show that even in a simple feed-for-
ward network STP dramatically improves the discrimination of 
time-varying stimuli. Whether in simple or complex networks, 
STP provides a built-in temporal asymmetry that ensures that 
forward and reverse stimuli are distinguishable. This is a critical 
observation because forward versus reverse selectivity is a defin-
ing characteristic of spatiotemporal selective cells (Margoliash, 
1983;	Doupe,	1997;	Wang	and	Kadia,	2001;	Kilgard	and	Merzenich,	
2002). Some models of the discrimination of spatiotemporal pat-
terns rely largely on the synchrony of subsets of inputs (Gutig and 
Sompolinsky, 2006; Masquelier et al., 2008) and thus do not easily 
discriminate between forward and reverse stimuli; yet, perceptu-
ally, forward and reverse stimuli are thoroughly distinct. Indeed, 
the mechanisms the brain uses to recognize spatiotemporal stimuli 
appear to be inherently time asymmetric because robust forward 
versus reverse selectivity is present even if the reverse stimuli were 
never experienced – humans and songbirds do not confuse for-
ward and reverse vocalizations even if they were never exposed 
to the latter.

BIologIcal plausIBIlIty
Here it is proposed that the relative timing of the pre- and post-
synaptic spikes do not simply modulate long-term plasticity, as 
established by associative rules such as STDP (Debanne et al., 1994; 
Markram et al., 1997; Bi and Poo, 1998), but may serve as a “teacher” 
signal to determine whether the synapse should be depressing or 
facilitating. Temporal synaptic plasticity would require mechanisms 
to be in place that regulate STP independently of baseline synaptic 
transmission – a process that would likely rely on changes in the 
regulation of presynaptic Ca2+.

Within the same type of synapse, STP can range from strong 
short-term depression to significant short-term facilitation (Reyes 
and Sakmann, 1999; Cheetham et al., 2007; Hardingham et al., 
2007). Although probability of release or initial synaptic strength 
are often a predictor of whether a synapse exhibits depression or 
facilitation, these correlations are often not very strong and not 
always significant (Reyes and Sakmann, 1999; Atzori et al., 2001; 
Sippy et al., 2003; Cheetham et al., 2007). One explanation for 
the heterogeneity of STP is that the presynaptic mechanisms of 
STP may be partially independent of the learning rules control-
ling baseline PSP strength – as the current model predicts. Here 
the change in STP was implemented through modulation of the 
probability of release, simulated as the parameter U. But, absent 
from our implementation is the fact that synaptic release is proba-
bilistic and that a high percentage of synaptic events are “failures.” 
Although the stochastic nature of synaptic transmission was not 
included in our simulations it should not alter our overall conclu-
sions, with the exception that it may alter the speed of convergence 
of the learning rule.

Since short-term plasticity is primarily governed by presyn-
aptic mechanisms, and because our model relies heavily on 
the number of presynaptic spikes, we propose the mechanisms 

spatIoteMporal selectIvIty In a realIstIc neuron
The above results establish that STP and its plasticity have the 
potential to significantly enhance the ability of a simple feed-
forward circuit to discriminate complex spatiotemporal patterns. 
However, the above simulations relied on single compartment 
integrate-and-fire units, and real neurons have a number of critical 
features that could impact the above results. Particularly, different 
synaptic inputs can have different delays, amplitudes, and interact 
non-linearly with their neighbors depending on their location on 
the dendritic tree. Thus, to examine the robustness of plasticity 
of STP under more realistic conditions we used a reconstructed 
layer 3 pyramidal cortical model neuron containing passive and 
active conductances (Mainen and Sejnowski, 1996) and significant 
spontaneous background activity (Figure 4).

We distributed the driving inputs randomly on the dendritic 
branches around the soma (specifically, on 10 of the 16 quaternary 
branches, Figure 4A), and followed a similar training protocol as 
in Figure 2. With the tempotron learning rule alone governing the 
synaptic weights, the performance on testing was 48 ± 1% (no STP). 
Random STP significantly improved the discrimination of FWD 
versus REV patterns (32 ± 2%), but synapses with temporal synaptic 
plasticity of STP provided the biggest decrease in the number of 
errors (17 ± 2%; the percentage of errors of the shuffled control 
was 31 ± 2%; Figure 4B).

The above results establish a dramatic increase in the ability 
of a single output unit to discriminate complex spatiotemporal 
stimuli patterns when STP is governed by a simple learning rule 
that controls the parameter U. Little experimental data is available 
as to whether the time constant parameters of STP are plastic, but 
since they seem to be governed by a network of Ca2+-dependent 
proteins it is a possibility. To examine whether plasticity of τ

D
 and 

τ
F
 further enhance discrimination we incorporated separate and 

more complex (and less biologically plausible) learning rules for τ
D
 

and τ
F
. Our results revealed that inclusion of time constant plastic-

ity did not significantly increase performance (data not shown).
Nevertheless, there are clear situations in which time constant 

plasticity would be beneficial. One such scenario is a purely tem-
poral internal discrimination task in which a post-synaptic neuron 
would be required to respond selectively to a specific interval of 
spikes from a single presynaptic neuron. In order for the post-
synaptic neuron to fire specifically to the second of a pair of presyn-
aptic spikes separated by 100 ms, but not to an interval of 50 or 
200 ms, τ

D
 and τ

F
 need to be tuned accordingly. This can be achieved 

by learning rules that take into account not only the number of 
presynaptic spikes at the time of the post-synaptic spike, but of the 
current values of the parameters controlling both facilitation and 
depression. However, plasticity of τ

D
 and τ

F
 is both more specula-

tive in nature and more complex in regard to biological plausibility. 
Since plasticity of U (or Pr) is computationally effective and more 
biologically plausible (see below), we would suggest that if STP 
specifically adapts to the temporal features of stimuli the probability 
of release would be the primary target of such a rule.

dIscussIon
It has been proposed that STP may play a role in timing (Buonomano 
and Merzenich, 1995; Buonomano, 2000; Maass et al., 2002) and 
the filtering of time-varying patterns of activity (Dobrunz and 
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this prediction has been indirectly examined experimentally in 
CA1 synapses with negative results (Buonomano et al., 1997). 
However, as mentioned previously, it is possible that CA1 and 
neocortical LTP have distinct properties relating to STP; indeed 
the same induction protocol can induce similar magnitudes of 
LTP in both CA1 and L-II/III pyramidal neurons, yet a dra-
matic change in STP is only observed in the neocortical synapses 
(Buonomano, 1999). Related experiments were performed by 
Froemke et al. (2006), who confirmed that pairing a single post-
synaptic spike with spikes that were early or late in a presynaptic 
train both produced LTP (although progressively less), however, 
changes in STP were not examined.

Although to the best of our knowledge no experimental studies 
have explicitly examined the effects of “early” and “late” paring 
on the induction of long- and short-term synaptic plasticity it is 
still relevant to ask if there are reasons why any potential directed 
changes in STP may have been missed. We would suggest that 
one possible reason is because in contrast to the rapid induction 
of long-term plasticity of baseline synaptic strength, plasticity of 
STP may require protein synthesis and take place over the course 
of hours. This view is supported by an observation in the mossy 
fiber pathway, where it is typically reported that LTP changes 
STP (increasing depression). Interestingly, however, at the mossy 
fiber →  CA3 synapse the initial decrease in the paired-pulse ratio 
slowly reverses over the course of hours, bringing STP close to 
baseline levels while the first EPSP remains more or less stable 
over this same window (Huang et al., 1994). Although LTP at these 
synapses relies on different mechanisms than in the neocortex (and 
CA1), this result suggests that at least in the mossy fiber synapses 
STP is independent of initial synaptic strength and plasticity of 
STP occurs over a time course of hours. Thus, an experimental 
test of our prediction may require examining the late-phase of 
synaptic plasticity.

The notion of temporal synaptic plasticity extends traditional 
Hebbian plasticity into the temporal domain by proposing that 
synapses learn not only whether they should be strong or weak, 
but when they should be strong or weak. Leading to the suggestion 
that presynaptic learning rules may be in place to primarily con-
trol STP, and a post-synaptic learning rule may control “baseline” 
synaptic strength. The presence of two learning rules operating in 
parallel at the same synapse may help explain the complexity of 
neocortical associative plasticity and why in some instances the 
same induction protocol can induce either LTD or LTP (Ismailov 
et al., 2004; Hardingham et al., 2007). Additionally, the presence of 
two independent learning rules governing pre- and post-synaptic 
efficacy provides a framework to understand neocortical plasticity 
data that indicates the presence of parallel pre- and post-synaptic 
changes under control of a complex network of biochemical pro-
cesses (Bender et al., 2006; Sjostrom et al., 2007; Rodriguez-Moreno 
and Paulsen, 2008).
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underlying temporal synaptic plasticity would be presynaptic 
in nature. Specifically, that a retrograde signal triggered by a 
post-synaptic spike interacts with the level of Ca2+ (determined 
by the number of presynaptic action potentials) in the presyn-
aptic terminal: low levels of Ca2+ at the time of the retrograde 
messenger would shift short-term plasticity towards depression, 
conversely high levels of Ca2+ would favor facilitation. While there 
is little evidence for such an interaction, there is evidence that 
there is indeed retrograde communication between post- and 
presynaptic terminals: in the neocortex it has been shown that 
retrograde messengers seem to contribute to the induction of 
the long-term depression component of STDP (t-LTD) – both 
endocannabinoids and nitric oxide are candidate retrograde mes-
sengers (Sjostrom et al., 2003; Bender et al., 2006; Sjostrom et al., 
2007). One potential problem with this interaction is delays in the 
arrival of the retrograde messenger; although little is known about 
the timing of retrograde signals, this problem might be solved 
by built-in delays in the presynaptic Ca2+ trace. In parallel with 
interactions happening at the presynaptic terminal responsible 
for potential changes in short-term synaptic plasticity, synapses 
still must keep track of the order of the pre- and post-synaptic 
spikes, as required for STDP. It has been proposed that order 
sensitivity for STDP is a post-synaptic computation, that relies 
on one or two coincidence (e.g., Karmarkar	and	Buonomano,	
2002;	Shouval	and	Kalantzis,	2005). But we remain somewhat 
agnostic regarding the interaction between the mechanisms of 
STDP and those underlying temporal synaptic plasticity. As 
mentioned, the major novel mechanistic prediction from our 
model is that retrograde signals must be generated by the post-
synaptic spike, diffuse to the presynaptic terminal, and interact 
with the level of presynaptic Ca2+. To the best of our knowledge 
there is no data to support this prediction. However, given the 
large number of presynaptic proteins involved in Ca2+ regulation 
(Zucker and Regehr, 2002; Burnashev and Rozov, 2005; Mochida 
et al., 2008), it seems possible that such mechanisms are in place. 
Indeed, there is evidence that presynaptic mechanisms are in 
place to regulate short-term plasticity. For example, it has been 
shown that presynaptic increases in a neural Ca2+ sensor (NCS1) 
can switch synapses from a PPD to a PPF mode without chang-
ing baseline synaptic strength (Sippy et al., 2003). Additional 
evidence that there may be as yet undiscovered mechanisms in 
place to regulate short-term facilitation is that recently identi-
fied presynaptic NMDA receptors play a role in modulating STP 
(Larsen et al., 2011).

experIMental predIctIons
The simplest experimental prediction of the hypothesis pro-
posed here is that when pairing post-synaptic activity with a 
train of presynaptic spikes, the position of the post-synaptic 
spikes should shape short-term plasticity in a predictable man-
ner. For example, a post-synaptic spike paired with the first 
(early pairing) or last (late pairing) of a pair of presynaptic 
spikes should both induce LTP. However, the former should 
favor PPD and the latter PPF because the  contribution of the 
EPSP to the post-synaptic spike would be optimized by short-
term depression if the post spike occurs early, and by short-term 
facilitation if the post spike occurs late. It should be noted that 
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