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Classic psychological models of interval 
timing track time by counting – or integrat-
ing – pulses emitted by a stochastic pulse 
generator. However, the neural plausibility 
of this approach has frequently been ques-
tioned, despite the key role played by neu-
ral integrators in well-supported models 
of perceptual decision-making. Although 
response times on the order of 1–2 s are 
routinely observed in the decision-making 
domain, tuning an integrator’s parameters 
precisely enough to time intervals of much 
greater duration strikes many researchers 
as implausible. Behavioral and physiologi-
cal data from timing tasks nonetheless 
frequently appear consistent with such 
precision. In this article, we propose that 
chains of integrators constructed from 
mechanisms exhibiting a range of intrinsic 
time constants (ranging from slow protein 
synthesis processes to rapidly ramping neu-
ral firing rates) may be used collectively to 
perform robust interval timing over a broad 
range of durations.

Since the 1960s, many psychological 
models have exploited Poisson-like firing 
rates of cortical neurons to account for vari-
ability in measured behavior Luce (1986). 
They have also typically applied counters 
to these spike trains to achieve behavioral 
functionality (e.g., counting spikes up to a 
threshold to trigger a timed behavior). In 
this respect, such models embody the notion 
that counting, or integration, is as easy for 
the brain as it is for a digital timer – a notion 
that strikes many neuroscientists as implau-
sible. We hypothesize that the level of robust 
integration needed to model interval timing 
in this way over many orders of temporal 
magnitude (from fractions of a second to 
many minutes) can be achieved by physical 
spike generators and counters with a range 
of intrinsic spike rates and time constants.

Unlike perfect integration, leaky integra-
tion is known to be a fundamental feature 
of brain function: for example, it is exhib-
ited by voltage dynamics on an individual 
neuron’s capacitive membrane. Equation 
1 is a stochastic differential equation that 

decomposes how a leaky integrator with 
time constant t and output x(t) responds 
to deterministic inputs I(t) (the dt term) 
combined with additive white noise (the 
dW term):

τ ⋅ = − ⋅ + ⋅dx I x dt c dW( ) .  (1)

The x-value of a deterministic (c = 0) 
leaky integrator jumps at the time of a large 
transient input I, then decays exponentially 
back to 0 as e−t /t if I remains 0 thereafter. 
Small t implies large jumps and rapid decay 
in x(t); x is likewise highly responsive to 
noise when it is included (c > 0).

Although individual membrane poten-
tials reset to a baseline level after conversion 
into an action potential, populations of neu-
rons are thought capable of continuously 
representing a leaky integrator’s state using 
a firing rate code Shadlen and Newsome 
(1994). Recurrent connections within such 
a model population produce reverberating 
activity that emulates a leaky integrator 
with a large time constant. Any leaky inte-
grator’s leakiness can in fact be completely 
canceled by recurrent self- excitation, in 
which the output of a leaky integrator is 
added to its inputs. In this way, x disap-
pears from the first term on the righthand 
side of Equation 1, implying that x(t) is the 
integral of I(t). This balancing is the basis 
of one form of neural integrator model 
e.g., Seung (1996), and it is fundamental to 
the design of analog electronic integrators. 
When noise is included, Equation 1 defines 
a stochastic integrator, implying that x(t) 
is a drift–diffusion process – a process that 
forms the basis of an influential model of 
two-alternative decision-making (Ratcliff 
and Rouder, 1998).

What troubles some researchers is the 
level of precision-tuning required for self-
excitation to cancel the leak: if self-excitation 
replaces x in the righthand side of Equation 
1, not by zero, but by kx, with k ≠ 0, then the 
system will remain leaky (k > 0) or become 
unstable (k < 0). The impact of non-zero k, 
however, can be reduced by increasing t to 
t´ = at, a ? 1, and increasing I to I′ = aI 

in Equation 1. By using a drift–diffusion 
process with a large intrinsic value of t′ – 
say, a process that models protein synthesis 
within neurons – the impact of failures to 
balance exactly is relatively minor, since x 
will now integrate (I′ − kx)/t′ = (aI − kx)/
(at) ≈ I/t. Shorter time intervals can be 
timed with larger values of I′, but this entails 
increasing energetic costs. Thus, pressure to 
use larger time constants to enhance per-
formance may trade off against pressure to 
conserve energy.

A number of other robust integration 
schemes have been proposed in the litera-
ture, but we propose a particularly simple 
solution: using a chain of leaky integrators 
with a decreasing sequence of intrinsic time 
constants to implement our feedback-based 
integrators (other time constant orderings 
would produce identical results). Each ele-
ment in this chain triggers the subsequent 
timing process when it crosses its threshold. 
With this approach, one can model robust 
timing and decision-making functionality 
that obeys the law of time scale invariance 
so often observed in interval timing tasks: 
response time distributions superimpose 
when the response times are divided by the 
mean response time Gibbon (1977).

We have shown Simen et al. (2011) that 
a time-scale-invariant drift–diffusion model 
of timing arises from counting up the spikes 
of a Poisson process (rate l1

), and subtracting 
off the spikes of an opponent Poisson process 
with proportionally lower rate gl

1
, g < 1. 

When the net spike count exceeds a fixed 
threshold, responses are generated; adjust-
ing l

1
 allows different intervals to be timed. 

The net spike count variance equals the sum 
of individual spike count variances, which 

implies a drift–diffusion approximation with 

(I – x) in Eq. 1 replaced by a constant drift 
term A = −( )1 1g l  and c A= + −( )/( )1 1g g . 

Scale invariance occurs because c m A=  for 

a constant m = + −( )/( )1 1g g , the expected 

response time is z/A for a constant thresh-
old z, and the variance is m2z/A2 (Rivest and 
Bengio, 2011; Simen et al., 2011).
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Robust integration may therefore require 
less in the way of special mechanisms than is 
sometimes thought, suggesting that theories 
of timing and perceptual decision-making 
based on perfect integration are not neurally 
implausible a priori.
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The mystery of robust temporal integra-
tion may therefore reduce to distributing 
integration tasks to a suite of mechanisms 
with a range of intrinsic time constants. Each 
integrator in this scheme triggers the next 
integrator (with a smaller t) to ramp up over 
a time span most appropriate for it. Within 
each time span, deviations from perfect inte-
gration thus remain within  tolerable levels. 

If we then add the threshold-crossing 
times of sequential drift–diffusion pro-
cesses with different intrinsic time con-
stants, but with drift values inversely 
proportional to the timed duration (see 
Figure 1), we find that the coefficient of 
variation (CV) of the summed threshold-
crossing times is constant for changing 
durations (here C

i
 and ′Ci  are proportion-

ality constants):

Var and( ) / ( ) /t C A E t C Ai i i i= = ′2

FIgure 1 | Activation time histories for four sequentially triggered interval timers, based on 
imperfectly balanced integrators (for each timer, k is selected from a normal distribution with mean 
and SD of 0.1). Here t1 = 1, t2 = 0.5, t3 = 0.25, t4 = 0.125. Below threshold, these activations are 
approximately linear.

Simen et al. Timing by long-range integration

Frontiers in Integrative Neuroscience www.frontiersin.org July 2011 | Volume 5 | Article 28 | 2

http://www.frontiersin.org/Integrative_Neuroscience/
http://www.frontiersin.org
http://www.frontiersin.org/Integrative_Neuroscience/archive

	Interval timing by long-range temporal integration
	ACKNOWLEDGMENTS
	References


