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The present study investigated temporal perception in a Huntington disease transgenic rat
model using a temporal bisection procedure. After initial discrimination training in which
animals learned to press one lever after a 2-s tone duration, and the other lever after a 8-s
tone duration for food reward, the bisection procedure was implemented in which inter-
mediate durations with no available reinforcement were interspersed with trials with the
anchor durations. Bisection tests were repeated in a longitudinal design from 4 to 8 months
of age.The results showed that response latencies evolved from a monotonic step-function
to an inverted U-shaped function with repeated testing, a precursor of non-responding on
trials with intermediate durations. We inferred that temporal sensitivity and incentive moti-
vation combined to control the transformation of the bisection task from a two-choice task
at the outset of testing to a three-choice task with repeated testing. Changes in the struc-
ture of the task and/or continued training were accompanied by improvement in temporal
sensitivity. In sum, the present data highlight the possible joint roles of temporal and non-
temporal factors in the temporal bisection task, and suggested that non-temporal factors
may compensate for deficits in temporal processing.

Keywords: temporal bisection, temporal discrimination, latency, sensitivity, non-sensory factors, transgenic rat
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INTRODUCTION

The temporal bisection procedure has been used extensively to
study temporal perception in animals. The procedure is a vari-
ant of the classical psychophysical method of constant stimuli.
It entails an initial conditional discrimination training phase in
which one response is rewarded following a short-duration stimu-
lus, while the other response is rewarded following a long-duration
stimulus. In a subsequent test phase, the short and long anchor
stimuli are presented in addition to intermediate test durations,
which are assumed to encompass an interval of uncertainty within
which stimuli are indiscriminable from each other (Woodworth
and Schlosberg, 1954). A virtue of the method is that it can pro-
vide separate measures of the point of subjective equality (PSE),
difference limen and Weber fraction that are extracted from the
resulting psychometric function. Variations in these measures are
assumed to reflect the operations of fundamental mechanisms of
temporal perception.

The original purpose of the current study was to investigate
temporal perception in a Huntington disease (HD) transgenic rat
model. In this model, the striatum is one of the primary struc-
tures affected, with the first motor symptoms appearing around
6 months of age and striatal neurodegeneration detectable from
8 months onward (von Horsten et al., 2003; Nguyen et al., 2006).
As prefronto-striatal circuits are thought to play a critical role in

temporal processing (Buhusi and Meck, 2005), we sought to track
the concomitant deterioration in timing behavior over the course
of 4-8 months in homozygous models and wt controls. While
deficits in timing behavior have been observed at 4 months (Hohn
et al., 2011), the data reported here suggest that non-temporal
factors may counteract deficits in temporal processing.

MATERIALS AND METHODS

The procedure and apparatus have been reported elsewhere (see
Hohn etal.,2011). Details specific to the present study are reported
here.

ANIMALS

A cohort of nine wild type (wt) and 12 transgenic (tgHD) rat mod-
els for HD was imported at 3 months old (von Horsten etal., 2003).
Subjects were housed in pairs in a temperature- and humidity-
controlled colony room (23°C, 41% humidity), with a light-dark
cycle of 12:12 (lights on at 08:00 AM). After 2 weeks of adaptation,
daily food rations were progressively reduced until rats reached
80% of their initial weight before the start of training, and the rats
were maintained at 85% of normative weight afterward. All exper-
iments were carried out in accordance with the recommendations
of the EEC (86/609/EEC) and the French National Committee
(87/848) for care and use of laboratory animals.
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APPARATUS

Four operant Skinner boxes (31cmWx 25cmD x 31 cm H) in
soundproof ventilated chambers (background noise 65 dB) were
controlled with the Graphic State program (Coulbourn Instru-
ments, Harvard Apparatus, USA). On the left panel were a pellet
dispenser for delivery of 45 mg grain-based precision pellets in a
food cup, and two 4-cm retractable response levers. A speaker was
located on the opposite side of the box and permitted delivery
of an auditory stimulus (1kHz, 80 dB). At the beginning of each
session, a red house light was illuminated.

BEHAVIORAL PROCEDURES

After an initial training phase for temporal discrimination, bisec-
tion tests were run monthly in a longitudinal design from 4 to
8 months. The temporal discrimination and the bisection test pro-
cedures were identical to those reported previously (Callu et al.,
2009; Hohn et al., 2011). Animals were run in six cohorts of four
transgenic and wt rats, and were fed in their home cage at the end
of the experimental session.

Pretraining

At 3 months of age, rats were magazine trained in one session (30
pellets delivered on a variable time 60 s schedule). The next 2 days,
they were trained on a continuous reinforcement schedule for each
lever separately until 50 reinforcements were earned.

Temporal discrimination training

Reponses to one of two levers (left vs. right) were reinforced fol-
lowing one of two tone durations (2 vs. 8s). Two blocks of 40
trials, for a total of 80 trials, were presented with equal proba-
bility for each tone duration in each of 17 sessions. The relation
of tone duration and reinforced response location was counter-
balanced between groups. The levers were retracted immediately
after a response or after 5s. The inter-trial interval (ITI) was 30s
on average (range 20—40s).

Bisection tests

Rats were then tested in a psychophysical choice procedure with
five intermediate durations (2.5, 3.2, 4, 5, and 6.3s) on non-
reinforced trials (12 trials each duration), in addition to the two
training anchor durations (2 and 8s, 60 trials each) with rein-
forcement available. The mean ITI was 30s. Four to six bisection
sessions were run each month, from 4 to 8 months, followed by
one session of discrimination training.

DATA ANALYSIS

Response location and latency were recorded for each trial. Analy-
sis of latency included only trials with a response. Bisection data
were calculated as proportion of responses on the lever assigned as
correct for the long-duration stimulus on all trials with response.
The bisection function relating proportion “long” responses to
stimulus duration is typically sigmoidal in shape. The stimu-
lus value corresponding to p(“Long”) =0.5 typically falls at the
geometric mean of the anchor durations PSE. The slope of the
function in the vicinity of the PSE reflects temporal sensitiv-
ity. The bisection function was analyzed with the pseudo-logistic

model (PLM; Killeen et al., 1997) fit for each rat on the aver-
aged curve obtained at each month, using Prism software; With
the assumption that scalar variance dominated (Allan, 2002; Callu
et al., 2009), the fits were good (median proportion of variance
accounted for =0.997 and 0.995 for wt and tgHD groups, respec-
tively). The PSE and the temporal sensitivity parameter (gamma)
were estimated for each rat using the following formula (Allan,
2002, Eq. 5):

-1
Tl/z—t
PRp)=|14+exp| ——
[ < Lyt )}

Gamma, which is proportional to the Weber fraction, increases as
temporal sensitivity decreases.

Contrast analyses of variance (ANOVAs; Rouanet et al., 1990)
with an alpha level of 0.05 were used for statistical assessments.

RESULTS
RESPONSE LATENCY AND PERCENT RESPONSE
As reported elsewhere for these animals (Hohn et al., 2011), per-
formances during initial temporal discrimination training were
similar for wt and tgHD rats. At 4 months, tgHD rats showed
a typical bisection curve, with similar PSE but poorer sensitiv-
ity (higher gamma) than wt. Both groups showed a decrease in
response latency with increasing stimulus duration.

During the 25 bisection test sessions that were conducted over
a 5-month period, both wt and tgHD rats progressively learned
not to respond following intermediate durations, with no avail-
able reinforcement, while responding was maintained on trials
with the anchor durations. The latter trend was evidenced in
a sharp decrease in the mean percent of trials with a response
(percent response) as intermediate values approached the 4-s geo-
metric mean of the anchor duration values, and an increase in
mean response latency which peaked near the geometric mean
of the anchor durations (Figures 1A,B). On the final session,
the minimum percent response on a given intermediate dura-
tion varied between 0 and 100% for tgHD rats, and between
16.67 and 100% for wt rats. Four of 12 tgHD and five of nine
wt rats still responded on at least 95% of trials on average for
the intermediate durations. Performance was analyzed for these
subgroups of animals who had stopped responding or not (with
a criterion of 95%) on the final session. On the 4-month test, in
addition to the decrease in latency with stimulus duration previ-
ously reported (Hohn etal.,2011),an ANOVA indicated that mean
latency for subgroup “stop” significantly exceeded that for sub-
group “no-stop” [137 ms; F(1,17) = 6.43, p < 0.05], with no effects
involving genotype (Fs < 1). In order to characterize the develop-
ment of performance patterns that foreshadowed the cessation
of responding, the difference in latency was calculated between
the test session immediately prior to cessation of responding for
each animal and the 4-month test (Figure 1C right panel). For the
percent response measure (Figure 1Cleft panel), the difference cal-
culation was based on the 4-month test and the last (25th) test ses-
sion. Similar inverted U-shaped curves for latency and U-shaped
curves for percent response were obtained for wt and tgHD rats
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FIGURE 1 | Increased response latency for intermediate durations leads
to cessation of responding. Percent responses (left) and response
latencies (right) across signal durations and sessions during temporal
bisection tests for tgHD (A) and wt (B) rats. In (C) left panel, mean (SEM)
difference in percent responses between the last test session and the
4-months tests for subgroups of animals that stopped responding or not to
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intermediate durations (with a criterion of 95%). In (C) right panel, mean
(+SEM) difference in response latencies between the 4-months tests and
(a) the last test session prior to stopping responding (95% criterion) for
subgroups of animals that stopped responding or (b) the last test session for
the no-stop subgroups. For both panels, data are shown as a function of
both genotype and duration.

which stopped responding. In genotype x subgroup x duration
ANOVAs for both dependent measures, there were no signifi-
cant effects involving genotype (all Fs < 1). Curves for the stop
subgroup differed significantly from the curves of the no-stop
subgroup [subgroup x duration interaction, F(6,102) = 4.63 and
F(6,102) = 14.21, ps <0.001, for response latency and percent
response, respectively]. While the stop and no-stop subgroups
did not differ at the two anchor durations [F(1,17) =1.59 and
F<1 for response latency and percent response, respectively],
they differed significantly at the middle three intermediate dura-
tions [F(1,17) =12.29 and F(1,17) =25.31; p < 0.01 for response
latency and percent response]. Thus, the greater effect of duration
on latency for the stop subgroup compared to the no-stop sub-
group was associated with subsequently observed differences in
the tendency to cease responding to non-reinforced intermediate
durations.

TEMPORAL SENSITIVITY AND PERCENT RESPONSE

The foregoing findings represent the acquisition of a temporal
discrimination between intermediate and anchor durations in
the bisection protocol. One factor that may control the speed of
acquisition of that discrimination is temporal sensitivity. Consid-
ering tgHD rats only, which showed a large variability between
animals in temporal sensitivity at 4 months (H6hn et al., 2011),
there was a significant positive correlation between gamma mea-
sured at 4 months and the session number at which the per-
cent response measure fell below 95% [Figure 2A, r(10) = 0.60,
p < 0.04]. The significant correlation held when considering both
wt and tgHD rats [z-scores, r(19) =0.50, p < 0.03]. Thus, bet-
ter temporal sensitivity at 4 months predicted faster acquisition
of the tendency to stop responding on intermediate durations.
Owing to stable high levels of responding to the anchor dura-
tions throughout testing, this tendency reflected the acquisition
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FIGURE 2 | During the course of bisection testing, tgHD animals stop at 4 months, for tgHD rats. (B) Mean (£SEM) percent responses to
responding to intermediate stimulus durations earlier than wt animals intermediate durations on the 25 sessions of testing in months 4-8 for tgHD
do. (A) Correlation between the session number at which the rats stop (filled symbols) and wt (empty symbols) rats. (C) Proportion of rats in each
responding to intermediate durations (criterion < 95%) and gamma measured  group stopping to respond across the 25 sessions of testing.

of a discrimination between intermediate durations and anchor
durations.

As mentioned above, tgHD rats showed on average poorer sen-
sitivity at 4 months than wt, and therefore would be expected
to be slower in learning the discrimination. The opposite was
observed, however, as tgHD rats stopped responding to intermedi-
ate durations earlier than wt rats as shown in Figure 2B [significant
group X session interaction, F(24,456) =1.87, p <0.01]. A trend
toward faster learning was also observed when calculating the pro-
portion of animals in each group that stopped responding, for
each of the 25 test sessions (Figure 2C), although the difference
in proportion observed during sessions 13 to 18 was only margin-
ally significant (Fisher Exact Test, p=0.07). Thus, other factors
in addition to temporal sensitivity combine to govern temporal
performance in the bisection task.

TEMPORAL BISECTION FUNCTION

The fact that animals progressively stopped responding to inter-
mediate durations precluded the analysis of the bisection curves
for these animals with repeated testing. Fewer than 50 per-
cent of the total number of animals (four tgHD and five wt)
were responding at 8 months, whereas more than 50% were still
responding at 7 months. When restricting the analysis to ani-
mals that were responding at the 7-month testing phase (wt,

n=7; tgHD, n=6), the analysis of this subset confirmed that at
4 months of age tgHD rats showed poorer sensitivity, but sim-
ilar PSE, compared to wt rats [Figures 3A,B, F(1,11)=38.12,
p<0.02, and F< 1, for gamma and PSE, respectively]. Interest-
ingly, both PSE and gamma decreased with repeated testing across
the 4 months [F(3,33) =3.38, p < 0.03, F(3,33) =8.39, p < 0.001,
respectively]. Furthermore, while PSE did not change differen-
tially between genotypes (no group x test month interaction,
F<1), gamma tended to decrease more rapidly in tgHD than
in wt rats. Both groups showed a significant decrease in gamma
across months [F(3,18) =3.80 and F(3,15) =5.61; ps < 0.05, for
wt and tgHD groups respectively]. However, a marginally signif-
icant group X test month interaction [F(3,33) =2.80, p=0.055],
in addition to the fact that gamma for tgHD was significantly lower
than for wt at 7months of age [F(1,11) =6.28, p < 0.03] show
that temporal sensitivity improved faster for the tgHD than for wt
rats. These data indicate that PSE and gamma were differentially
sensitive to repeated testing.

DISCUSSION

INCREASED RESPONSE LATENCY FOR INTERMEDIATE DURATIONS
LEADS TO CESSATION OF RESPONDING

On initial test sessions, both groups showed a decrease in response
latency with increasing test stimulus duration (Héhn et al., 2011),
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FIGURE 3 | Repetition of bisection testing sharpens temporal bottom, tgHD rats). (B) Mean (+SEM) PSE (top) and gamma (bottom)
sensitivity. (A) Evolution of bisection curves for test months 4-7 for values estimated from the bisection curves for test months 4-7
subgroups of animals that were responding at 7 months (top, wt rats; represented in (A).

replicating previously reported findings (Callu et al., 2009). The
present data demonstrate that in rats, an inverted U-shaped func-
tion of response latency emerges as the animals learn to discrimi-
nate the intermediate durations from the anchors, and that it leads
to cessation of responding to intermediate durations with contin-
ued testing. The inverted U-shaped function has been reported
previously with both rat and human subjects (Maricq and Church,
1983; Meck, 1983; Rodriguez-Gironés and Kacelnik, 1998). Mar-
icq and Church suggested that elevated latencies for intermediate
durations in rats reflect either response conflict or discrimina-
tion learning between anchor vs. intermediate durations signaling
availability vs. non-availability of reinforcement, respectively. The
present data support the latter view, as the inverted U-shaped func-
tion was absent during initial test sessions, and was followed by the
selective reduction in probability of responding to the intermedi-
ate test durations. Thus, intermediate durations used in the present
study were discriminatively different from the anchors as indicated
by performance in well-trained animals, suggesting that the bisec-
tion task functionally shifted from a two- to a three-alternative
(two anchors and intermediate durations) discrimination task
with repeated testing.

REPETITION OF BISECTION TESTING SHARPENS TEMPORAL
SENSITIVITY

Point of subjective equality decreased and temporal sensitivity
increased with repeated testing in the present study. The changes in
both variables may be unrelated, but a decision—theoretic account,
the PLM (Killeen et al., 1997), predicts a decrease in the PSE,
from the arithmetic mean of the anchor durations to the har-
monic mean as a limit, as gamma decreases. The change in PSE

was also accompanied by the emergence of a behavioral discrim-
ination between anchor and intermediate stimulus durations. It
is not clear how that discrimination is related to the assump-
tions of PLM, but it is possible that judgments of “short” vs.
“not short” (intermediate and long) that emerge with training may
determine the location of the criterion in that model, or response
bias in a scalar expectancy theory (SET) account (Gibbon, 1981;
Allan and Gibbon, 1991) of the indifference point in the bisection
task.

The improvement in temporal sensitivity could also be related
to the change in the functional properties of the discrimination
task. The introduction of new, intermediate durations in the test
phase represents an increase in discrimination difficulty, which
has been shown to decrease Weber fraction in humans (see Fer-
rara et al., 1997). Alternatively, temporal sensitivity may increase
as a result of repeated exposure to the test stimuli in the absence of
a change in task structure, consistent with the sharpening of stim-
ulus generalization gradients with pre-exposure to the training
stimulus (Honey, 1990) or increased amounts of training (Brown,
1970).

The foregoing phenomena may be taken to represent the acqui-
sition of stimulus control, that is, the establishment of behavioral
control by specific differences in the properties of stimuli along
one or more continua. Thus, animals may learn to identify rele-
vant stimulus dimensions, and change their behavior accordingly,
only with repeated discrimination training. Alternatively, stimulus
control may be established immediately upon the initial exposure
to the discriminative stimuli, with increased training serving only
to bring behavior under sharper control by the prevailing con-
tingencies of reinforcement. Thus, sharpening of psychometric
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functions in the present study may reflect the effect of repeated
exposure to the contingencies of reinforcement on performance,
while stimulus differences are fully discriminated early in train-
ing (Balsam et al., 2002; Drew et al., 2005). In support of this
idea are the results of Droit-Volet and Izaute (2009) who manip-
ulated the availability of a third “I do not know” response in the
temporal bisection procedure in human observers. Adults who
were given that response option exhibited sharper bisection func-
tions (smaller Weber fractions) immediately in a single test session
compared to control subjects with only the two standard response
options. Thus, temporal sensitivity may depend upon available
response options in both rats and humans, with difference in rate
of emergence reflecting the use of verbal vs. contingency-based
instructions.

TEMPORAL AND NON-TEMPORAL FACTORS GOVERN THE TEMPORAL
PERFORMANCE

Initial measures of sensitivity to temporal properties of stimuli
between tgHD and wt rats predicted a difference in speed of
acquisition of a temporal discrimination that was opposite to
the one observed, that is, at 4 months, the tgHD rats had poorer
sensitivity (higher gamma) than wt, but the tgHD rats stopped
responding to the intermediate duration sooner than wt. Thus,
it is likely that other factors in addition to temporal sensitiv-
ity combine to govern temporal performance in the bisection
task. Superior learning capacities in tgHD rats could be one fac-
tor, as increased prefronto-striatal plasticity has been reported in
presymptomatic tgHD rats (Hohn et al., 2011). However, initial
learning of the simple 2 vs. 8s discrimination was similar for
tgHD and wt rats, although a more challenging discrimination task
might have revealed a difference in temporal learning. In addition,
Hohn etal. (2011) reported that at 10 months, the same tgHD rats
were inferior to wt in learning a discrimination reversal. Therefore,
superior learning is not a likely factor, and increased plasticity in
young adult tgHD rats may be an index of compensatory mech-
anisms secondary to dysfunctional networks. Another factor may
reside in age-related neurodegeneration in transgenic animals.
The monotonic continuous decrease in percent response observed
across sessions (Figure 2B), however, more likely reflects learn-
ing through repetition rather than an age-related effect (which
would be expected to produce decreases between but not within
months). Yet another factor may be greater sensitivity to non-
reinforcement in tgHD rats, as responses to intermediate durations
were never reinforced. In a separate study (Faure et al., 2011),
using a runway task in which the sucrose reinforcement was sud-
denly changed to a lower or a higher concentration (i.e., a less
or more rewarding value) tgHD rats were more reactive than
wt rats to changes in reward values. It is therefore likely that
incentive motivation is a factor in the speed of discrimination
learning between anchor (reinforcement) and intermediate (no
reinforcement) durations.

CONCLUSION

Our data highlight the dynamic properties of the temporal bisec-
tion procedure. A number of factors have been shown to modulate
performance in that procedure in animals and humans, includ-
ing pharmacological agents (e.g., Meck, 1983; Santi et al., 2001),

temporal and non-temporal stimulus properties (e.g., Church
and Deluty, 1977; Penney et al., 2000), arousal/emotion (e.g.,
Droit-Volet and Wearden, 2002; Grommet et al., 2011), lesion
(e.g., Meck et al., 1984; Breukelaar and Dalrymple-Alford, 1999),
and disease (e.g., Smith et al., 2007; Carroll et al., 2008). The
present study shows that repetition or amount of training/testing
is another relevant variable (see also Machado and Keen, 2003).
Repetition resulted in a sharpening of the bisection function and
discrimination between anchor durations and intermediate test
durations, both of which were more pronounced in tgHD rats.
This difference was correlated with responsiveness to motiva-
tional factors, reflecting higher sensitivity to changes in reward
values.

Transgenic Huntington disease animals exhibit poorer tem-
poral sensitivity at 4 months than wt animals, as shown in two
different ways in Hohn et al. (2011). We show here that higher tem-
poral sensitivity was correlated with earlier stopping to respond
to intermediate non-reinforced durations during the course of
bisection testing. The fact that tgHD animals stopped earlier
than wt animals, in contrast to what would be expected from
their poorer initial temporal sensitivity, shows that the speed
with which stopping to respond occurs does not reflect only
temporal sensitivity. We hypothesize that sensory factors and
non-sensory (motivational) factors may play competing roles in
temporal bisection performance, and that an enhanced sensi-
tivity to non-reinforcement can offset lower levels of temporal
sensitivity to produce more rapid expression of the discrimina-
tion between anchor vs. intermediate stimulus durations. While
initial bisection testing provides a valid measure of temporal sen-
sitivity (gamma), repeated testing in the bisection task provides
an opportunity for motivational factors (reinforcement vs. non-
reinforcement) to exert their effect on the tendency to respond vs.
not respond.

Changes in temporal performance after genetic or other biolog-
ical manipulations may be related to non-sensory (motivational)
factors in addition to sensory (temporal) factors, and control of
these factors may be critical in determining underlying mecha-
nisms. Inasmuch as the role of motivational factors in timing per-
formance has been inferred in different timing protocols including
both the peak interval procedure (e.g., Ward et al., 2009) and the
bisection procedure in this report, the isolation of temporal con-
trol of behavior may require more sophisticated measures in the
general case. A technical solution to the presumed motivational
confound encountered in the present study would be to use nar-
row anchor duration ranges that closely encompass the interval of
uncertainty, as assumed in the method of constant stimuli, thus
preserving response tendencies along all test durations. Owing
to the joint effects of both anchor stimulus range and repeated
stimulus exposure, assessment of temporal sensitivity may require
continued adjustments in stimulus range until stable performance
is observed.

Sharpening of the bisection function with repetition may reflect
an increase in temporal sensitivity apart from the influence of non-
temporal factors. At an empirical level it is not known whether
repeated exposure to the reinforcement contingencies involving
the anchor durations or repeated exposure to the test durations
was critical, as these variables were confounded in the present
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study. From the perspective of temporal information processing
theory (SET, Gibbon et al., 1984), variation in temporal sensitiv-
ity could be related to variability in the perception of the anchor
stimuli or in memory representation (Allan and Gerhardt, 2001),
or possibly in the decision mechanism (Penney et al., 2008). A
challenge for future research is the dissociation among these mech-
anisms as accounts of the effects of repeated training/testing upon

performance in the bisection task.
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