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INTRODUCTION

Time is an essential feature of most decisions, because the reward earned from decisions
frequently depends on the temporal statistics of the environment (e.g., on whether deci-
sions must be made under deadlines). Accordingly, evolution appears to have favored a
mechanism that predicts intervals in the seconds to minutes range with high accuracy on
average, but significant variability from trial to trial. Importantly, the subjective sense of
time that results is sufficiently imprecise that maximizing rewards in decision-making can
require substantial behavioral adjustments (e.g., accumulating less evidence for a decision
in order to beat a deadline). Reward maximization in many daily decisions therefore requires
optimal temporal risk assessment. Here, we review the temporal decision-making litera-
ture, conduct secondary analyses of relevant published datasets, and analyze the results
of a new experiment. The paper is organized in three parts. In the first part, we review
literature and analyze existing data suggesting that animals take account of their inherent
behavioral variability (their “endogenous timing uncertainty”) in temporal decision-making.
In the second part, we review literature that quantitatively demonstrates nearly optimal
temporal risk assessment with sub-second and supra-second intervals using perceptual
tasks (with humans and mice) and motor timing tasks (with humans). We supplement
this section with original research that tested human and rat performance on a task that
requires finding the optimal balance between two time-dependent quantities for reward
maximization. This optimal balance in turn depends on the level of timing uncertainty. Cor
roborating the reviewed literature, humans and rats exhibited nearly optimal temporal risk
assessment in this task. In the third section, we discuss the role of timing uncertainty in
reward maximization in two-choice perceptual decision-making tasks and review literature
that implicates timing uncertainty as an important factor in performance quality. Together,
these studies strongly support the hypothesis that animals take normative account of their
endogenous timing uncertainty. By incorporating the psychophysics of interval timing into
the study of reward maximization, our approach bridges empirical and theoretical gaps
between the interval timing and decision-making literatures.

Keywords: decision-making, interval timing, optimality, psychophysics, reward maximization, risk assessment,
uncertainty

Timing intervals allows organisms to organize their relevant

Evolution appears to have favored at least two well-regulated
neurobiological time-keeping mechanisms that are shared by
many organisms. One of these mechanisms, circadian tim-
ing, captures periods with approximately 24-h cycles. Many
events in nature, on the other hand, are non-periodic,
and capturing their temporal structure requires a flexible
time-keeping apparatus that can be started and stopped as
required. To that end, a stopwatch-like mechanism enables
many organisms, with high accuracy but limited precision,
to time intervals between arbitrary events that range from
seconds to minutes. This ability is referred to as interval
timing.

activities around critical times (Drew et al., 2005), keep track
of reward rates (RRs; Gallistel et al., 2007), or prefer rewards
that occur after a short rather than a long delay (Gibbon and
Church, 1981; Cui, 2011). Importantly, these apparently sim-
ple time-dependent decisions and inferences are inevitably made
under endogenous timing uncertainty, and thus entail temporal
risk assessment. In this paper, we will evaluate whether humans
and animals take normative account of their endogenous tim-
ing uncertainty when making decisions. Here, endogenous tim-
ing uncertainty specifically refers to an agent’s inherent scale-
invariant response time variability (imprecision) around a target
time interval.
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Across species and within individuals, temporal judgments in
a wide range of tasks conform to Weber’s Law, suggesting that
endogenous timing uncertainty is proportional to the represented
time interval: i.e., the standard deviation (SD) of time estimates is
proportional to the target time intervals. This time scale invariance
property appears ubiquitous in animal timing (Gibbon, 1977).
Consequently, different individuals across species capture and
exploit the temporal structure of their environment under sim-
ilar scale-invariant temporal precision constraints irrespective of
the signal modality or the behavioral goal (e.g., choice, avoidance,
approach).

It is evident that representing time intervals can serve to max-
imize reward. For instance, when making choices between two
options that deliver identical rewards, but at different delays, the
option with the shorter delay (with the higher RR) is chosen. The
temporal discounting curve — a curve which shows how prefer-
ences change as delay increases —is hyperbolic (Rachlin, 2006).
Traditionally, researchers have tended to overlook the role of sub-
jective time in generating the hyperbolic discounting curve, but
more recently, some have proposed a strong role for subjective
time (Takahashi, 2006; Ray and Bossaerts, 2011). In particular,
Cui (2011) derived a mathematical expression for a hyperbolic dis-
counting curve whose only assumption is Weber’s law for timing.
These studies support our contention that representing time inter-
vals and the underlying endogenous uncertainty of those intervals,
is likely an important contributor to temporal discounting. It is
less evident how different levels of that endogenous timing uncer-
tainty affect reward maximization in these, and other, types of
decisions. For instance, when one has to withhold responding for a
minimum duration before acquiring a potential reward, how does
timing uncertainty interact with the optimal (reward-maximizing)
temporal decision strategy? And to what extent does temporal
uncertainty come into play in maximizing reward in two-choice
perceptual discrimination tasks?

In this paper, we will discuss a number of scenarios in which
reward maximization depends not only on the temporal task struc-
ture but also on the level of uncertainty in its representation. We
will formally evaluate human and animal performance in these
tasks within the framework of optimality, and demonstrate that
organisms ranging from mice to humans behave nearly optimally
in these dissimilar tasks. In the first section of the paper, we review
and discuss experimental data supporting the hypothesis that rats
account for their endogenous timing uncertainty when making
time-related decisions. In this section, we also perform a new, sec-
ondary data analysis on an existing data set. In the second section,
we review and discuss data supporting the hypothesis that humans
and non-human animals can optimally incorporate their endoge-
nous timing uncertainty in their time-related decisions. In this
section, we also present new human and rat datasets collected
from the differential reinforcement of low rates of responding task
(DRL) and evaluate their performance within the framework of
optimality. In the third section, we discuss recently published data
from a perceptual decision-making task suggesting that humans
use time and timing uncertainty to maximize rewards, even when
the task has no obvious temporal component. Together, these
results strongly suggest that humans and rodents exercise nearly
optimal temporal risk assessment.

ENDOGENOUS TIMING UNCERTAINTY AND TIMING
BEHAVIOR

If animals can account for their endogenous timing uncertainty
in modifying their behavior, then individuals with more pre-
cise timing should be expected to be more confident in their
time-related choices and responses. For example, anticipating a
temporally deterministic reward, actors should respond at a higher
rate around the critical interval when their timing uncertainty is
low, and at a lower rate when their uncertainty is high.

Foote and Crystal’s (2007) experiment with rats lends indirect
support for this prediction. In their study, rats were trained to
categorize a series of durations as either short or long based on
a 4-s bisection point between the two durations (Stubbs, 1976).
Correct categorizations resulted in a reward. Because of endoge-
nous timing uncertainty, any duration close to the bisection point
is harder to discriminate as short or long. Foote and Crystal (2007)
modified this task by adding a sure reward option; responses on
this option were always rewarded (regardless of the duration), but
the reward magnitude was smaller. This allowed a test of whether
rats took account of their temporal precision, because when a rat
is less certain about its temporal judgment, it should choose the
small but sure reward. This was indeed what they observed; while
the rats almost always chose short or long for extreme durations
(i.e., 2 and 8 s), a subgroup of rats often chose the small but sure
reward for the more ambiguous durations (close to the bisection
point). This finding suggests that rats may have taken into account
their endogenous temporal uncertainty when deciding to choose
short, long, or neither. On the other hand, rats in this experi-
ment might simply have learned the differential reinforcement of
different time intervals rather than accounting for their timing
uncertainty (Jozefowiez et al., 2010).

An alternative way of testing this hypothesis without reinforc-
ing the intermediate durations is to assess the relative response
rates emitted for each probe interval in a bisection task. In such
a design, subjects seeking to maximize rewards should exhibit
a higher response rate on the “short” operandum for the short
target interval and a higher response rate on the “long” operan-
dum for the long target interval. These response rates should
decrease as the target interval gets longer or shorter, respectively. Yi
(2009) modified the bisection task by introducing a 10-s response
period following the offset of the timing signal and, in a sub-
set of trials, rewarding the rats for their correct responses (for
reference intervals) on a random-interval schedule during the
response period. This allowed the characterization of short and
long response rates for different intervals. Response rate as a func-
tion of probe intervals qualitatively confirmed this response rate
prediction.

We performed a secondary data analysis to conduct a different
test of this hypothesis using published data (Church et al., 1998)
from rats engaged in a “peak procedure” task (Catania, 1970). In
the peak procedure, subjects are presented with a mixture of rein-
forced discrete fixed interval (FI) trials and non-reinforced “peak”
trials that last longer than the FI trials. In the FI trials, subjects
are reinforced for their first response after the FI elapses since the
onset of a conditioned stimulus. No reinforcement is delivered in
the peak trials, and responding typically falls off after the expected
time of the reward. We examined the relation between temporal
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precision and timed-response rate in this data, using response
rate as a behavioral index of confidence for temporal judgments
(Blough, 1967; Yi, 2009). For this analysis, we used the dataset
of Church et al., 1998; Experiment 1), in which three groups of
rats (five rats per group) were trained on the peak procedure. The
Church et al. (1998) experiment used 30, 45, and 60's schedules
for 50 sessions of the peak procedure, with a single schedule for
each group of rats. We analyzed data from the last 20 sessions, by
which point performance had stabilized.

When responses are averaged across many peak trials, the
resulting response curve approximates a bell curve (with a slight
positive skew) that peaks at the reinforcement availability time
(Roberts, 1981). In individual peak trials, however, responding
switches between states of high and low rates of responding
(Church et al.,, 1994), following a “break—run—break” pattern.
Specifically, subjects abruptly increase the response rate about
midway through the FI (start time) and they abruptly decrease
the response rate after the FI elapses with no reinforcement (stop
time). The length of the run period (stop time minus start time) is
used as an index of temporal precision, with shorter periods indi-
cating lower timing uncertainty. Subjects with higher uncertainty
about the time of reinforcement availability initiate responding
earlier (earlier start times) and terminate it later (later stop times).
Within a run period, subjects respond approximately at a con-
stant rate, which we used as an index of the rat’s confidence in
their estimate of reinforcement availability time in that given
trial. Under our timing uncertainty hypothesis, if timing preci-
sion fluctuates across trials, then rats should respond at a higher
rate in trials in which they exhibit shorter run periods. A detailed
description of modeling single-trial responding is presented in the
Appendix.

In our analyses, we applied a log transformation to normalize
the dependent variables. We first established that response rates
were approximately constant within a run period by regressing
inter-response times (IRTs) on their order within the run period
(e.g., Ist, 2nd, 3rd... IRT) separately for each subject (mean
R?=10.02 4 SEM 0.01). Overall response rate (defined over the
entire peak trial) was also independent of the run period length
(mean R?=0.03 + SEM 0.01). In order to test our prediction, we
then regressed the response rates within a run period on the run
period length. Supporting our hypothesis, rats exhibited lower
response rates in longer run periods (mean R?=0.17 4 SEM
0.03). This was a statistically reliable relation in all rats after
Holm-Bonferroni correction for multiple comparisons. Note that
although we tried to minimize it through our choice of measures,
a level of analytical dependence might still exist between these
measures (e.g., response rate and run period length). Thus, these
results should be interpreted with special caution.

These findings from different tasks suggest that rats took
account of their endogenous timing uncertainty in organizing
their time-dependent responding with two different behavioral
goals. (1) In the case of temporal discrimination, when a given
duration proved difficult to discriminate due to timing uncer-
tainty, a subset of rats chose not to categorize that duration, and
instead settled for a smaller but sure reward. (2) On a similar task,
rats exhibited higher response rates for intervals that were closer
to the short and long references (i.e., easier conditions). (3) In

the case of peak responding, rats responded less vigorously for a
temporally deterministic reinforcement when they appeared less
certain about the reinforcement availability time. These results
constitute qualitative support for the role of temporal uncertainty
in shaping timed choice behavior. With the research that we are
about to describe, we will further argue that humans and rodents
not only appear to represent their endogenous timing uncertainty,
but that they also appear to behave nearly optimally in assessing
temporal risk: that is, they adapt to different levels of uncertainty
in a way that tends to maximize rewards.

OPTIMAL TEMPORAL RISK ASSESSMENT

In Foote and Crystal’s task, taking account of timing uncertainty
is adaptive. Many natural tasks pose similar problems with respect
to the dependence of reward maximization on timing uncertainty.
For example, consider a foraging experiment in which two patches
are far apart (imposing travel cost), and both deliver reward on a
FI schedule (i.e., the first response following the FI is rewarded).
After visiting a patch, it can suddenly and unpredictably stop deliv-
ering rewards without a signal (unsignaled patch depletion). Once
a patch depletes, the critical decision is when to stop exploiting the
current patch and move onto the other one.

In this example, representing the fixed inter-reward interval
allows detection of reward omissions during a given visit to a
patch. Here, a subject with perfectly accurate and precise timing
would stop exploiting the current patch (Brunner et al., 1992) as
soon as the patch is depleted — i.e., as soon as the fixed inter-reward
interval elapses with no reward. Despite being accurate however,
animal timing abilities are imprecise, and thus the optimal time
to stop exploiting a given patch depends on the level of timing
uncertainty: the likelihood that a timed duration has exceeded a
given value (i.e., the FI), given a subject’s level of noise in time esti-
mation, will grow at different rates for different levels of timing
uncertainty.

Figure 1 depicts this sort of dependency by a cumulative normal
distribution with the schedule as its mean (accurate timing) and a
SD that reflects the subject’s endogenous timing uncertainty (lim-
ited precision timing). When the cumulative distribution function
(cdf) reaches, say, 0.95 (well past the schedule), the subject stops
exploiting the current patch. When there is very little temporal
uncertainty (implying a nearly step-like sigmoidal function), the
cdf will reach this threshold earlier, leading to an earlier termina-
tion of patch exploitation. When there is high timing uncertainty
however, it will take longer to reach the same threshold and the
subject will stop exploiting later (Figure 1). Brunner et al. (1992)
and Kacelnik and Brunner (2002) tested starlings in this task and
found that the average termination time on the current patch after
its unsignaled depletion was a constant proportion of the FI sched-
ule (approximately 1.5-FI: ~95% of the cdf for a CV of 0.25; see
also Davies, 1977). This observation suggests that starlings not
only adopted an exploitation strategy with a termination time
longer than the FI schedule, but that this latency was modulated
by scale-invariant endogenous timing uncertainty.

We now discuss temporal decision-making scenarios for which
optimal decisions depend explicitly on the level of timing uncer-
tainty. For these tasks, we formalize optimality as a function of the
level of timing uncertainty and then compare the performance of
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The expected gain (EG) for a given target switch latency is the
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FIGURE 1 | Standard normal cumulative distribution functions with
the same mean (i.e., 2 s) but different coefficients of variation (CV, o/p.).
Solid curve illustrates the normal cdf for a CV of 0.1 and the dotted curve
illustrates the normal cdf for a CV of 0.3. The probability of a random variable
taking on a value shorter than the trial time, indicated by vertical solid and
dotted lines, respectively, is 0.95. Note that this value is much lower for the
simulated subject with smaller timing uncertainty (solid curve).

humans and rodents to optimal performance given the observed
level of timing uncertainty.

WHEN TO SWITCH FROM A RICH TO A POOR PROSPECT

Using a task similar to that of Brunner et al. (1992; see also
Balcietal.,2008), Balcietal. (2009) investigated the extent to which
humans and mice behave normatively in incorporating estimates
of endogenous timing uncertainty into temporal decisions made
in the face of additional, exogenous uncertainty. In their experi-
ment, subjects tried to anticipate at which of two locations a reward
would appear. On a randomly scheduled fraction of the trials, it
appeared with a short latency at one location; on the complemen-
tary fraction, it appeared after a longer latency at the other location.
Switching prematurely on short trials or failing to switch in time
on the long trials yielded either no reward, or yielded a penalty,
depending on the payoff matrix. The exogenous uncertainty was
experimentally manipulated by changing the probability of a given
trial type (short or long). For humans, the payoff matrix was also
manipulated by changing the magnitude of rewards and penalties
associated with different consequences (e.g., switching early on a
short trial). Mice received equal rewards and no penalty.

The optimal response policy in this “switch task” is to begin each
trial assuming that the reward will occur at the short location, and
when the short interval elapses with no reinforcement, to switch
to the long location. The trial time at which the subject leaves the
short option for the long one is called the “switch latency.” Switch
latencies were normally distributed, to a close approximation.
The mean of the best-fitting normal distribution was assumed
to represent the subject’s target switch latency, and the coefficient
of variation (CV =0/p) was taken to reflect endogenous timing
uncertainty.

a short trial). Equation 1 defines the EG for an estimate of target
switch point (#) and endogenous timing uncertainty (&) :

EG (1) = g(~ Ts) p(Ts) @ (Ts, 1, &F)
+ g (Ts) p(Ts) (1 — @ (Ts, 1, &1))
+ g(T) (1 — p(Ts)) @ (T1, 1, BF)
+g(~ T (1 = p(T9) (1 — @ (10, 1, 67))

1

where ® = 6/1, t is the subject’s temporal criterion for switching,
Ts and T, are the short and long referents, p(Ts) is the proba-
bility of a short trial, and g denotes the payoff matrix [e.g., g(T's)
reflects the payoff for a correct short trial and g(~T's) reflects the
loss for an incorrect short trial]. @ is the normal cdf with mean ?
and SD ®f, evaluated at T's or T7..

Figure 2 depicts the dependence of optimal switch latencies on
the timing uncertainty for a given payoff matrix and on two exoge-
nous probability conditions. For equally probable durations, the
optimal switch latency (#,, the f that maximizes the EG in Eq. 1)
approaches the short target interval T's as the timing uncertainty
o increases, due to scalar timing noise. Different combinations of
the probability of a short trial p(T's), and the payoff matrix g, result
in different EG surfaces (gain for each combination of t and w).
Figures 2A,B depict the normalized EG surface for p(Ts)=0.5
and p(Ts)=0.9, respectively, with a penalty for early and late
switches. Balci et al. (2009) compared the empirical target switch
latencies 7 to optimal switch latencies %, for the estimated level
of timing uncertainty ® by experimentally manipulated exoge-
nous uncertainty p(Ts), and the payoff matrix g They found
that both mice and humans performed nearly optimally in this
task, achieving 99 and 98% of the maximum possible expected
gain (MPEG), respectively. The average slopes of the orthogonal
regression between empirical and optimal target switch latencies
were 0.81 and 1.05 for human and mouse subjects, respectively
(Figure 3A: Humans; B: Mice). These values were significantly
different from 0 (both ps < 0.05) but not from 1 (both ps > 0.5).
These results indicate that subjects tracked the optimal target
switch latencies.

In line with reports reviewed earlier, these findings showed
that humans and mice adapted performance to account for their
endogenous timing uncertainty. It further demonstrated that sub-
jects performed nearly optimally in adapting to exogenous uncer-
tainty and to payoffs along with their endogenous uncertainty:
i.e., they planned their timed responses such that they nearly
maximized their expected earnings. This experiment thus lends
strong support to the hypothesis that both humans and rodents
can optimally assess temporal risk in certain contexts.

However, this work addresses only decisions about tempo-
ral intervals between a stimulus and a reward in a discrete-trial
paradigm. Many natural tasks, on the other hand, are better char-
acterized as free-response paradigms. Unlike discrete-trial tasks,
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FIGURE 2 | Expected gain surface (normalized by the maximum
expected gain for different levels of timing uncertainty) as a function
of target switch latency and the level of timing uncertainty (®). Shades
of gray indicate the percentage of normalized maximum expected gain for
the corresponding parameter values, T and &. (A) is for equally probable
short (2 s) and long (3 s) target intervals p(Ts) = 0.5. The ridge of this surface
(bold black curve) shows the optimal switch latencies for different levels of
timing uncertainty. (B) is for a higher probability of the short target interval,
p(Ts)=0.9. For both cases note the dependence of optimal target switch
latencies on the level of timing uncertainty (y-axis). Also note the
differences in optimal target switch latencies for two different exogenous
uncertainty conditions.
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FIGURE 3 | Empirical performance of human and mouse subjects as a
function of optimal performance, calculated for the critical task
parameters and subjects’ estimated level of endogenous timing
uncertainty. Dashed line denotes the identity line. S: subject. Reprinted
from Balci et al. (2009). (A) Humans; (B) Mice.

these tasks impose tradeoffs between the speed and accuracy of
decisions that are analogous to speed—accuracy tradeoffs in per-
ceptual decision-making (see The Drift-Diffusion Model — An

Optimal Model for Two-Choice Decisions). A prototypical tim-
ing task with this property is the differential reinforcement of low
rates of responding (DRL) task. This task poses an interesting,
naturalistic problem in which reward maximization depends on
achieving the optimal level of patience, which is equivalent to find-
ing the optimal tradeoff between two time-dependent quantities
(as we now describe). In the following section, we will use reward
rate (RR) in place of “EG” since we will evaluate the performance
in free-response rather than discrete-trial protocols.

OPTIMAL TRADEOFF BETWEEN TWO TIME-DEPENDENT QUANTITIES
(NEW EXPERIMENT)

In the DRL task, subjects are taught to space each successive
response so that it occurs after a fixed minimum interval (or “with-
hold duration”) since the last response. Each response immediately
starts a new trial and only those responses emitted after the mini-
mum withhold duration are rewarded. For instance, ina DRL 10s
schedule, subjects are reinforced for responding after at least 10's
following the previous response. If they respond sooner, then the
trial timer restarts with no reward. Reward maximization in this
simple task depends on the optimal tradeoff between two time-
dependent quantities with opposing effects on the rate of reward:
the probability of reward, p(R), and the average IRT. The reward
probability increases as IRTs increase (serving to increase the RR),
but with sufficiently long IRTs, the mean inter-reward interval
increases as well. The RR is the probability of reward divided by
the average time between responses (see Eq. 2):

RR = P®R) (2)
IRT

Importantly, the optimal tradeoff between p(R) and IRT that
maximizes RR depends on the subject’s endogenous timing uncer-
tainty (see also Wearden, 1990). Equation 3 defines the RR in the
DRL task assuming inverse Gaussian (Wald) distributed IRTs. This
assumption accurately describes our DRL data, and it is consistent
with a recently developed random walk model of interval tim-
ing (Rivest and Bengio, 2011; Simen et al., 2011). In this model, a
noisy representation of time rises at a constant rate (on average) as
time elapses. Responses are emitted when this increasing quantity
crosses a single, strictly positive threshold (this model is described
in more detail in the discussion). Our inverse Gaussian assump-
tion also accurately describes other human and animal datasets
from paradigms in which subjects emit a single response or a tar-
get interval can be estimated (see Simen et al., 2011). For the DRL
procedure, the expected RR for a given, normalized target IRT (%)
and a given level of timing uncertainty (®) is:

RR(}) = ¢~ (1 = waldedf (T, 7, 7)) (3)

Here, T is the DRL schedule,  is the schedule-normalized mean
IRT (i.e., the average target withhold duration divided by the DRL
schedule), and x > 0 is the Wald distribution’s shape parame-
ter, which captures the noisiness of the underlying random walk
(the Wald cumulative distribution function — waldcdf in Eq. 3 —
is defined in the Appendix). The timing uncertainty equals the
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coefficient of variation, or SD divided by the mean, of this IRT
distribution.

Figure 4 shows the normalized EG surface for the DRL task as
defined by Eq. 3. The ridge of the surface (dark solid line) denotes
the optimal IRTs as a function of timing uncertainty (®). As the
coefficient of variation increases, the optimal IRT diverges from
the DRL schedule in a negatively accelerating fashion.

Methods

To assess the optimality of rat and human DRL performance, we
tested rats in a new experiment for 42 sessions with 7, 14, 28, and
565 DRL schedules! (~12 rats per group), and humans in sin-
gle session experiments with DRL schedules that ranged between
5 and 15 (varied across participants). Methodological details of
these experiments are presented in the Appendix. Rats exhibited
two types of responses: timed and untimed. This created a mixture
distribution for the IRTs that was best fit by an exponential-Wald
mixture distribution. The IRTs that were best fit by the exponen-
tial component were considered to be untimed responses, which
occurred relatively quickly after the previous response. The IRTs
that were best fit by the Wald component were considered to be
timed responses.

Results

Human performance. Figure 4A depicts the performance of
humans (asterisks). It suggests that humans tracked the mod-
ulation of optimal IRTs as a function of temporal uncertainty.
Statistical analyses corroborated these observations. The median
performance of humans provided 98% [interquartile interval
(IQI) 4%] of the MPEG. Similar estimates of nearly maximal
EG were obtained when we used an independent estimate of
endogenous timing uncertainty from a temporal reproduction

'Rat performance in DRL 28 and 56s schedules did not reach steady state
performance, and thus was not included in the analysis.

task with parametric feedback on each trial (see Appendix for
details). Optimal IRTs were significant predictors of the empirical
IRTs, R? =0.56, F(1,13) = 16.29, p < 0.01. When one outlier was
excluded from the dataset (using 2 SD as the exclusion criterion),
this relation became even stronger and more reliable, R?2=0.71,
F(1,12) =29.45, p < 0.001. During debriefing this outlier partic-
ipant reported that s/he was not engaged in the task. Humans’
earnings were significantly larger than what they would have
earned if they had aimed at the schedule, t(14) = 11.06, p < 0.0001,
and their empirical IRTs were significantly longer than the mini-
mum withhold duration, #(14) = 3.96, p < 0.01. When data were
fit with an exponential-Gaussian mixture distribution instead, the
median earnings were 99% of the MPEG.

Rat performance. Median performance of rats for 7 and 14s
DRL schedules were 98% (IQI 3%) and 96% (IQI 5%) of the
MPEG. Figures 4B,C show that rats’ average withhold durations
tracked the optimal duration. Corroborating this observation,
optimal IRTs were significant predictors of empirical IRTs for
both 7 and 14 s schedules, R = 0.60, F(1,10) = 14.68, p<0.01
and R? =0.38, F(1,9) = 5.60, p < 0.05, respectively. The earnings
of rats were significantly larger than they would have been if
they had aimed for the DRL schedule itself for 7s [#(11) = 18.97,
p<0.0001], and 14s [#(10) =6.84, p < 0.0001]. Empirical IRTs
were significantly longer than the minimum withhold duration for
7s(t(11) =11.42,p < 0.0001],and 145 [£(10) =7.30, p < 0.0001].
When data were fit with an exponential-Gaussian mixture distri-
bution instead, median proportions of the MPEG were 99% for
both schedules.

In a theoretical work, Wearden (1990) conducted essentially
the same analysis as ours to characterize the optimal target IRTs
in the DRL task. He showed that linear “overestimation” of the
DRL was the optimal strategy, and that the degree of over-
estimation depended on the level of timing uncertainty. His
reanalysis of a pigeon dataset (Zeiler, 1985) from a DRL-like

Normalized Target IRT (s)

FIGURE 4 | Normalized expected reward rate surface as a function of
the normalized target IRT and the level of timing uncertainty. Shades
of gray denote the proportion of normalized MPEG, which decreases from
light to dark. The solid black curve is the ridge of the normalized expected
reward rate surface and denotes the optimal IRT for different levels of
timing uncertainty. The dashed vertical black line shows the normalized
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task revealed nearly optimal “overestimation” of the scheduled
reinforcement availability time. Wearden’s reanalysis of human
DRL data from Zeiler et al. (1987), with target intervals rang-
ing from 0.5 to 32s, also revealed very nearly optimal perfor-
mance. Qur secondary analyses of two independent, published
datasets from rats corroborated our and Wearden’s observations
from rats, pigeons, and humans. We compared the performance
of control group rats in Sanabria and Killeen (2008 — 5s DRL),
and Ordufia et al. (2009 — 10s DRL) to the optimal perfor-
mance computed for their estimated levels of timing uncertainty.
Rats in these experiments achieved 93, and 94% of the MPEG
for 5 and 10s schedules, respectively, under an exponential-
Wald fit. These values reached 96% for both datasets, when
exponential-Gaussian mixture distributions were fit to the data
instead.

Other examples can be found in the literature in which IRT dis-
tributions peak long after the DRL schedule at least for schedules
up to 36s. These data qualitatively corroborate our observations
[e.g., Fowler et al., 2009 (Figure 2A); Stephens and Cole, 1996
(Figure 4A), Cheng et al., 2008, (Figures 5 and 6), Sukhotina et al.,
2008 (Table 1 and Figure 3)]. With longer DRL schedules (e.g.,
DRL 72s), on the other hand, subjects perform pronouncedly
sub-optimally [e.g., Balcells-Olivero et al., 1998 (Figure 1), Fowler
et al., 2009 (Figure 2B), Paterson et al., 2010 (Figures 1-4)]. In
line with our observations with 28 and 56 s DRL schedules, the
sub-optimal performance in longer schedules might simply be
due to the need for longer training. Wearden (1990) alterna-
tively argued that the “underestimation” of the DRL schedules
might be due to a satisficing strategy to obtain a certain sat-
isfactory rate of reinforcement, an adaptive response bias the
extent of which also depends on the level of endogenous tim-
ing uncertainty (Wearden, 1990, Figure 4). Overall, in line with
our findings from the discrete-trial switch task, human and rat
performance in the free-response DRL task suggests that these
species can assess temporal risk optimally when timing uncer-
tainty is a determinant of the optimal tradeoff between waiting
and responding.

In the DRL task, subjects are not rewarded (thereby suffer-
ing an opportunity cost) for responding prior to the minimum
response—withholding duration. On the other hand, being late is
also commonly “penalized” in nature, as in the case of losing a
precious resource to a competitor by virtue of not claiming it
early enough. In the next section, we describe a task with this
characteristic, in which reward maximization requires avoiding
late responses, and we re-evaluate human performance data from
Simen et al. (2011) within the framework of optimality.

BEAT-THE-CLOCK TASK

In the beat-the-clock (BTC) task (Simen et al., 2011), participants
are asked to press a key just before a target interval elapses, but
not afterward. The reward for responding grows exponentially in
time, increasing from approximately 0 cents immediately after the
cue appears to a maximum of 25 cents at the target interval. Thus
responding as close to the target interval as possible is adaptive.
Failing to respond prior to the target interval is not rewarded
(imposing an opportunity cost). Response times collected in the
BTC task were best fit by a Gaussian distribution, with the mean

reflecting the target response time and the CV reflecting endoge-
nous timing uncertainty. Equation 4 defines the EG for a given
target response time £, timing uncertainty &, and schedule T.

T
EG (i) = / p(11h, &) g (1) di (4)

where t is a possible response time, 7 is the target response time,
p is the probability of responding at ¢ given the subject’s mean
(%) and coefficient of variation (®), and g is the exponentially
increasing reward function that drops to zero after the deadline.
The optimal aim point ¢, is the one that maximizes EG for a
given level of timing uncertainty ®. We performed a secondary
data analysis on this dataset, originally presented in Simen et al.
(2011). Figure 5 depicts the dependence of optimal aim points on
psychologically plausible levels of timing uncertainty and shows
that human participants tracked the optimal target times.

Consistent with Figure 5, optimal target times were significant
predictors of empirical target times [R?> =0.76, F(1,15) = 47.67,
P <0.0001). Participants earned 99% median (IQI 3%) of the
MPEG for their level of timing uncertainty. The proportion of
earnings was 99% median (IQI 2%) of the MPEG when the timed
responses were assumed to be Wald distributed, instead. As in the
switch and DRL tasks, these results suggest a nearly optimal human
capacity for taking endogenous timing uncertainty into account
when planning timed responses —in this case, in scenarios in which
late responding is maladaptive.

In three different temporal decision-making tasks that impose
different time constraints on the problem of reward maximiza-
tion, we have demonstrated that optimal performance depends on
endogenous timing uncertainty. We have further demonstrated
that humans, rats, and mice incorporate their endogenous timing
uncertainty nearly optimally in their temporal risk assessment, at
least for supra-second target durations.
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FIGURE 5 | Normalized expected gain surface as a function of
normalized aim point and level of timing uncertainty. Shades of gray
denote the proportion of normalized MPEG, which decreases from light to
dark. The black curve is the ridge of the expected gain surface and denotes
the optimal aim points for psychologically plausible levels of endogenous
timing uncertainty. Each point (asterisk) corresponds to the performance of
a single subject and points are clustered around the curve of the optimal
aim points. Figure is redrawn based on the data presented in Simen et al.
(2011).
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OPTIMALITY IN THE SUB-SECOND RANGE

The characterization of temporal risk assessment in the switch,
DRL, and BTC tasks pertains exclusively to decisions about supra-
second intervals. There is, however, substantial evidence that dif-
ferent neural circuits might underlie supra-second and sub-second
intervals (e.g., Breukelaar and Dalrymple-Alford, 1999; Lewis and
Miall, 2003). Thus, there is reason to believe that optimality
of temporal risk assessment might be exclusive to supra-second
interval timing. Using a simple temporal reproduction task with
humans, however, Jazayeri and Shadlen (2010) showed that opti-
mal temporal risk assessment also applies to sub-second target
durations.

In their task, participants were asked to reproduce time
intervals that were sampled from different underlying distri-
butions (including sub-second intervals). When reproductions
fell within a temporal window of the target interval, partic-
ipants received positive feedback. The resulting reproductions
of target intervals were observed to regress to the mean of
the encountered intervals, and thus the reproduction of the
same interval could change depending on the underlying dis-
tribution of intervals experienced. Importantly, Jazayeri and
Shadlen (2010) demonstrated that a reward-maximizing model
that took account of the statistics of the target interval distri-
bution and incorporated knowledge of scale-invariant endoge-
nous timing uncertainty accounted for the performance of the
participants. Their findings demonstrate that humans take nor-
mative account of endogenous timing uncertainty to maximize
reward, even in the case of sub-second target durations. Tem-
poral decision-making with sub-second target intervals is more
common in simple motor planning tasks, which we discuss
next.

OPTIMAL MOTOR TIMING

Hudson et al. (2008) reported an experiment in which human
participants were asked to touch a computer screen at a par-
ticular time (e.g., 650ms) to earn monetary reward. A small
time window around this target interval served as the reward
region (e.g., 650 £50ms). There was also a penalty region,
which imposed monetary costs. Lastly, there was a region in
which neither reward or penalty occurred. The temporal posi-
tion of the penalty region was manipulated. Sometimes it per-
fectly straddled the reward region (and anything outside the
reward region was penalized). Sometimes it was adjacent to
the reward region on one side but not the other (thus aiming
toward the other side was a good strategy). The participant’s task
was to maximize the monetary reward during the course of the
experiment.

There were two sources of variance: (1) the participants’ own
timing uncertainty (w) and (2) experimentally added exogenous
noise (a) that was applied to every temporal aim point (drawn
from a Gaussian with i =0 and o =25 ms). Empirical data sug-
gested that participants incorporated both endogenous and exoge-
nous temporal uncertainties (w and o) as they aimed at a time
that very nearly compensated for both the timing uncertainty and
the payoff matrix (i.e., the temporal positions of the reward and
penalty regions). Thus, consistent with earlier reports, these find-
ings showed that humans can take nearly normative account of

their endogenous timing uncertainty and that they can also learn
to take account of experimentally introduced temporal noise in
planning their movement times. Analogous nearly optimal timing
of single isolated movements was also reported in other studies
(e.g., Battaglia and Schrater, 2007; Dean et al., 2007).

Further work (Wu et al., 2009), however, discovered a bound
for optimal performance in these tasks and showed that optimality
of timed motor planning does not hold when subjects are asked
to allocate time across two options to complete a sequence of
movements under stringent time pressure (i.e., 400 ms). Specifi-
cally, they observed that subjects spent more time than optimal
on the first target, even when the payoff for the second target
was five times larger. Based on this finding, Wu et al. (2009)
claimed that the optimality of motor timing is restricted to iso-
lated, single movements, and fails in the context of a sequence
of movements. One important feature of their task that should
be considered, however, is the very stringent response deadline
imposed on the completion of the movement sequence (although
subjects could take as much time as they wanted before initiating
the trial). These findings overall suggest that except in the case of
a sequence of movements made under a strict response deadline,
humans exercise optimal motor timing with sub-second target
intervals.

In the last two sections, we described decision-making scenar-
ios that were explicitly temporal in nature, both with sub-second
and supra-second target durations. In these tasks, subjects made
explicit judgments about time intervals and exhibited optimal
temporal risk assessment. The adaptive role of interval timing is
however not at all limited to explicitly temporal decision-making.
It also plays a crucial but understudied role in reward maximiza-
tion in perceptual decision-making. In free-response paradigms
for instance, timing uncertainty interacts with two-choice per-
formance because reward maximization requires subjects to keep
track of RRs and thus inter-reward times. In the case of time-
pressured decisions (i.e., with response deadlines), interval timing
is even more directly instrumental for reward maximization, since
optimality then requires taking account of the deadline, as well as
uncertainty in its representation. In the next section, we discuss the
role of interval timing in perceptual two-choice decision-making
tasks.

INTERVAL TIMING AND REWARD MAXIMIZATION IN
NON-TEMPORAL DECISION-MAKING

The likely connection between RR estimation and time estima-
tion suggests that endogenous timing uncertainty should translate
into uncertainty about RRs. As we describe below, within the
framework of optimality, this dependence generates a predic-
tion that a decision-maker with higher timing uncertainty will
respond more slowly than optimal (favoring accuracy over RR) in
free-response two-choice tasks (Bogacz et al., 2006). Under this
hypothesis, Bogacz et al. (2006) and Balci et al. (2011) argued that
such “sub-optimally” conservative responding in these paradigms
might in fact reflect an adaptive bias in decision threshold setting
in response to endogenous timing uncertainty. Our analysis and
discussion of optimal temporal risk assessment in these tasks will
heavily rely on the drift-diffusion model (DDM) of two-choice
decisions, which we describe next.
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THE DRIFT-DIFFUSION MODEL — AN OPTIMAL MODEL FOR
TWO-CHOICE DECISIONS

The sequential probability ratio test (SPRT; Barnard, 1946; Wald,
1947) is an optimal statistical procedure for two-alternative
hypothesis testing in stationary environments that provide an
unlimited number of sequential data samples. The SPRT min-
imizes the number of samples for any given level of accuracy,
and maximizes accuracy for any given number of samples (Wald
and Wolfowitz, 1948). In an SPRT-based model of choice reaction
time in two-choice tasks, Stone (1960) proposed that decision-
makers computed the likelihood ratio of the two hypotheses
when sampling a noisy signal, equating the total sample count
with the decision time. In the DDM this discrete sequence of
samples is generalized to a continuous stream, in which the
time between samples is infinitesimal (Ratcliff, 1978; Ratcliff and
Rouder, 1998).

The DDM assumes that the difference between the evidence
supporting the two hypotheses is the decision variable, that this
variable is integrated over time, and that when the integrated evi-
dence crosses one of two decision thresholds — one (+2z) above
and one (—z) below the prior belief state — the corresponding
decision is made. The first crossing of a threshold is identified as
the decision time. The DDM in its most simplified form, is given
by a first order stochastic differential equation in which x denotes
the difference between the evidence supporting the two different
alternatives at any given time ¢; it can be interpreted as the current
value of the log-likelihood ratio:

dx = Adt + odW, x(0) = 0 (5)

Here, Adt represents the average increase in x during the tiny
interval dt, and cdW represents white noise, Gaussian distributed
with mean 0 and variance o2 df (see Ratcliff and McKoon, 2008 for
a detailed description of the DDM).

In the DDM, the clarity of the signal is represented by the
drift A (the signal-to-noise ratio is A/c). Speed—accuracy tradeoffs
arise in the DDM because of the threshold parameter z: Due to
noise, lower thresholds lead to faster but less accurate decisions
and vice versa. The pure form of the DDM in Eq. 5 (e.g., Ratcliff,
1978) often provides reasonably good fits to behavioral data, and
benefits from extremely simple, analytically tractable predictions
regarding RR maximization (Bogacz et al., 2006). Versions of the
DDM with additional parameters (e.g., Ratcliff and Rouder, 1998)
are needed for fitting a broader range of data, especially data with
unequal mean RTs for errors and correct responses.

OPTIMAL TWO-CHOICE DECISION-MAKING AND INTERVAL TIMING

The pure DDM (i.e., a model without the additional variability
parameters used in the model of Ratcliff and Rouder, 1998) pre-
scribes a parameter-free optimal performance curve that relates
decision time to error rate (Bogacz et al., 2006). Optimal perfor-
mance, however, requires decision thresholds that are a function
of the response-to-stimulus interval (RSI). Better estimation of
the RSI by participants with more precise timing abilities may
therefore result in better decision-making performance. Devia-
tions from optimal performance may thus derive from timing
uncertainty. The shape of the function relating the expected RR

to the decision threshold in the DDM suggests why this may be
the case. Specifically, this function is an asymmetric hill, whose
single peak defines the optimal threshold. For a given level of
deviation from the optimal threshold, setting the threshold too
high earns a higher expected RR than setting it too low by the
same amount [Balci et al., 2011 (Figures 7 and 10), Bogacz et al,,
2006 (Figure 15)]. Thus, if decision-makers are to minimize loss
in RR due to endogenous timing uncertainty in RR estimates,
they should err toward overestimating instead of underestimating
the optimal threshold. The behavioral manifestation of overesti-
mating a threshold is longer response times coupled with greater
accuracy (which in model fits appears to suggest a suboptimal,
“conservative,” emphasis on accuracy over speed, and thus RR).

In a single session of two-alternative forced choice tasks, human
participants have indeed been shown to set their decision thresh-
olds higher than the optimal decision threshold (Bogacz et al,,
2010). Balcr et al. (2011) replicated this finding (but also showed
that this deviation decreased nearly to zero with sufficient practice)
and observed that deviations from optimality during early train-
ing could be accounted for by participants’ timing uncertainty
(assessed independently). Balci et al. (2011) quantified deviation
from optimality in two different ways: (1) deviations between opti-
mal and observed RTs; and (2) deviations between optimal and
fitted thresholds. For both measures, Balci et al. (2011) reported
that the regression of deviations from optimality on CVs revealed
a significant relationship F(1,15) =12.1, p < 0.01 (R?> =0.45) and
F(1,14) =22.57, p < 0.001 (R? = 0.62; excluding one outlier based
ona?2 SD rule), respectively (see Figure 6). They also reported that
this relationship held even after first accounting for suboptimal
performance by another model that included a parameter rep-
resenting a self-imposed penalty for errors (Maddox and Bohil,
1998; Bogacz et al., 2006).

Zacksenhouse et al. (2010) recently analyzed the data presented
in Bogacz et al. (2010) using a decision strategy that maximized
the minimal RR achievable for a given level of timing uncertainty.
This decision strategy fitthe Bogaczetal. (2010) dataset better than
an optimally parameterized DDM, and better than the alternative
models that contained an assumed penalty for errors. Conservative
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FIGURE 6 | Deviation from the optimal performance curve of the pure
DDM as a function of CV redrawn based on the data presented in
Balci et al. (2011). Solid line is the linear regression line fit to the data.
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decision thresholds can therefore be viewed as an intrinsic, adap-
tive bias in response to endogenous timing uncertainty, a dynamic
that underlies nearly optimal performance in the switch, BTC, and
DRL tasks. These findings suggest the importance of timing uncer-
tainty in shaping behavior and determining how much reward is
earned even in non-temporal decision-making.

TWO-CHOICE DECISION-MAKING UNDER TIME PRESSURE

Interval timing plays a more direct role in two-choice decisions
when a response deadline sets an upper bound for rewarding
responses and/or for viewing time. Frazier and Yu (2008) showed
that optimal performance in these scenarios requires subjects to
start collapsing decision thresholds so that by the time the deadline
is reached, the decision threshold converges on the starting point
of the accumulation process (see also Rapoport and Burkheimer,
1971; Latham et al., 2007; Rao, 2010). This strategy ensures that
a decision is made prior to the response deadline while maximiz-
ing accuracy for a given response time. According to this model,
for a given level of timing uncertainty, subjects should start col-
lapsing decision thresholds earlier for shorter response deadlines.
Conversely, for a given response deadline, subjects with higher
timing uncertainty should start collapsing decision thresholds
earlier compared to subjects with lower timing uncertainty. We
are currently testing these two specific predictions with human
subjects. Preliminary results do not fully support the notion of
optimal, within-trial modulation of response thresholds. Never-
theless, they do suggest some amount of threshold modulation
within and across trials in response to changing deadlines. They
further suggest a relation in the expected direction between the
level of subjects’ timing uncertainty and the degree of accuracy
reduction in their conditional accuracy (or micro speed—accuracy
tradeoff) curves in response deadline conditions (i.e., accuracy
levels in each of a set of binned RTs, which should be flat for the
pure DDM with a fixed threshold, but which must decrease for RT
bins near the deadline if thresholds collapse).

Discussion
Time is a defining feature of behavior. By incorporating the well-
characterized psychophysics of interval timing into the study of
reward maximization, we have demonstrated that temporal inter-
vals and uncertainty in their representation are critical factors
in both temporal and non-temporal decisions. The findings we
reviewed show that humans and animals come close to maximiz-
ing their earnings in simple timing and decision-making tasks,
which suggests that they can normatively compensate for their
endogenous timing uncertainty in their decision-making. Subjects
nearly maximized the reward earned in scenarios that spanned
sub-second and supra-second target durations, in the presence and
absence of speed—accuracy tradeoffs (i.e., free-response vs. fixed
viewing time), and explicitly temporal and perceptual decisions.
These findings contrast with the assertions of classical decision-
making research that has repeatedly shown that humans are
irrational decision-makers about probabilistic prospects (e.g.,
Kahneman and Tversky, 1979). Here, we have shown that when
uncertainty is endogenous and specifically temporal in nature,
humans in fact make nearly optimal decisions. Supporting this
view, a series of experiments on motor planning have also shown

that humans decide (plan their motor end-points) optimally when
confronted with other ubiquitous sources of endogenous uncer-
tainty, such as motor noise (e.g., Trommershiuser et al., 2008).
These results suggest that when the origin of uncertainty is endoge-
nous, as in interval timing or motor planning, the resulting uncer-
tainty is accounted for by mechanisms that organize and adapt
behavior optimally in response to environmental statistics. We
note, however, that these findings do not necessarily indicate that
endogenous uncertainty is explicitly represented via a domain-
general, metacognitive ability. They simply show that humans and
other animals can make decisions that are adapted to endoge-
nous timing uncertainty in a way that tends to maximize rewards.
Depending on the task representation (avoiding being early or
late), the level of timing uncertainty can be implicitly translated
into a response bias signal that in turn partially determines the
temporal characteristics of behavior. In fact, the task representa-
tion might simply determine the direction, whereas the timing
uncertainty might determine the magnitude, of the response bias.

An important observation with humans is that reward max-
imization in perceptual decision-making (i.e., dot motion dis-
crimination) requires extensive training (e.g., Simen et al., 2009;
Balci et al., 2011), whereas optimal performance in temporal
decision-making appears within a single session: i.e., in the switch
task (Balci et al.,, 2009), DRL (current experiment), and BTC
(Simen et al., 2011). This difference is possibly due to the relatively
extensive exposure of humans to temporal intervals compared to
the specific visual stimuli (e.g., dot motion patterns) typically used
in perceptual decision-making tasks. Time, after all, is a funda-
mental quantity that factors critically into the outcome of almost
all human and animal behavior. The ubiquity of time experience
may have allowed animals to establish a veridical, scale-invariant
model of their endogenous timing uncertainty, which can be used
normatively in decision-making. Estimating the signal-to-noise
ratios of novel stimuli (e.g., dot motion stimuli), on the other
hand, requires extensive new training, which is likely the primary
factor in the delayed achievement of optimal performance in per-
ceptual decision-making. Timing might therefore appear to be a
special case in which optimal decisions are made in single session
experiments simply due to the degree of previous experience. Con-
sistent with this interpretation, when timing uncertainty also has
an exogenous source, human participants require some additional
experience before exhibiting optimal performance (Hudson et al.,
2008).

In addition to addressing the optimality of temporal risk assess-
ment, a reward maximization framework also offers a novel, prin-
cipled resolution to a psychophysical controversy in the domain
of interval timing: namely the location of the point of subjec-
tive equality (PSE) between different durations. The PSE is the
time interval that is subjectively equidistant to two other inter-
vals, which subjects are equally likely to categorize as short or
long. The PSE for animals is often found to be close to the geo-
metric mean of the referents (e.g., Church and Deluty, 1977) but
closer to the arithmetic mean for humans (e.g., Balci and Gallistel,
2006). This inconsistency has been a source of theoretical con-
troversy because of its implications regarding the subjective time
scale — i.e., whether it is logarithmic or linear (Montemayor and
Balci, 20075 Yi, 2009). The optimality-based account of temporal
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discrimination (switch or bisection) performance offers a princi-
pled account of the location(s) of the PSE; it quantitatively predicts
this difference based on cross-species differences in the level of
endogenous timing uncertainty on a linear subjective time scale.

The switch task is essentially a free-operant variant of the
temporal bisection task, in which subjects can emit responses
throughout the trial rather than just a single, terminal choice
after an experimenter-determined probe interval elapses. In fact,
in temporal bisection trials, animals move from the short to the
long response option as the elapsed time approaches and exceeds
the PSE (Machado and Keen, 2003). This suggests that despite the
retrospective nature of the temporal bisection task, animals make
real-time judgments about the elapsing interval in this task, just
as in the case of the switch task. Balci and Gallistel (2006) further
showed that in temporal bisection tasks, human participants set a
single criterion between the referents and judge intervals as short
or long relative to that criterion (see also Allan, 2002; Penney et al.,
2008).

Based on the parallels between decision strategies employed
in both temporal discrimination tasks, the expected reward func-
tion of the switch task also applies to the temporal bisection task.
Accordingly, when Figure 2A is evaluated for the temporal bisec-
tion task, where the short and long target intervals refer to the short
and long reference durations, it predicts that PSEs are closer to the
geometric mean for higher endogenous timing uncertainty (as in
animals) and closer to the arithmetic mean for lower endoge-
nous timing uncertainty (as in humans). This account, based
on the same principles, also predicts the effect of task difficulty
(short/long ratio) on the location of the PSE in humans (Wearden
and Ferrara, 1996): more difficult task conditions mimic higher
timing uncertainty and easier task conditions mimic lower, and
the PSE moves across conditions accordingly.

Finally, for the rat DRL dataset, we only considered what are
referred to as “timed responses” for our optimality analysis (see
also Wearden, 1990). Wearden (1990) showed that untimed short
responses (responses occurring almost immediately after the pre-
ceding response) did not exert much cost on the reward earned in
the DRL task. For instance, 75% of untimed mostly short responses
(uniformly distributed between 0.25 and 0.75s) resulted in 92%
of the reward that could be obtained without any untimed short
responses for a DRL 20 s schedule, mean IRT of 20 s,and CV of 0.3.
We further argue that particularly given their low cost regarding
reward earned, untimed short responses could in fact constitute an
optimal strategy in the long run for non-stationary environments.
For instance, these responses would enable subjects to detect a
shift to a richer schedule (DRL20 — DRL10s) and thus adjust
responding accordingly. On the other hand, the detection of this
change would be more difficult and/or delayed for a subject who
exclusively exploits the DRL schedule (i.e., emitting only timed
responses).

Despite our claim about the ability of humans and non-human
animals to account for their endogenous timing uncertainty, we
have not proposed a mechanistic account of this ability. What
are the possible mechanisms by which organisms infer and repre-
sent their timing uncertainty? We assume that this ability relies on
keeping track of the discrepancies between the time of maximal
expectancy of an event and the actual time of its occurrence over

many instances. The stochastic ramp and trigger (SRT) model
of Simen et al. (2011) allows keeping track of such experien-
tial discrepancies. The SRT model approximates a drift—diffusion
process with a single, fixed threshold, and a noise coefficient pro-
portional to the square root of the drift (see also Rivest and
Bengio, 2011). This model, which contains the Behavioral Theory
of Timing of Killeen and Fetterman (1988) as a special case (where
accumulation is effectively a pulse counting process), exploits the
same mechanism used to account for response times in decision-
making. In the simplest terms, the model times an interval by
accumulating a quantity at a constant rate until it crosses a thresh-
old, call it z. This accumulation is perturbed by the addition of
normally distributed random noise with mean 0. Time intervals
of duration T are timed by setting the accumulation rate (the
“drift”) equal to the threshold divided by T, and simple learning
rules can tune the drift to the right value after a single exposure to a
new duration. The resulting threshold crossing times exhibit scalar
invariance and predict response time distributions that account for
human and animal empirical data.

Importantly, as in models of decision-making (e.g., Simen et al.,
2006), adjustments can be made in the intended time of respond-
ing relative to T by setting a response threshold that is either higher
or lower than the timing threshold. Optimality requires that it be
higher for the DRL task, and lower for the BTC task. Although this
threshold-adjustment approach to optimizing timed performance
appears to be novel in the timing literature, it is standard fare in the
literature on perceptual decision-making. Thus, both the under-
lying model (the drift-diffusion process) and the techniques for
adapting its speed—accuracy tradeoffs (via threshold-adjustment)
emerge as potentially common computational principles in two
distinct psychological domains.

The SRT model allows keeping track of discrepancies from
veridical times. When ramping activity hits the threshold prior
to the occurrence of the event (early clock), the organism can time
the interval between the threshold crossing and the event. Likewise,
when ramping activity fails to hit the threshold at the time of the
event (late clock), the organism can now time the interval between
the event and projected threshold crossing. When these values
are divided by the target interval (threshold/drift), it indicates the
scale-invariant measure of endogenous timing uncertainty. Simen
etal. (2011) in fact used these values to adjust the clock speed to
time veridical intervals in their model (see also Rivest and Bengio,
2011, where the same learning rules were proposed). The same
mechanism can be conveniently used to keep track of timing noise
through experience.

How this function might be embedded in the neural circuitry
(i.e., corticostriatal loops) that have been implicated in interval
timing is an important question that deserves special attention.
In parallel to the striatal beat frequency model (Matell and Meck,
2004), different roles can be assigned to different brain regions
within the SRT framework. For instance, the clock role can be
assigned to the cortex and the effective role of decision thresh-
old to the striatum. Within this scheme, it is possible that the
reinforcement contingent dopamine activity serves as a teaching
signal, which, via long-term synaptic plasticity (i.e., LTP and LTD),
changes the excitability of the striatal medium-spiny neurons that
are innervated by cortical glutamatergic and nigral dopaminergic
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input. This activity might effectively set the decision thresholds
in the direction and magnitude that maximizes the RR. In cases
where the reward function depends on endogenous timing uncer-
tainty, dopamine activity would thus inherently serve as a signal
of the interaction between endogenous timing uncertainty and
task structure. In tasks like the DRL and BTC, brain regions
involved in inhibitory control (e.g., orbitofrontal cortex) would
also be assumed to factor into this process. This framework how-
ever suffers a critical problem, namely: “If the striatal neurons
are ‘trained’ to respond specifically at intervals that maximize
the reward (which are systematically shorter and longer than the
critical interval), how do they represent the veridical critical tem-
poral intervals?” This question suggests that the adaptive response
bias signal should perhaps be assigned to an independent process
controlled by an independent structure such as the orbitofrontal
cortex. This scheme allows that task representation to be coded
independently from the critical task parameter values.

There are two interesting issues, which should motivate and
guide future research seeking a more comprehensive understand-
ing of temporal risk assessment ability. One of these questions
regards the correspondence between the temporal risk assessment
performance of participants across multiple tasks. Considerable
overlap between performances would constitute strong evidence
for the assertion that the ability to account for timing uncer-
tainty is an inherent (i.e., not entirely task-dependent) property
of organisms. The second question regards the possible rela-
tion between decision-making performance under endogenous
uncertainty (e.g., timing uncertainty) and exogenous uncertainty
(e.g., discrete probability of reward delivery). Balc1 et al. (2009)
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APPENDIX

PEAK RESPONDING SINGLE-TRIAL ANALYSIS

The single-trial analysis involved modeling each individual trial
as a three-state system (break—run-break) with a period of low
responding followed by a period of high responding followed by a
final period of low responding (Church et al., 1994). An exhaustive
search of the parameter space with 1-s bins yielded the best fits for
a start time (transition from low to high rate of responding) and
stop time (transition from high to low rate of responding). From
these, start and stop times were calculated. Trials with bad fits
were defined as those in which the single-trial analysis resulted in
start times that occurred later than the criterion interval and stop
times that were earlier than the criterion interval or three times
longer than the fixed interval. These trials were excluded from the
analysis.

DRL METHODS

Subjects

Humans. Fifteen adults (7 males and 8 females), aged 18-30 years,
were recruited via announcements posted online and around the
Princeton University campus. The experiment was approved by
the Institutional Review Panel for Human Subjects of Princeton
University and all participants provided written consent for their
participation.

Rats. Forty-eight male Sprague Dawley rats (Taconic Laborato-
ries, Germantown, NY, USA) were used in this experiment. The
rats were kept in a colony room on a 12:12 light—dark cycle (lights
off at 8:30 a.m.). Dim red lights provided illumination in the
colony room and testing rooms. Upon arrival, the rats were 8 weeks
of age and weighed between 75 and 100 g. During the first week, the
rats were on a free-feeding schedule. After a week, their daily food
(FormuLab 5008) was rationed to 16 g per day. During the exper-
imental session, the rats were fed 45-mg Noyes pellets (Improved
Formula A) as a reward. Water was available ad libitum in both the
home cage and the testing chamber. The rats were previously used
in an experiment that used lights and sounds as stimuli. They were
previously trained on a Fixed Interval procedure with gaps. All
procedures were approved by the Brown University Institutional
Animal Care and Use Committee.

Stimuli and apparatus

Humans. The visual stimulus consisted of a white square on
black background. The display was generated in MATLAB on
a Macintosh computer, using the Psychophysics Toolbox exten-
sion (Brainard, 1997; Pelli, 1997). Responses were collected with a
standard computer keyboard.

Rats. Twenty-four experiment chambers (Med Associates,
dimensions 25 cm X 30 cm x 30 cm) were situated in two sepa-
rate experiment rooms (12 in each room). Each chamber was
contained in a sound-attenuating box (Med Associates, dimen-
sions 74cm x 38 cm x 60 cm) with a fan for ventilation. Each
experimental chamber was equipped with a pellet dispenser (Med
Associates, ENV-203) on the front wall that delivered the reward
into a food cup. A head entry into this cup interrupted a photo
beam (Med Associates, ENV-254). On both sides of the food cup,
there were two retractable levers. On the opposite wall, a water

bottle protruded into the chamber allowing ad libitum access to
water during the session. A lick on the spout of the water bottle
completed an electric circuit. Four Gateway Pentium I1I/500 com-
puters running Med-PC for Windows (version 1.15) controlled
the experiments and recorded the data. The interruption of the
photo beam and the completion of the lick and lever circuits were
recorded in time-event format with 2-ms accuracy.

Procedure

Rat experiment. In each of the 42 sessions, the rats were placed in
the box and a lever was inserted (counterbalanced across rats). Rats
were rewarded for spacing their lever presses (the time between
lever presses or IRT) by at least the DRL schedule. Any IRT shorter
than the DRL schedule was not rewarded. There were four groups,
each with a different DRL schedule. The DRL schedules were 7, 14,
28,and 56 s. There were 12 rats in each group. The session lasted 1-
h. The amount of reward per session for an optimal animal ranged
from about 60 (DRL 56) to about 515 food pellets (DRL 7).

Human experiment. Humans were tested in single session exper-
iments with one of the following DRL schedules per session: 5, 8,
10, 12, 15s. Subjects were told that they would earn money for
each response after a minimum withhold interval since their last
response and that any earlier response would reset the trial clock
with no monetary reward. They were also told how much they
would earn per correct response, that the session time was fixed
and that they should try to make as much money as possible. Trial-
based monetary gain in DRL blocks was parameterized such that if
the participant always responded at the DRL schedule, s/he would
earn at most around $20 per session. This equated the reward
rate for different schedules/participants. Thus, monetary gain per
response increased with longer DRL schedules. Participants were
also explicitly instructed not to count, tap, or adopt any rhythmic
activity in order to time the intervals.

At the beginning of the session, participants were presented
with the minimum withhold duration for three times. This
duration was signaled by a white square presented on a black
ground. Following demonstrations of the target interval, partici-
pants familiarized themselves with this interval by reproducing it
for around 50 times over two blocks. During this familiarization
phase, in each trial a white square appeared in the middle of the
screen and participants were asked to press the space key when they
thought the target interval elapsed. Once the space key was hit, the
square disappeared and participants were given feedback on a fixed
length horizontal line about how far their reproduction was from
the target interval in that trial. The reproduction discrepancy was
signaled by the horizontal distance between two vertical lines, one
representing the target (white) and the other (red) reproduction
in that particular trial. This distance was normalized by the DRL
schedule, so that the same number of pixels corresponded to the
same proportion of discrepancy. Following two blocks of repro-
duction, participants were presented with eight, 5 min-long blocks
of DRL testing (one schedule per subject).

Before the first DRL block, participants were told that the actual
experiment was about to start and were again reminded of the
DRL task rules (see above). Test blocks started with the appear-
ance of a white square in the middle of the screen. Participants
could respond at any time and as often as they chose during the
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trial. If a response was emitted at or after the minimum withhold-
ing duration since the previous response, the square turned green,
and was accompanied by a brief auditory feedback (beep) and
presentation of the money earned in that trial. If the response
was emitted prior to the minimum withholding duration, the
square turned red and was accompanied by a brief buzzer. Follow-
ing feedback, the square turned white again. Cumulative earning
was presented at all times on top of the screen during the test
blocks.

A secondary task was used during familiarization and DRL test-
ing in order to prevent explicit counting. At the beginning of each
block, participants were presented with a four-digit number and at
the end of each block they were presented with a single digit num-
ber. Participants were asked if the four-digit set contained that
single digit. At the end of the session, earning from the timing tri-
als was multiplied by the proportion of correct recollections in the
working memory task. At the beginning of the experiment, par-
ticipants were told about the secondary task and that their earning
from timing trials would be weighted by their performance in the
working memory task.

One of the participants reported that s/he was not engaged in
the task during testing. We include this participant in graphical
depictions and analyses for completeness. However, we also report
results based on the analysis of data after excluding this participant.

WALD CUMULATIVE DISTRIBUTION FUNCTION

JR N (T
waldcdf(T, t,\) = ® l (7 — l)
T\t

2% (T .
+exp7d> —??—i-l , 0=

where ® is the standard Gaussian distribution cdf.
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