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Fitts’ law describes the fundamental trade-off between movement accuracy and speed:
it states that the duration of reaching movements is a function of target size (TS) and
distance. While Fitts’ law has been extensively studied in ergonomics and has guided the
design of human–computer interfaces, there have been few studies on its neuronal cor-
relates. To elucidate sensorimotor cortical activity underlying Fitts’ law, we implanted two
monkeys with multielectrode arrays in the primary motor (M1) and primary somatosensory
(S1) cortices.The monkeys performed reaches with a joystick-controlled cursor toward tar-
gets of different size. The reaction time (RT), movement time, and movement velocity
changed with TS, and M1 and S1 activity reflected these changes. Moreover, modifica-
tions of cortical activity could not be explained by changes of movement parameters alone,
but required TS as an additional parameter. Neuronal representation of TS was especially
prominent during the early RT period where it influenced the slope of the firing rate rise
preceding movement initiation. During the movement period, cortical activity was corre-
lated with movement velocity. Neural decoders were applied to simultaneously decode
TS and motor parameters from cortical modulations. We suggest that sensorimotor cortex
activity reflects the characteristics of both the movement and the target. Classifiers that
extract these parameters from cortical ensembles could improve neuroprosthetic control.
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INTRODUCTION
The relationship between movement speed and accuracy, first
reported by Shannon and Weaver (1949) and Fitts (1954), is com-
monly referred to as Fitts’ law and is formulated as a dependency
of movement time (MT) on target size (TS) and distance to the
target. In information theory and communication fields, this law
provides a means to quantify the information capacity of a motor
system. Fitts’ law has been extensively studied and confirmed to
hold for upper limb (Leisman, 1989; Bootsma et al., 1994) and
head movements (Jagacinski and Monk, 1985), both in adults and
children (Kerr, 1975; Hay, 1981). Fitts’ law disturbance has been
described for neural diseases such as developmental coordination
disorder (Maruff et al., 1999; Wilson et al., 2001) and for Parkin-
son’s disease (Mazzoni et al., 2007, cf. Weiss et al., 1996). There
are conditions for which additional factors have to be accounted
for, including eye movements (Chi and Lin, 1997) and ballistic
arm movements (Hoffman, 1991). For the past 30 years, issues of
computer interface design have driven much interest in Fitts’ law,
helping to improve pointing time through improved screen lay-
out and menu design (Gillan et al., 1992). More recently, it has
been shown that Fitts’ law accurately describes the MTs of a one
dimensional cursor in an electroencephalographically (EEG) dri-
ven brain–machine interface (BMI), both in normal subjects and
in patients with amyotrophic lateral sclerosis and spinal muscular
atrophy (Felton et al., 2009).

From a neurophysiological perspective, Fitts’ law describes
a sensorimotor transformation in which sensory evidence is
detected by the visual system, analyzed by brain visuomotor net-
works, and is eventually converted into movements toward a target
(Kalaska et al., 1997). The neuronal mechanisms of sensorimo-
tor transformations and decision making have been extensively
studied (reviewed in Romo and Salinas, 2001; Gold and Shadlen,
2007; Hoshi and Tanji, 2007; Lalazar and Vaadia, 2008; Andersen
and Cui, 2009; Paz and Vaadia, 2009; Cisek and Kalaska, 2010).
These studies have suggested that there is no strict segregation
between processing in sensory and motor areas: the cortical areas
involved in movement execution, such as motor and premotor cor-
tex, also represent sensory signals and participate in sensorimotor
transformations (Alexander and Crutcher, 1990; Crammond and
Kalaska, 1994; Zhang et al., 1997; Wise et al., 1998; Kakei et al.,
1999; Paz et al., 2003). Furthermore, motor areas appear to sequen-
tially represent a variety of parameters: abstract parameters related
to task rules, orientation of spatial attention (Lebedev and Wise,
2002), motor planning and anticipation (Vaadia et al., 1988; Wise
et al., 1996), and characteristics of limb kinematics and kinetics
(Todorov and Jordan, 2002; Cisek et al., 2003; Sergio et al., 2005;
Xiao et al., 2006; Fagg et al., 2009). According to the evidence-
accumulation model, distinct motor program parameters, such as
reaction time (RT), and movement velocity, emerge as a result of
evidence compiled from sensory information (Schall, 2003; Gold
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and Shadlen, 2007; Kable and Glimcher, 2009). Notwithstanding
this previous work on sensorimotor transformations, the specific
dependencies described by Fitts’ law and their underlying neuronal
mechanisms have not been investigated using neurophysiological
approaches.

To explore the neural correlates of Fitts’ law, we conducted
experiments in two rhesus macaques implanted with multielec-
trode arrays in primary motor (M1) and primary sensory (S1)
cortex. Monkeys performed a reaching task in which TS was
variable. Our results elucidated the representation of TS in sen-
sorimotor cortex, which was conjoint to the representation of
movement direction and speed.

MATERIALS AND METHODS
IMPLANTS AND RECORDINGS
All studies were conducted with approved protocols from the Duke
University Institutional Animal Care and Use Committee and were
in accordance with the NIH guidelines for the Care and Use of
Laboratory Animals.

Two rhesus monkeys (one male and one female, monkeys M
and N, respectively) were chronically implanted with multielec-
trode arrays in M1 and S1 of both right and left hemispheres using
previously described surgical methods (Nicolelis et al., 2003).
Within each hemisphere, two 96 channel microelectrode arrays
were placed in cortical areas corresponding to cortical represen-
tations of arm and leg (Figure 1B). Each array consisted of two
4 × 4 grids of independently movable electrode triplets. Each of
the triplets was comprised of electrodes of different lengths, in
300 μm intervals, which allowed us to sample neuronal activity
from different depths in the cortical tissue. For the purpose of the
study, neural activity was recorded in the arm representation area
of right hemisphere M1 (in both monkeys) and S1 (only in mon-
key M). Recorded signals were amplified, digitized, and filtered by
a multichannel recording system (Plexon Inc., Dallas, TX, USA).
Neuronal spikes were sorted on-line using waveform template
matching and thresholding features built into the spike-sorting
software.

BEHAVIORAL TASK
Each monkey was trained to perform a two dimensional reaching
task using a hand-held joystick that controlled the position of a
computer cursor. The monkeys made center-out movements to
peripheral targets. This experimental protocol matched the design
implemented in a previous human study of Fitts’ law for pointing
movements (Smyrnis et al., 2000). In our experiments, the joy-
stick was at the monkey’s waist level on the side of the working
hand. The monkeys used their left hands to hold the joystick. The
left hand was chosen because the quality of neuronal recordings
was better in the right hemisphere in each monkey. X (left–right)
and Y (forward–backward) positions of the joystick was trans-
lated to the X (left–right) and Y (up–down) positions of the
cursor on the display screen (Figure 1A). The display screen was
placed 45 cm from the monkeys’ eyes, and the cursor diameter
was 0.5 cm.

To initiate a trial, the monkey positioned its hand on the joy-
stick. The trial was canceled if the monkey broke hand contact

FIGURE 1 | Implantation and experimental protocol. (A) Rhesus
monkeys controlled the location of a cursor on a display screen by moving a
joystick with their left hand. Joystick kinematics as well as the neural
activity were recorded and analyzed offline. (B) 4 × 4 Grids of 16 electrode
triplets were implanted bilaterally in M1 and S1 arm and leg regions,
however only the right hemisphere arm region of M1 and S1 was recorded
from in this study. (C) For each trial, the cursor was to move along the radial
origin-to-target axis (X ′) toward one of four potential target locations. (D)

Left to right-typical trial begins with cursor moved within the target at
center of screen. After hold period, penalty ring, and target arc appear. The
cursor is then moved radially through the target arc to receive a reward. (E)

Three potential target sizes are shown with respect to the cursor, for size
reference. (F) An example of a single trial movement trace is shown. Target
onset (TO) and movement onset (MO) are denoted on time axis. The
approach epoch that was used in later analysis spanned from movement
onset to target acquisition.

with the joystick. Once the monkeys touched the joystick, a com-
puter cursor was shown on the screen and a 3-cm diameter circle
appeared at the center of the screen. The monkey moved the cursor
inside that circle, and held it there for a random interval between
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800 and 1500 ms (Figure 1D). After this hold period, the central
circle disappeared and the monkey was required to move the cursor
to a peripheral target that appeared on the screen simultaneously
with the central circle disappearance. The peripheral target was
a thickened arc of either 8, 15, or 22˚ on a thin boundary circle
aligned on the center of the screen (Figure 1E). A juice reward was
immediately delivered when the cursor crossed the target from the
inside out (Figure 1D, right). Movement of the cursor out of the
boundary circle that did not cross the target resulted in termina-
tion of the trial without reward and a 500-ms timeout period. The
targets appeared at angles 45, 135, 225, and 315˚ relative to the
center of the screen (Figure 1C). The monkey had 5 s to complete
each trial. This experiment was repeated over three daily recording
sessions in monkey M and four sessions in monkey N.

ANALYSIS OF MOVEMENTS
To calculate movement onset and velocity for different target posi-
tions, single trial records of cursor position were analyzed using
a coordinate transfer where a new coordinate system (X ′, Y ′) was
obtained by rotating the (X, Y ) axes so that the new X ′ axis coin-
cided with the radial axis from the screen center to the target, and
Y ′ axis was orthogonal to X ′ (Figure 1C). The time of movement
onset was detected by identifying the first co-occurrence of both
the X ′ velocity and acceleration surpassing an empirically deter-
mined threshold of 0.25·Velmax and 0.25·Accelmax, where Velmax

and Accelmax are the respective maximum values reached on a
given single trial. This algorithm was verified by visual inspection
of the accurate identification of movement onset on greater than
95% of tested trials. To detect movement onset in the trials where
the co-occurrence of velocity and acceleration increases were not
found, the first instance of one of the two events was selected. Out-
lier trials with unusual movement patterns (i.e., return to the cen-
ter before reaching the target) were excluded from analysis. We call
the period between the movement onset and the passing of the cur-
sor into the target the approach epoch (Figure 1F). The mean veloc-
ity was calculated within this epoch for each trial. RT was defined
as the time elapsed from target appearance to movement onset.

Trial difficulty was quantified as a function of target width, for-
malized in terms of the index of difficulty (ID) as described in Eq.
1 (Fitts and Peterson, 1964):

ID = log2(2D/W ) (1)

where D is the distance from screen center to target and W is the
length of the target arc (8˚–0.56, 15˚–1.05, 22˚–1.54 cm). D was
fixed at 4 cm.

ANALYSIS OF NEURONAL ACTIVITY
Neural activity was first analyzed using conventional peri-event
time histograms (PETHs; Awiszus, 1997), either aligned on target
onset or on movement onset. Recorded action potential events
were counted in bins of 25 or 50 ms width. The smaller bin width
was used for computation of slopes and ensemble-average mean
firing rate (MFR) to improve temporal resolution. PETHs for a
single neuron were calculated for each trial and then were aver-
aged across trials for each combination of movement direction
(four possible) and TS (three possible). This average modulation

profile for each neuron was normalized by subtracting the mean
bin count and dividing by the SD of the cell’s bin count – the
values calculated for raw spike trains prior to any PETH calcula-
tions. With this normalization, PETH expresses the event-related
modulations as a fraction of the overall modulations, or statis-
tically, the z-score. The preferred direction for each neuron was
determined by finding the direction with maximum MFR in the
750-ms window following target onset.

Trials from each session were subdivided into 12 groups (by
movement direction and TS) and subsequent analysis was per-
formed separately for these groups. Trials were further categorized
into two categories by the length of RT relative to the median values
for that session. Trials with RT below the median were character-
ized as short RT, and above the median as long RT. Similarly, trials
were categorized by approach velocity as slow and fast velocity tri-
als. The corresponding neuronal activity profile was computed for
each selected subset of trials as a way to isolate the neural correlates
of specific differences in behavior.

The typical response profile for both M1 and S1 movement-
related neurons was a rapid increase in firing rate (FR) beginning
approximately 50–100 ms after target onset (Figure 4). Maximum
FR was typically reached near the time of movement onset. Neural
activity between the target onset and movement initiation (the RT
period) was examined for modulation with TS. We found that the
FR slope differed with TS during the RT period. The FR slope for
a given trial was determined within a fixed interval during the RT
period, 50–300 ms after target onset, where we performed a linear
regression across binned (25 ms bin width) spike activity. Mean
slopes were calculated by averaging across all trials in a specified
experimental condition (e.g., direction, RT group). Mean slopes
for each condition were calculated for individual neurons, followed
by an ensemble-level analysis.

In addition to categorical statistical analyses, we treated RT
and TS as continuous, rather than categorical values. To study the
contribution of RT and TS to slope modulation, we performed a
multiple linear regression analysis where the FR slope of each cell
was expressed as a linear function of the RT and TS (Eq. 2).

Slope = WRT + WTS + C (2)

Weights W RT and W TS expressed the contribution of RT and
TS, respectively. W RT and W TS were determined for each neu-
ron along with the 95% confidence interval (CI) of their values
(Ashe and Georgopoulos, 1994). Each CI was generated using the
student’s t statistic with α = 0.05. A neuron was said to enact a
significant modulation for RT, TS, or both if the corresponding CI
did not contain zero. The subset of neurons significantly correlated
to RT or TS were found using this criterion.

For the peri-movement epoch (PME), we found that MFR was
sensitive to TS and movement velocity. For analyses of the rela-
tive magnitude of neural activity prior to and during movement,
PETHs were aligned on movement onset and MFR was calculated
in the PME, defined to be the interval from 50 ms before to 50 ms
after movement onset. MFR modulation could be broadly seen
with comparisons between discrete categories of velocities; how-
ever a more nuanced analysis once again required a multiple linear
regression of continuous variables. Similar to Eq. 2, MFR during
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the PME was fit as a linear function of velocity and TS:

MFR = WVel + WTS + C (3)

Where Vel is movement velocity. Weights W Vel and W TS

expressed the contribution of velocity and TS on MFR. Statis-
tics of single cells and across the population were computed using
the same technique as for Eq. 2.

NEURAL REPRESENTATION OF TASK AND BEHAVIORAL PARAMETERS
AS A FUNCTION OF TIME
Neuronal representation of different task and behavioral para-
meters was quantified using trial-by-trial correlation analyses
between the variations of neuronal rates and parameters in ques-
tion (RT, Velocity, and TS). More specifically, we conducted mul-
tiple linear regression analysis in which a 50-ms window was slid
along the task interval (Figure 6A). FR was calculated within the
window for each trial and fit with a linear function of either RT
and TS (Eq. 4) or mean velocity and TS (Eq. 5):

FR = WRT + WTS + C (4)

FR = WVel + WTS + C (5)

We found that FR was correlated with RT mostly after target
appearance and with Vel mostly around movement onset. There-
fore neural data was aligned on target onset for regression in Eq.
4 and on movement onset for regression in Eq. 5. The magnitude
and sign of each coefficient W provided information regarding the
effect that the corresponding parameter had on FR of a single cell
at a given time. Coefficients for individual neurons were averaged
across neurons at each time step.

NEURAL DECODERS
To evaluate the accuracy with which task and behavioral para-
meters can be extracted from ensemble activity, we used a neural
classifier and linear predictor that decoded kinematic and tar-
get parameters. Linear discriminant analysis (LDA; Fisher, 1936)
was performed using a 100-ms wide window slid at 25 ms time
steps. MFR was measured within this window for each neuron
in the population. The vector of individual neurons’ MFRs was
the input to the decoder. We used 60% of trials as sample data
for the decoder, and 40% of trials as test data. LDA predicted
categorized variables from neuronal ensemble activity. For each
predicted parameter, we used three categories of either TS (8˚, 15˚,
22˚), RT, or velocity (lower 1/3, middle 1/3, upper 1/3 RT, or veloc-
ity). The performance of the classifier was measured as the fraction
correct prediction divided by the chance level fraction correct and
was found at each time step of the sliding window to provide a
temporal profile (Figure 8). Fraction correct for a specified sliding
window position was averaged between analyses where the sam-
ple data were drawn from the beginning, middle, and end of the
session.

The Weiner filter (Wiener, 1949; Haykin, 2002) was used offline
to make predictions of cursor kinematics using a short history
of neural activity (Wessberg et al., 2000; Lebedev et al., 2005).
This analysis tested the influence of TS, RT, and Vel on cursor
position extracted from cortical activity (Figure 7). The Wiener

filter used in this study had six taps of 100 ms with ridge regres-
sion for regularization (Grandvalet, 1998). The filter performance
was evaluated using both signal-to-noise ratio (SNR; Fitzsimmons
et al., 2009; Li et al., 2009) and coefficient of determination (r2;
Wessberg et al., 2000; Lebedev et al., 2005).

RESULTS
Data were collected from four daily recording sessions in monkey
N (2126 trials) and from three sessions in monkey M (1305 trials).
Neural activity was recorded from 64 to 69 M1 neurons (range for
different recording sessions) in monkey N, and from 92 to 111 M1
neurons and 83–91 S1 neurons in monkey M.

INFLUENCE OF TARGET SIZE ON REACTION TIME AND MOVEMENT
PARAMETERS
Reaction time and MT were affected by TS in a manner consistent
with Fitts’ law in both monkeys. Additionally, these changes were
dependent on movement direction. RT, determined by subtracting
target onset from movement onset, clearly decreased with increases
in TS. The distributions of RTs for each of the three TS and each
of four movement directions are shown in Figures 2A–C. Because
these distributions were non-Gaussian in shape, the Kruskal–
Wallis test, a non-parametric analog of ANOVA, was used to
compare RTs for different conditions. This analysis showed that
the TS significantly influenced the distribution of RTs (p < 0.001
for all movement directions with the exception of one for monkey
M with p < 0.02; see Table 1). The TS effect on RT was espe-
cially pronounced for upward–rightward movements in monkey
N (Figure 2A) and downward–leftward movements in monkey
M (Figure 2B).The effect was the smallest for upward–leftward
movements in both monkeys. That direction also had the overall
shortest RT, which suggests that those particular movements were
relatively easy for the monkeys to prepare and perform.

The target approach time (TAT; i.e., the time from movement
onset until the time of target acquisition) also depended on the
TS (p < 0.01, Kruskal–Wallis test) for each movement direction
in both monkeys (Table 1). TAT was shorter for larger targets
and longer for smaller targets. As with RTs, the TS effect was
more pronounced for particular directions and less for others.
The particularly vigorous (i.e., characterized by higher velocity)
upward–leftward movements depended on the TS less than move-
ments in other directions. This can be seen from Figures 3C,D
which presents the distributions of average approach velocities,
that is, the inverse of TAT. The effect of TS on the RT and movement
kinematics is also clear from average movement traces showing
time dependent changes in cursor position measured with respect
to the radial axis from the center to the target, termed X ′ axis
(Figures 3A,B). The average cursor traces for the smallest tar-
get is clearly shifted to the right for both monkeys, reflecting TS
dependent differences in RTs. Differences in movement velocity
are manifested as differences in the slopes and are especially clear
for the initial portion of movement. The initial velocity was slow-
est for the smallest targets (black traces) and fastest for the largest
(red traces).

Since both RT and TAT elongated with smaller targets, MT,
defined as the time from initial appearance of the target to when
the target was entered, elongated as well. The dependency of RT on
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FIGURE 2 | Distribution of reaction times was computed for each

movement direction by monkey N (A) and monkey M (B) with

probability “P” shown as a function of RT. A Kruskal–Wallis test was
performed for each direction to determine significance of target size on
distribution of reaction times (seeTable 1). (C) Reaction time for trials of the
three different indices of difficulty (ID) was fit with linear function and tested

for significance using F test. Means for each ID plotted as filled circles
(monkey M) and open circles (monkey N). The target size of the trial is
denoted by colors specified below (A,B). (D) Movement time for the three ID
conditions. A regression line was used to fit all trials and the subsequent
inverse of slope yields index of performance (IP) in bits per second.
Significance was tested in same way as in (C). All error bars indicate SE.

Table 1 | Kruskal–Wallis analysis of the effect of target size on reaction time and target approach time.

Direction Monkey N Monkey M

Target size × reaction time Target size × velocity,TAT Target size × reaction time Target size × velocity,TAT

45˚ p < 0.001 p < 0.001 p < 0.001 p < 0.001

135˚ p < 0.001 p < 0.001 p < 0.02 p < 0.01

225˚ p < 0.001 p < 0.001 p < 0.001 p < 0.001

315˚ p < 0.001 p < 0.001 p < 0.001 p < 0.001

p-values determined for target size effect on both reaction time and velocity (and therefore target approach time), in each of the four movement directions.

ID is represented in Figure 2C. Average MT tended to be longer
for higher ID trials (F test, p < 0.01), following Fitts’ law, with
an index of performance (IP) of 21.35 b/s for monkey M and
8.21 b/s for monkey N (Figure 2D). The IP was determined by
linear regression following the original method of Fitts (1954).

Taken together, these results indicate that monkeys’ reaching
movements obeyed Fitts’ law. Small targets were associated with
elongated RT, slower movement velocity, and an overall lengthen-
ing of MT in a manner that is consistent with previous Fitts’ law
studies (Bohan et al., 2003; Munro et al., 2007; Boyd et al., 2009).

NEURONAL REPRESENTATION OF REACTION TIME AND TARGET SIZE
Given that TS affected RTs, TATs, and movement profiles, we
expected and observed that these changes in movement kinematics

were reflected in cortical modulations. However, modifications in
M1 and S1 neuronal activity were not mere reflections of changes
in movement patterns. Rather, they were better explained by a
combination of factors that included behavioral parameters and
TS than by movement alone. In other words, neuronal modula-
tions in sensorimotor cortex did not simply reflect the character-
istics of movement, but additionally depended on the properties
of reach targets.

Neuronal modulations can be clearly seen in PETHs separated
for different RTs and TS (Figure 4). These PETHs are shown
as color plots for the M1 and S1 subpopulations of neurons
(Figures 4D–I). Population-average PETHs were computed sep-
arately for M1 (both monkeys; Figures 4A,B) and S1 (monkey
M only; Figure 4C). Both individual-neuron and average PETHs
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FIGURE 3 | Reach kinematics reflect differences in target size. (A,B)

Averaged position traces of monkey N and monkey M along the X ′ axis from
0 (the origin) to 4 (the target, denoted by dashed line). The target size of the
trial is denoted by colors specified in (A). (C,D) Distribution of mean approach

velocity for each of the four movement directions with probability (P ) shown
as a function of mean approach velocity. For each direction, a Kruskal–Wallis
test was performed to evaluate the effect of target size; p-values shown for
each direction separately (seeTable 1).

were clearly different for different RTs. Shorter RTs corresponded
with PETHs with steeper modulation slopes. To examine the
effects of both RT and TS, a two-factor analysis was conducted.
Behavioral trials were categorized into (1) short and long RT
groups and (2) small (8˚), intermediate (15˚), and large (22˚) TS
groups. RTs lower than the median RT were classified as short,
and RTs higher than the median as long. Additionally, preferred
directions (movement direction with maximum neuronal rate)
and least preferred directions (minimum-rate direction) were ana-
lyzed separately for each neuron. In Figure 4, panels for short vs.
long RTs, different TS and preferred vs. least preferred directions
are labeled accordingly. Analyses of these groupings suggested that
PETH slopes increased with shorter RTs and additionally increased
with larger targets. PETH slopes for individual neurons and pop-
ulations were calculated using linear regression of PETH values
vs. time in the interval from 50 to 300 ms after target onset (see
Materials and Methods). Average population PETH separated into
most and least preferred direction are shown in Figures 4A–C.
They indicate a tendency for the slopes to depend on both RT and
TS for both preferred and least preferred directions. For both pre-
ferred and least preferred direction, average slopes increased with
shorter RTs and larger TSs.

An analysis of PETH slopes for single neurons revealed the
same tendency as for the slopes of population PETHs (Table 2).
For the preferred direction, short RT trials had, on average, steeper
slopes than long RT trials for M1 (monkey N and M), as well as
S1 (monkey M) cells (p < 0.0001, paired t -test). The same ten-
dency was found for the least preferred direction in monkey N
M1 and monkey M M1 neurons (p < 0.0001), however the effect

was not significant in the recorded S1 cell population (p > 0.05).
Furthermore, PETH slopes in individual neurons, both in the pre-
ferred and the least preferred directions showed TS dependence
among all trials in monkey N M1, monkey M M1, and monkey
M S1 (p < 0.01). To test significance of this effect, we performed
both one-way ANOVA (FR slope distribution was nearly normal)
and the Kruskal–Wallis test. Reported is the larger of the two p-
values for each analysis. Looking within only long RT trials, the
effect remained significant in both the preferred and least pre-
ferred direction in each neuronal population, in both monkeys
(p < 0.001). In short RT trials, the TS effect was significant in mon-
key N M1 (p < 0.001) and monkey M S1 (p < 0.01) but only mar-
ginally significant in monkey M M1 (p = 0.12 ANOVA, p < 0.05
Kruskal–Wallis), possibly because monkeys were less careful to hit
the target on those trials and their movements were more ballistic,
which have been shown not to follow Fitts’ law (Juras et al., 2009).
A greater difference emerged between the small target trials and
either of the other two larger target trials, both at the behavioral
and neuronal levels. As such, further slope comparisons were made
between the small target trials and each of the other two groups
in a pairwise manner (Table 2). Neural activity of the population
followed this trend as well (Figures 4D–I). The results were con-
sistent in both preferred and least preferred directions, in M1 as
well as S1 in monkey M.

While the analysis of Figure 4 suggested that PETH slope
could not be explained solely by changes in RT and additionally
depended on TS, this demonstration was not sufficient because
the composition of short RT and long RT groups of trials could be
different for different TSs. In particular, RTs could be shorter for
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FIGURE 4 | Effect of reaction time on firing rate profiles. (A–C)

Averaged and normalized firing rate across all recorded M1 cells in
monkey N, M1 cells in monkey M, and S1 cells in monkey M. For each
four-axis panel, the left column denotes movements in preferred
direction of each neuron and right column shows the least preferred
direction. The upper and lower rows represent the averaged and
normalized PETH across long and short reaction time trials, respectively.
Target size specified by line color [(see legend below (B)]. Slopes in
spk/s2 computed from regression of normalized firing rate during analysis
interval (gray box, see Materials and Methods). (D–F) Population PETH

showing normalized firing rate profiles on long reaction time trials for all
cells (ordinate) over time (abscissa) relative to target onset (denoted by
vertical black bar) from M1 of monkey N (D), M1 of monkey M (E), and
S1 of monkey M (F). For each, the most preferred (left) and least
preferred direction (right) are compared. (G–I) Same as (D–F) with PETH
showing firing rate profiles during the short reaction time trials. Color of
pixel represents normalized firing rate (z -score, see Materials and
Methods). Scale of axis in (A–C) narrower than in (D–I) due to averaging
across M1 or S1 populations reducing the amplitude of PETH profile
compared to single cell activity levels.
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Table 2 | Effect of reaction time and target size on firing rate slope preceding movement onset.

Monkey N, M1 cells Monkey M, M1 cells Monkey M, S1 cells

Preferred Least Preferred Least Preferred Least

Long RT 0.114 ± 0.01 0.085 ± 0.01 0.232 ± 0.01 0.202 ± 0.01 0.092 ± 0.01 0.096 ± 0.01

Short RT 0.266 ± 0.01

(0.53)**

0.257 ± 0.01

(0.57)**

0.345 ± 0.01

(0.69)**

0.278 ± 0.01

(0.56)**

0.143 ± 0.01

(0.58)**

0.112 ± 0.01

(0.53)
†

Small 0.058 ± 0.01 0.077 ± 0.01 0.260 ± 0.01 0.192 ± 0.01 0.058 ± 0.01 0.077 ± 0.01

Medium 0.153 ± 0.01

(0.64)***

0.104 ± 0.01

(0.57)*

0.297 ± 0.01

(0.57)***

0.263 ± 0.01

(0.60)***

0.152 ± 0.01

(0.64)***

0.104 ± 0.01

(0.57)*

Large 0.143 ± 0.01

(0.65)***

0.132 ± 0.01

(0.61)***

0.313 ± 0.01

(0.61)***

0.265 ± 0.01

(0.62)***

0.143 ± 0.01

(0.65)***

0.132 ± 0.01

(0.61)***

Comparison of firing rate slope during reaction time period for both monkeys in M1 and S1 (monkey M only). Slopes were computed during a fixed window of

the PETH of neurons with the specified population during movements in either the preferred (left column) or least preferred direction (right column) and averaged

across cells and multiple sessions. Rows represent the compared groups of reaction times (rows 1, 2) and the groups of target size (rows 3–5). Data shown is mean

slope ± SD. In parentheses is fraction of recorded cells with slope for test condition greater than slope for control condition. Long RT and small targets chosen as the

control groups, with paired t-test performed to evaluate significant differences between RT or target size groups.

*p < 0.05, **p < 0.001 short RT vs. long RT, ***p < 0.001 medium or large target vs. small target, † not significant.

large TS than for small TS even after they were separated into short
RT or long RT groups. To address this possibility, we performed a
linear regression analysis where the slope was expressed as a linear
function of both RT and TS (Eq. 2).

The weights W RT and W TS (Eq. 2) were calculated for different
cortical areas illustrated (i.e., the same neuronal populations as in
Figures 4A–C). Mean W RT in all three cortical areas was negative
(monkey N M1 −0.026 ± 0.002, monkey M M1:−0.046 ± 0.003,
and S1: −0.048 ± 0.003; mean ± SE), confirming the inverse rela-
tionship between RT and PETH slope. Conversely, mean W TS, in
all three cortical areas was positive (monkey N M1: 0.046 ± 0.002,
monkey M M1: 0.011 ± 0.002, and S1:0.031 ± 0.003), confirming
a slope increase for larger TS. To estimate the significance of these
values, single cell coefficient values, as well as their corresponding
95% CI were determined from regression (see Materials and Meth-
ods). In both monkeys, M1 cells were identified with significant
W RT or W TS, although the dominant parameter differed between
the two monkeys (monkey N: TS 40% of cells, RT 18%; monkey
M: TS 11% of cells, RT 31%). For S1 neurons the modulation was
slightly more related to RT than TS (TS 20% of cells, RT 32%).
Thus both TS and RT contributed to modulation of FR slope dur-
ing the RT period in M1 and S1 neurons. However, the relative
effect of size was variable between monkeys.

NEURONAL REPRESENTATION OF VELOCITY
The changes in mean approach velocity for different TSs (Figure 3)
were associated with modification in M1 and S1 activity. In addi-
tion, we observed a modulatory effect of TS on FR beyond the
changes in neuronal activity explained solely by kinematics. Sim-
ilar to the analysis of the effect of RT and TS on the initial
PETH slope, in this analysis we calculated PETHs for groups of
trials selected based on the mean velocity during the approach
epoch categorized as slow or fast. PETHs for both groups, in
both the preferred and least preferred directions were computed
(Figure 5). PETHs were centered on movement onset. The main
effect seen in the average PETHs (Figures 5A–D) and PETHs
for individual neurons in the population (Figures 5E–J) was an

increase in neuronal rates for fast velocity trials compared to slow
velocity trials. Statistical significance of this effect was confirmed
by an analysis of peak FR (p < 0.001, paired t -test; Figure 5D).
Furthermore, the neuronal rates were modulated by the TS in
such a way that for small targets, FR were reduced for both slow
and high velocities and preferred and least preferred directions
(Figures 5A–C). PETH amplitude near the time of movement
onset was found to be dependent on both the velocity of the trial
and the TS (Table 3).

A fixed window was set spanning from 50 ms before to 50 ms
after movement onset denoted as the (PME; see Materials and
Methods). The MFR in the PME was larger for fast velocity tri-
als than for slow trials in all cortical areas and monkeys, both in
the preferred and least preferred directions (p < 0.001, one-way
ANOVA). In addition to velocity, TS modulated FR throughout
the trial (Figures 4A–C). Our data confirmed that the TS mod-
ulated MFR during the PME during movement in the preferred
direction of M1 and S1 neurons (p < 0.02), and the effect was
even stronger during the slow trials (p < 0.001). The effect of TS
on MFR was present in fast trials, but was only seen in M1 of mon-
key N and only in the preferred direction. Least preferred direction
modulation was much weaker or was not present in all three cell
populations recorded. Thus, the MFR was modulated by both TS
and velocity.

As velocity and TS were not independent, we next performed a
linear regression analysis to elucidate their relative contributions.
The MFR during the PME was fit by a linear function of velocity
and TS (Eq. 3). Weights W Vel and W TS were determined for each
neuron as well as their 95% CI. FR was found to be more strongly
influenced by velocity than by TS in each case. In monkey N M1,
W Vel was larger than W TS [W Vel = 0.019 ± 0.003 (mean ± SE)
vs. W TS = 0.009 ± 0.001, p < 0.05, calculated for all cells, not
just those with significant values], and the fraction of recorded
neurons reflecting velocity (44.5%) was much higher than the
fraction reflecting TS (10.9%). Significance was determined using
the same procedure as for the regression in Eq. 2. In monkey M
M1, the effect was similar in that the MFR near movement onset
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FIGURE 5 | Effect of velocity on firing rate profiles. The normalized firing
rate was computed during the 1-s interval surrounding movement onset from
three subpopulations of neurons: (A) M1 neurons in monkey N, (B) M1
neurons in Monkey M, (C) S1 neurons in Monkey M. In each panel, the left
column represents averaged, normalized FR for movements in each cell’s
preferred direction, right column the least preferred direction. The top row is
averaged over all trials slower than the median approach epoch velocity and

the bottom row shows only fast trials. Target size specified by line color [see
legend below (B)]. (D) Same data from (A–C) collapsed into simply a
comparison of slow vs. fast trial average PSTH for each of the three cell
groups. Population PSTH for slow (E–G) and fast (H–J) trial averages. In each
panel: Y axis contains all neurons, X axis represents time aligned on
movement onset (black bar). Color of pixel represents normalized firing rate
(z -score, see Materials and Methods).

was more a function of velocity than TS (W Vel = 0.027 ± 0.004,
W TS = −0.009 ± 0.002, p < 0.05), and there were more neurons
reflecting velocity (38.3%) than those reflecting TS (18.9%). Mon-
key M S1 neurons showed an even stronger contribution for
velocity (W Vel = 0.044 ± 0.002,W TS = −0.012 ± 0.002, p < 0.05),
with over 55.1% of neurons reflecting velocity and 14.7% neurons
reflecting TS. Taken together, FR magnitude in the window sur-
rounding movement onset was more strongly related to velocity,
suggesting that amplitude of firing encoded velocity, while the
slope during the RT period (Figure 4) more strongly encoded
the TS.

TIME DEPENDENT MODULATION OF NEURAL ACTIVITY WITH
MOVEMENT PARAMETERS
To determine task periods during which neuronal activity reflected
trial-by-trial variations of RT and velocity, we performed a multi-
ple linear regression analysis (Eqs 4 and 5). MFR during a sliding
window was fit to linear functions of RT and TS (Eq. 4) and
approach velocity and TS (Eq. 5; see Materials and Methods). We
observed an initial negative correlation of RT with spikes within
500 ms of target onset in all three cell populations during the
pre-movement, or RT period (Figure 6B). This result reflected
earlier, more rapid onset of firing for short RT trials. Interestingly,
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Table 3 | Effect of trial velocity and target size on mean firing rate in peri-movement epoch.

Monkey N, M1 cells Monkey M, M1 cells Monkey M, S1 cells

Preferred Least Preferred Least Preferred Least

Slow 1.29 ± 0.02 0.41 ± 0.02 1.31 ± 0.02 0.19 ± 0.02 0.73 ± 0.02 0.57 ± 0.01

Fast 1.44 ± 0.03

(0.67)*

0.53 ± 0.03

(0.62)*

1.53 ± 0.03

(0.59)*

0.31 ± 0.03

(0.55)*

1.25 ± 0.02

(0.82)*

0.74 ± 0.02

(0.53)*

Small 1.04 ± 0.03 0.35 ± 0.03 1.34 ± 0.04 0.24 ± 0.03 0.20 ± 0.03 0.56 ± 0.03

Medium 1.54 ± 0.03

(0.75)***

0.54 ± 0.03

(0.64)***

1.44 ± 0.04

(0.56)**

0.27 ± 0.03

(0.51)
†

1.03 ± 0.03

(0.93)***

0.59 ± 0.03

(0.53)
†

Large 1.50 ± 0.02

(0.73)***

0.50 ± 0.03

(0.62)***

1.48 ± 0.03

(0.56)***

0.23 ± 0.0.03

(0.48)
†

0.97 ± 0.01

(0.92)***

0.58 ± 0.03

(0.61)
†

ANOVA overall p < 0.001 p < 0.001 p < 0.02 n/s p < 0.001 n/s

ANOVA fast only p < 0.001 n/s n/s n/s p < 0.001 n/s

ANOVA slow only p < 0.001 p < 0.001 p < 0.001 n/s p < 0.001 n/s

Mean normalized firing rate, shown as mean ± SE in 100 ms window around movement onset varies with both average movement velocity as well as with target

size. Top two rows: a comparison of slow vs. fast trials. Below the fast trial MFR is the fraction of cells with MFRfast > MFRslow in the 100-ms window. Lower rows:

MFR during trials with different target sizes. Within each column, fraction of cells with MFRfest > MFRsmall – either the medium or large target size groups – along with

the denotation of significance. One-way ANOVA performed on MFR with the factor being target size.This test was performed among all trials, only among fast trials,

and only slow trials, with significance denoted in the corresponding location.

*p < 0.001 difference from slow trial MFR, **p < 0.05 difference from small target MFR, ***p < 0.001 difference from small target MFR.

a positive correlation of FR and TS coincided with, or slightly
led the RT representation. This representation of RT and TS was
present in both M1 and S1. The same analysis was performed for
regression of MFR as a function of mean approach velocity and
TS (Eq. 5). Neural activity aligned on movement onset was binned
and the coefficients W Vel and W TS were determined. A positive
correlation between velocity and FR was observed near move-
ment onset in each cell population, although the effect was more
subtle in monkey M M1 (Figure 6C). This correlation decreases
shortly after movement onset to sub-baseline levels, then rises
again 600–800 ms later. Notably, it was the second correlation peak
that matched up temporally with the highly significant prediction
levels computed in LDA from Figures 8D–F. TS correlation was
less clear, however in monkey N M1 since there were significant
positive coefficient values corresponding to movement onset in
this animal. It is likely that the contribution of TS was somewhat
smeared upon realigning the data on movement rather than target
onset. In both RT and velocity correlations, there was a specific
interval during the task in which each parameter was encoded by
modulations in neural activity. TS correlation with neural activity
was most clear during the RT period of the movement.

EXTRACTION OF KINEMATICS AND TARGET SIZE FROM CORTICAL
ACTIVITY
The observed differences in cortical activity for slow and fast veloc-
ities of movements were reproduced by a predictive model that
extracted cursor position from the recorded population activity
(Figure 7). M1 and S1 neural activity was combined to gen-
erate predictions using a Wiener filter (Wiener, 1949) trained
on the first 50% of a session’s trials. Consistent with previous
BMI studies (Wessberg et al., 2000; Serruya et al., 2002; Car-
mena et al., 2003), X and Y position of the cursor were predicted

with high accuracy (Figures 7A,B; SNR = 4.422 dB, r2 = 0.80, X-
Pos; SNR = 4.798 dB, r2 = 0.82, Y-pos). Next, cursor movements
were predicted for 50% of trials for the two velocity groups,
averaged, and then compared against the actual averaged trajec-
tory (Figures 7C,D). There was a clear distinction between the
fast and slow predicted traces and the Wiener predicted trajecto-
ries closely matched the actual traces in both monkeys (monkey
N: 13.98 dB (r2 = 0.99) fast, 8.54 dB (r2 = 0.95) slow; monkey
M: 13.73 dB (r2 = 0.99) fast, 13.56 dB (r2 = 0.97) slow). Simi-
larly, we wondered whether the cursor position could be decoded
between TS groups. The mean trajectory was computed across a
single representative session for each monkey for trials of each
TS (Figure 7E). Wiener filter predictions on the test data (50%
of trials) was computed and averaged to generate the mean pre-
dicted trajectory for each TS (Figure 7F). Decoded neural activity
reproduced the average trajectory with high accuracy (monkey
N: SNR > 18 dB; monkey M: SNR > 10.3 dB) and the predictions
even matched subtle behavioral effects such as the elongation
of RT.

We next asked if neural predictions of TS, RT, and movement
kinematics depended on the time in the task interval. This analysis
elucidated instances when cortical activity represented different
parameters. Predictions of RT, TS, and movement velocity were
obtained using LDA (Figure 8). A 100-ms sliding window was
incremented at 25 ms intervals along the time axis relative to either
target onset (Figures 8A–C) or movement onset (Figures 8D–F).
At each time point, the neural activity in the single 100 ms bin
trained the classifier on 60% of trials in the beginning, middle,
or end of a session to make predictions of the three parameters
in the remaining 40%. Significance was reached if the predicted
parameter lay beyond the 95% CI (one proportion z-test) cen-
tered on chance level performance. Aligned on target onset, there
was significant encoding of both RT and TS with peak occurring
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FIGURE 6 | Multiple linear regression analysis of target size, reaction

time, and velocity with firing rate over task interval. (A) Firing rates
were estimated using a 50-ms sliding window slid with 50 ms time steps in
the interval from 0.5 s before target onset until 1.5 s after target onset. The
firing rate of a single cell in the window was fit with a linear function of the
corresponding trial RT and target size and then averaged across all cells
(see Eq. 4, in Materials and Methods). (B) Data showing the coefficient for
RT and target size of Eq. 4 as a function of location of sliding window
right-most bound in monkey N M1, monkey M M1, and monkey M S1 (left
to right). Vertical line represents target onset. (C) Firing rates were fit with
linear function of mean approach velocity and target size of each trial (Eq. 5,
in Materials and Methods). Methods for (C) same as shown in (A), except
data realigned on movement onset (dashed line) and sliding window range
from 1 s before to 1 s after movement onset.

for both at 200 ms after target onset for monkey N M1. Monkey
M M1 predictions of TS and RT were less clear, but simultane-
ous significant (p < 0.05) predictions of both parameters began
at 200 ms and continued until 1000 ms after target onset. Monkey
M S1 predictions showed only very slight representation of TS. A
synchronous increase in RT and TS prediction occurred beginning
at 325 ms after target onset led to a significant local maximum but
the representation of TS was much less prominent than in M1.

Approach velocity was also found to be transiently represented
in sensorimotor cortex of both monkeys. The temporal occurrence
of the neural representation was much later, 650 ms after move-
ment onset in monkey N M1 and 700 ms after movement onset in
monkey M M1. Monkey M S1 representation was slightly different,
with two distinct peaks, one occurring at 125 ms and the other at
725 ms after movement onset. TS was not consistently found to be
encoded after movement onset. As the data in Figures 8D–F are

FIGURE 7 | Movement kinematics can be decoded from neural activity.

(A,B) Movements along the X axis and Y axis decoded offline and shown
with the actual traces. (C,D) Average X ′ vs. time profile for the two velocity
groups, both actual (solid lines) and predicted (dashed lines). (E,F) Actual X ′

position vs. time for each target size, in both monkeys (E) compared with
predicted X ′ trace for each target size (F). Shown separately for clarity,
however SNR computed by comparing actual and predicted for a given
target size. In all predicted X ′ trajectories, the single trial kinematics were
predicted then averaged across the session to generate the traces in
panels (C–F).
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FIGURE 8 | Velocity, target size, and reaction time predicted using

linear discriminant analysis. Each parameter was divided into three
groups for analysis. Data for each prediction collected from a single bin,
100 ms sliding window of neuronal data incremented at 25 ms through
the specified interval. Data denote normalized fraction correct by dividing
the fraction correct prediction by the chance level performance (see
Materials and Methods). (A–C) Prediction of the three parameters

aligned on target onset (dashed vertical line) for monkey N M1 (A),
monkey M M1 (B), and monkey M S1 (C). Noted on each is the mean
time of movement onset (μMO) with the mean ± SD denoted by smaller
black vertical bars on time axis. (D–F) Prediction of the three parameters
now aligned on movement onset (dashed vertical line). Each panel
shown with 95% confidence interval for expected LDA classification
performance (gray horizontal band).

aligned on movement rather than target onset, the pre-movement
encoding of TS (p < 0.05) is likely a distorted representation of
the results in Figures 8A–C. Taken together, there was a clear
neural representation in sensorimotor cortex of RT and TS fol-
lowing target onset. Separate to this representation is the velocity
tuning of neurons in M1 and S1 occurring well after movement
onset.

DISCUSSION
We elucidated the neural correlates underlying the changes in the
parameters of arm reaching movements with TS. At the behav-
ioral level, we found a strong TS-dependency (ID-dependency)
for three parameters of arm reaches performed by rhesus mon-
keys: total MT, RT, and mean approach velocity. At the neuronal
level, analysis across the recorded neuronal populations in M1 and
S1 revealed changes in modulations that depended on TS. These
neuronal modulations could not be only explained by changes in
movement parameters – the effect that would be expected if M1
and S1 represented only motor aspects of that behavior. Rather,
sensorimotor cortical activity represented both characteristics of
movement and TS. During the RT period, the slopes of neuronal
rates depended on both TS and RT, and during movements neu-
ronal rates depended on TS and movement velocity. Likewise, RT,
TS, and cursor trajectories were each effectively decoded from cor-
tical activity using both a Wiener filter and LDA predictions. These
results indicate that M1 and S1 ensembles encode TS during motor
preparation and execution.

FITTS’ LAW IN MONKEYS
There are clear similarities between the behavioral data obtained
in the present study and those obtained from previous work in
humans. We found a positive, linear relationship between ID and
MT, confirming the canonical Fitts’ law relation (Fitts, 1954; Card
et al., 1978). From regression of this data, the IP was computed for
the two monkeys to be 8.21 b/s (monkey N) and 21.35 b/s (mon-
key M). These compare to similar values shown for human motor
systems, which Fitts found to be around 10–12 b/s (Fitts, 1954).
Monkey behavior also matched previous human work with respect
to target-dependent shifts in RT (Munro et al., 2007; Boyd et al.,
2009) and velocity (Plamondon and Alimi, 1997; Munro et al.,
2007).

When comparing monkey data to previous human findings,
several key differences were discovered. We found that monkeys
treat different movement directions unequally. For each monkey,
one out of four directions was the most difficult and resulted in
longer RTs and clearer Fitts’ law dependency compared to other
reach directions. For other directions the monkeys moved in a bal-
listic fashion, showing less clear features of Fitts’ law. We propose
that ballistic movements can at least partially explain such loss of
Fitts’ law-type behavior, in agreement with previous work on Fitts’
law in humans (Juras et al., 2009).

NEURAL CORRELATES OF FITTS’ LAW
Our data suggest that the neural correlates of Fitts’ law are
observed in M1 and S1 during both motor preparation (RT
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period) and movement execution (movement period). During
motor preparation,populations of M1 and S1 exhibited clear mod-
ulations of FR that were characterized as FR slopes. The slopes
increased with shorter RTs and larger TSs. FR slopes have been
shown to be involved prominently in decision making, as demon-
strated by evidence-accumulation models (Roitman and Shadlen,
2002; Gold and Shadlen, 2007). These models are based mostly
on the data from eye-movement studies that required selecting
a saccade direction in response to complex visual clues (Pearson
and Platt, 2009; Resulaj et al., 2009). Thus, it has been shown
that neural activity recorded in middle temporal (MT) and lateral
intraparietal (LIP) areas rises more gradually when the task is per-
ceived to be more difficult, thus lengthening the pre-movement
period (Roitman and Shadlen, 2002; Churchland et al., 2008).
Such dependency is similar to the behavioral and neurophysio-
logical results of our study: we also observed elongated RTs for
smaller TS, and the changes of neuronal rates developed slower.
Our present findings also correspond to our previous study of
self-timed movements where we observed lower FR slopes in M1
and dorsal premotor (PMd) neurons for longer self-timed inter-
vals (Lebedev et al., 2008). Thus, gradual changes of FR during
behavioral epochs preceding movements appear to be a general
phenomenon in the cortex during tasks that involve sensorimotor
transformation and decision making. Notably, we did not observe
a clear segregation between motor (M1) and sensory (S1) areas
which both showed modulations during the RT period. This adds
to previous reports of premotor activity in S1 (Soso and Fetz,
1980; Lebedev et al., 1994). The exact role of M1 and S1 circuitry
in the sensorimotor transformation that involves TS processing is
not clear. One possibility is that M1 and S1 modulations reflect
the processing performed mostly by associative areas (Thaler and
Goodale, 2011) and basal ganglia (Lee and Assad, 2003). Alterna-
tively, M1 and S1 may be involved in the sensorimotor transforma-
tion as an essential part of a distributed network where there is no
clear-cut segregation of processing modules (Shen and Alexander,
1997; Zhang et al., 1997; Hernandez et al., 2010). While our results
cannot distinguish between these two possibilities, the presence
of TS information in M1 and S1 indicates that these areas are
not involved in merely movement production, but reflect sensory
components of the visuo-motor transformation, as well.

The second feature of movements clearly reflected by corti-
cal activity was velocity. Approach velocity was found to shift as
a function of TS (Figures 3C,D). Neural activity at the time of
movement initiation paralleled this shift via FR amplitude. Higher
velocity trials correlated with higher FR during and slightly after
movement onset (Figure 5D). This result was expected, as numer-
ous previous studies have strongly linked motor cortical activity
with velocity (Moran and Schwartz, 1999; Todorov, 2000; Lebe-
dev et al., 2005; Wang et al., 2007; Li et al., 2009). Additionally,
a large percentage of M1 neurons were found to encode both
target-centric (reach distance) and motor (direction, position)
parameters during movement, often in a serial manner (Fu et al.,
1995). Our findings also indicate that S1 neurons exhibit veloc-
ity tuning, consistent with previous studies that have described
S1 neurons with kinematic modulations (Gardner and Costanzo,
1981; Cohen et al., 1994; Lebedev et al., 1994, 2005; Carmena
et al., 2003). In our experiments, S1 representation of velocity was

somewhat weaker than in M1, however the maximum modulation
epoch was similar (300–700 ms after movement onset).

Target size has not previous been identified to modulate FR
profiles in M1 or S1. Using both linear regression and LDA, we
found that in both M1 and S1 the neural representation of TS
becomes prominent first during the RT period, coinciding with
the rise of RT encoding (Figures 8A–C). This, again, expands the
role of M1 beyond simply motor execution (Shen and Alexander,
1997; Zhang et al., 1997; Merchant et al., 2004). Our data showed
a second, more subtle effect in both monkeys, with TS again rep-
resented 100–300 ms following movement onset (Figures 8D–F)
near the onset of velocity representation. Thus, our results suggest
that M1 is one of the loci of evidence-accumulation, since it seems
to integrate TS information with motor parameters during the
pre-movement period (affecting RT) and near movement onset
(affecting velocity).

Somewhat surprisingly, we did not observe clear-cut differences
between M1 and S1 modulations during the execution of center-
out reaching movements. During the pre-movement period, we
found S1 neurons to modulate very similarly to M1. RT and TS
were both encoded in S1 during this period, although the onset of
this representation was no sooner than 200 ms after target onset,
compared to an earlier 50–100 ms post-stimulus representation in
M1 (Figures 8B–C). Pre-movement activity has been previously
reported in S1 (Soso and Fetz, 1980; Nelson et al., 1991; Lebedev
et al., 1994). Moreover, visual information has been reported to
affect pre-movement activity patterns in S1 (Liu et al., 2005). Our
finding of TS representation in M1 provides additional evidence
of the representation of visual information in M1. In addition to
cortical visual streams (Wise et al., 1997), the basal ganglia appear
a likely candidate for a structure that mediates transmission and
processing of this information (Alexander and Crutcher, 1990; Lee
and Assad, 2003; Opris et al., 2011).

IMPLICATIONS FOR BMIs
Much current BMI research focuses on improving movement pre-
dictions by either technical improvement (electrode type/number)
or algorithm optimization. The motor goal for cortically con-
trolled neuroprosthetics is to recreate complex naturalistic move-
ments using only the neural activity for the patient. Notwith-
standing strong early work toward this goal (Carmena et al., 2003;
Lebedev et al., 2005; Moritz et al., 2008; Velliste et al., 2008; Vargas-
Irwin et al., 2010), there are still many milestones to accomplish
(Lebedev and Nicolelis,2006; Nicolelis and Lebedev,2009; Lebedev
et al., 2011). A recent human BMI study using EEG (P300) dri-
ven BMIs confirmed Fitts’ law in movements controlled by neural
signals, thus supporting the idea that Fitts’ law parameters can be
incorporated into BMI cursor control (Felton et al., 2009). Because
Fitts’ law is widely seen in naturally enacted movements,Felton and
others (Gilja et al., 2011; Simeral et al., 2011) suggest that Fitts’ law
would be an effective tool for comparing BMI subjects, modali-
ties, and tasks. With the results from the present study, we suggest
that TS, in addition to motor parameters could be decoded from
neural activity in order to improve neuroprosthetic control and
approximate naturalistic movements.

The present understanding of Fitts’ law has drastically influ-
enced the ergonomics field, especially in the streamlining of
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human–computer interaction. Computer interface designs heav-
ily favor rapid point-and-select layouts, prompting the prevalence
of pop-up and pie menus, corner icon locations, and appropriate
sizing of buttons and GUI controls (MacKenzie, 1992; MacKenzie
et al., 2001). Pointing devices such as a mouse or joystick were
demonstrated to follow Fitts’ law in a similar manner as manual
pointing (Card et al., 1978). The International Organization of
Standards requires compliance with Fitts’ law optimized perfor-
mance on all non-keyboard computer input devices, quantified by
both IP (in bits per second) and error rate (ISO9241-9:2000(E),
2002). As brain–computer interfacing develops in coming years,
it will be increasingly important to understand the underlying
neural mechanisms behind this behavioral property. With BMIs,
the subject’s thoughts replace the mouse or joystick as the input
device. Being able to decode the size of the desired target, for exam-
ple, enables a forward model to enhance performance in terms of
accurate on-line kinematic predictions, indices of performance,
and decreased error rates – the ISO criteria currently used for
input devices. Such a forward model could extract the TS from
the neural activity during the RT period, as was demonstrated in
the present study, and use this parameter to guide more accurate
brain-controlled movements. This result would greatly impact the
field of neuroprosthetics and make headway toward realizing the
goal of enacting naturalistic movements in humans.

The results from this study demonstrate the existence of Fitts’
law in two rhesus macaque monkeys and provide strong indi-
cations of the underlying neural correlates. The changes at the
behavioral level were paralleled by the modulations of M1 and
S1 neurons during the pre- and PME. TS-dependent modulation
existed in addition to kinematic tuning thus suggesting a potential
encoding that could be exploited in the design of future BMIs.
Improved movement predictors that incorporate reach informa-
tion such as TS will enhance the ability of cortically driven neuro-
prosthetics in terms of both accuracy and similarity to naturalistic
movements.
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