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A crucial property of the brain is to integrate 
temporal information with accurate physi-
ological responses (Hinton and Meck, 1997; 
Buhusi and Meck, 2005; Coull et al., 2011). 
Evolution has favored biological clocks that 
dictate homeostatic processes (e.g., the cir-
cadian timing of sleep) and, on a smaller 
time-scale, timed behavioral responses (e.g., 
interval timing). The interplay between such 
time-keeping mechanisms is intriguing but 
biologically complex. Moreover, in biology, 
analogous problems can be successfully 
solved by multiple computations. In this arti-
cle I will discuss of sleep, circadian rhythms, 
and interval timing by delineating several 
aspects that suggest a common evolution-
ary role in providing neurobiological mecha-
nisms for temporal information processing.

Neither interval timing nor the homeo-
static regulation of sleep are currently as 
well-understood, at the molecular level, 
as the circadian clock. This has triggered a 
scientific interest in linking these phenom-
ena to the circadian molecular machinery. 
On one hand, sleep homeostasis has been 
investigated in genetic and lesion studies of 
the circadian “master” clock (Franken and 
Dijk, 2009) to test whether the two pro-
cesses (homeostatic and circadian) were 
independent. On the other hand, it has 
been questioned whether interval timing 
and circadian clock share similar oscilla-
tory mechanisms, although with a different 
time-scale (Crystal, 2001, 2006a,b; Crystal 
and Baramidze, 2007), and whether circa-
dian rhythms affect interval timing. Whilst 
the research in sleep and circadian clock over 
the last few years resulted in some interesting 
positive associations (reviewed in Tucci and 
Nolan, 2010), the question whether interval 
timing is related to the circadian clock has 
not a clear unanimous conclusion yet.

Sleep and Interval tImIng
As in conditioning behaviors, in which a 
brief time interval itself may embody the 
proper information to be learned, sleep 

behavior is phase-locked in the 24-h (cir-
cadian) rhythms of the organism. However, 
while the circadian process is self-sustained, 
sleep is homeostatically regulated and varies 
according to the previous wakefulness. Back 
in evolution, single-cell organisms became 
entrained to environmental rest-activity 
stimuli (light and temperature changes 
caused by the earth’s rotation) in order to 
set the time of their metabolic processes 
(Krueger, 2010). Sleep evolved from rest-
activity cycles and it is still debated whether 
a sleep-like phenotype occurs within single 
neurons and how this is affected by environ-
mental (extracellular) stimuli. Nevertheless, 
it is reasonable to envisage that sleep has 
developed, in multicellular organisms, 
based on the same biology of a primordial 
rest state.

In understanding the brain mechanisms 
of interval timing it is becoming pivotal to 
define whether the coding of interval timing 
depends on targeted neuronal mechanisms 
and their associated sub-cellular signal-
ing pathways or on the states of neuronal 
networks. There is no doubt that the two 
mechanisms (single neuronal signaling and 
networks) are intimately connected but it is 
fundamental to understand what sets the 
time for timed responses such as a motor 
action or an endocrine oscillation.

It appears that sleep and interval timing 
share a common destiny as they are often 
studied as emerging properties of neuronal 
networks. For this reason, it is not surpris-
ing that the function of sleep, is thought to 
be associated to synaptic plasticity, as theo-
rized by the latest functional model of sleep 
(Tononi and Cirelli, 2006). In both sleep 
(Tononi and Cirelli, 2006) and interval tim-
ing (Buonomano and Laje, 2010) the output 
units of the network rely on the develop-
ment and stabilization of proper synaptic 
weights. Yet, the synaptic interplay between 
frontal cortex and subcortical neurons, such 
as striatal neurons, is important in both 
sleep-related memory consolidation and 

interval timing. Besides, these phenomena 
rely on specific patterns of “slow” oscillatory 
firings (Diekelmann and Born, 2010).

A number of studies has shown that 
sleep benefits memory consolidation (see 
Diekelmann and Born, 2010 for an extensive 
review). Beneficial effects of sleep on memory 
occur after a few minutes (Lahl et al., 2008), 
a few hours (Mednick et al., 2003; Tucker 
et al., 2006a,b; Korman et al., 2007; Nishida 
and Walker, 2007), or after a proper night 
of sleep (Pace-Schott et al., 2005; Stickgold, 
2005; Stickgold and Walker, 2005a,b; Walker 
et al., 2005a,b; Marshall and Born, 2007). Of 
all the memory tasks that have been used in 
investigating learning and memory aspects 
of sleep, almost none of them have manipu-
lated temporal variables, until recently. Lewis 
et al. (2011) and Lewis and Meck, (2011), by 
using a combination of psychophysics and 
neuroimaging techniques in human partici-
pants, have tested the hypothesis that sleep 
promotes consolidation of temporal infor-
mation. The authors differentiated motor and 
perceptual timing in their task. Interestingly, 
they reported that brain sleep-wake states 
during retention modulates motor learning 
in motor areas, such as the supplementary 
motor area, the striatum, and the cerebel-
lum, while perceptual timing activates the 
 posterior hippocampus zone (Lewis et al., 
2011). This new evidence is in agreement with 
an influential model of a sleep-dependent 
memory mechanism that involves slow-wave 
sleep (SWS; Diekelmann and Born, 2010). 
Cortical slow oscillations (<1 Hz) provide 
a timed  electrophysiological mechanism 
of up- and down-states that pass memories 
from  hippocampal temporary storage to 
 neocortical long-term storage (Cheng et al., 
2008, 2009; Molle and Born, 2011).

CIrCadIan CloCk and Interval 
tImIng
The circadian clock is represented, at the 
cellular level, by a well-known negative 
transcription/translation-based feedback 
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loop that sets the oscillation of the so called 
“core clock genes.” The brain contains a 
pacemaker-like structure, the suprachias-
matic nuclei (SCN) of the hypothalamus, 
that provides circadian rhythmicity to other 
peripheral organs.

Core clock elements in the cell are tran-
scriptional factors that regulate interlocking 
positive/negative feedback loops (Ko and 
Takahashi, 2006; Reppert, 2006). In mam-
mals, the positive loop starts when CLOCK 
and BMAL1 (two members of the bHLH–
PAS transcriptional factor family), form 
heterodimers and then translocate to the 
nucleus. Here this CLOCK:BMAL1 complex 
binds to E-box enhancers and promote the 
transcription of the Period (PER1-3) and 
the Cryptochrome (CRY1 and CRY2) genes. 
The resulting proteins form PER:CRY 
heterodimers that initiate the negative 
feedback loop. These PER:CRY complexes 
move back to the nucleus and inhibit the 
activity of CLOCK:BMAL1 resulting, then, 
in the repression of their own transcription. 
However, these are not the only regulatory 
loops. CLOCK:BMAL1 activates also the 
transcription of two retinoic acid-related 
orphan receptors (REV-ERBs and RORs) 
which regulate positively (RORs) and 
negatively (REV-ERBs) Bmal1. To increase 
the complexity of the circadian clock, a 
number of post-translational mechanisms 
were shown to regulate clock genes (Lopez-
Molina et al., 1997; Lowrey and Takahashi, 
2000; Lowrey et al., 2000). This whole clock 
mechanism of activators and repressors 
represent an oscillatory mechanism that is 
necessary to coordinate circadian rhythms. 
However, a remarkable causal relation exists 
between molecular oscillations and neural 
activity. An important property of neurons 
in the SCN of the hypothalamus is their 
ability to generate, endogenously, action 
potentials which oscillate throughout day 
and night (Albus et al., 2002; Schaap et al., 
2003; Yamaguchi et al., 2003; Kuhlman and 
McMahon, 2006; Ko et al., 2009). Neurons 
are active for 4–6 h during the day and inac-
tive during the night. During the daily active 
state their responses to excitatory inputs 
are remarkably reduced while at night they 
become responsive again. A combination of 
ion channels regulates membrane currents 
that maintain the spontaneous circadian 
activity of SCN neurons (Colwell, 2011). 
The silencing of SCN neuronal firing, at 
night, depends on a difference in membrane 

potential and this is mainly mediated by a 
hyperpolarizing potassium mechanisms 
(Kuhlman and McMahon, 2006).

A series of important studies, that have 
investigated the relation between neu-
ronal activity and circadian molecular 
clock (Nitabach and Blau, 2002; Nitabach 
et al., 2002; Sheeba et al., 2008; Choi et al., 
2009), has shown that synaptic activity and 
membrane potential are responsible for the 
oscillation of core clock genes. This has dra-
matically changed the general assumption 
that a molecular clock drives the activity of 
clock neurons. Nitabach et al. (2002) were 
able to show, in Drosophila, that chronic 
hyperpolarization silenced circadian neu-
rons and interrupted the circadian behav-
ioral rhythmicity and the expression of PER 
and TIM proteins. This testifies that neural 
activity regulates circadian molecular clock. 
Another component that plays a crucial role 
in clock gene expression is represented by 
the levels of Ca2+. The resting levels of Ca2+ 
during the day, when the SCN neurons are 
more active, are doubled if compared with 
the night inactivity (Colwell, 2000). Ca2+ is 
thought to be responsible also for another 
important aspect of circadian rhythms: 
the phase–response curve (Colwell, 2011). 
Indeed, the response to an environmental 
input (e.g., light stimulation) differs accord-
ing to the specific phase of the circadian cycle.

There are several reasons to investigate 
associations between interval timing and 
circadian rhythms. A series of studies con-
travenes the assumption that interval tim-
ing depends on a linear accumulator but, 
instead, indicates an oscillatory-like mech-
anisms (Crystal, 1999, 2003; Crystal and 
Baramidze, 2007; Gu et al., 2011). Thus, it 
is reasonable to investigate if shared mecha-
nisms between short (seconds-to-minutes) 
and long (circadian) timed responses occur. 
Several studies have concluded for a close 
relationship between interval timing and 
circadian rhythms. For example, it has been 
shown that circadian rhythms change the 
perception for short intervals (Pfaff, 1968; 
Aschoff, 1998a,b; Nakajima et al., 1998; 
Morofushi et al., 2001) and that in condi-
tions of temporal isolation (Aschoff, 1998) 
the time estimation co-varies with their cir-
cadian period. Furthermore, in drosophila 
circadian mutants it is present a deficit for 
short-interval timing (Kyriacou and Hall, 
1980). Yet, dopamine (DA) mechanisms and 
motivated behaviors are strongly associated 

with both interval timing (Meck, 2006a,b; 
Agostino et al., 2011) and circadian clock 
(Albrecht, 2011). SCN projects toward brain 
areas within the DA circuitries and which 
mediate reward-related behaviors.

Other studies, instead, suggested that 
circadian clock mechanisms are independ-
ent of interval timing. This conclusion was 
driven by SCN lesion studies (Lewis et al., 
2003) and by investigations of interval 
timing in circadian mutants (Cordes and 
Gallistel, 2008; Papachristos et al., 2011). 
I shall argue that conclusions driven by 
lesions restricted to SCN should not be gen-
eralized to the molecular level. For example, 
studies in mice of SCN lesions that lead to 
arrhythmic circadian behaviors, but did not 
affect sleep homeostasis (Easton et al., 2004; 
Larkin et al., 2004), have supported, for a 
long time, the idea that the two processes 
(circadian and homeostatic) were inde-
pendent. However, at a molecular level, we 
now know that several circadian genes play 
a role in sleep (Tucci and Nolan, 2010).

Regarding the phenotyping of interval 
timing in circadian mouse mutants, Cordes 
and Gallistel (2008) have reported that Clock 
has no abnormal consequences in the peak-
interval procedure in mice. In this study 
CLOCK-KO mice were used instead of the 
CLOCK mutants that carry the single point 
mutations. Similar negative results in interval 
timing were obtained by Papachristos et al. 
(2011) in Cry1 and Cry2 KO mice. Our criti-
cal argument to these studies is that, due to 
functional genomic redundancy, gene dele-
tion models may not be able to reveal all the 
important functions of the gene. Paralog 
compensation among several clock func-
tional genes has been reported (Debruyne 
et al. 2006; DeBruyne et al., 2007). It was 
shown that CLOCK-deficient mice present 
only mild circadian alterations and, thus, 
it is not essential for the circadian rhythms 
(Debruyne et al., 2006). A paralog of CLOCK, 
NSPAS2, has been proposed to dimerize with 
BIMAL1 and to work in the mouse forebrain 
as the clock molecular loop (Reick et al., 
2001). NSPAS2 is particularly expressed in 
the cortex, hippocampus, striatum, amyg-
dala, and thalamus (Garcia et al., 2000) and 
exerts an important role in sleep and behavior 
(Dudley et al., 2003). For all these reasons, I 
believe that further investigations in interval 
timing and circadian rhythms is required 
before we can roll out the hypothesis of an 
independency among these phenomena.
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it could be envisaged that interval-timing 
phenotypes will be largely employed in phe-
notype-based mutagenesis program (Nolan 
et al., 2000) and would have the potential to 
promote a new era of molecular discoveries, 
in interval timing, as we had for circadian 
clock. However, cognitive tests in mice pre-
sent a number of restraints that make them 
unfeasible for such large-scale functional 
genomics enterprises. An easy solution to 
this impasse is the development of auto-
mated tests in home-cage. They have the 
advantage to increase the sample of obser-
vations, to reduce the time for training and 
to leave the animals undisturbed. Last, but 
not least, 24-h home-cage screens allow the 
integrated investigation of timing pheno-
types at different time-scales.
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